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Abstract

Theoretical models of information asymmetry have identified a tradeoff between the desire
to learn and the desire to prevent an opponent from learning private information. This paper
reports a laboratory experiment that investigates if actual bidders account for this tradeoff,
using a sequential procurement auction with private cost information and varying information
revelation policies. Specifically, the Complete Information Policy, where all submitted bids are
revealed between auctions, is compared against the Incomplete Information Policy, where only
the winning bid is revealed. The experimental results are largely consistent with the theoretical
predictions. For example, bidders pool with other types to prevent an opponent from learning
significantly more often under a Complete Information Policy. Also as predicted, the procurer
pays less when employing an Incomplete Information Policy only when the market is highly
competitive. Bids are usually more aggressive than the risk neutral quantitative prediction,
which is usually consistent with risk aversion.
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1 Introduction

In multistage non-cooperative games with information asymmetry, previous theoretical studies

(e.g., Anand and Goyal, 2009, Kannan, 2010) have considered two learning aspects exhibited by

the players – the incentive to extract and the incentive to obscure private information – as well as

the trade-off between these incentives from the perspective of the market organizer. The managerial

insights offered by these analyses depend on steep informational and rationality requirements for

the players. Therefore, the relevance of these insights to practical, real-life situations remains an

open question. In this paper, we investigate these learning aspects empirically using an experiment

focused on one important application: procurement auctions.

Auctions are one of the most commonly-used mechanisms for procurement. General Dynamics,

GE, Sears Logistics, and Staples, are among the many organizations that have employed auction

technologies for procurement (Chandrashekar et al., 2007). These technologies enable a market-

maker to easily alter the information policy for an auction; i.e., the extent to which information

about bids are revealed at the beginning, during, and at the end of the auction. In fact, one of the

important problems in the procurement context is the choice of the information policy (Elmaghraby

and Keskinocak, 2000, highlights this issue). The problem has also been recognized in third party

electronic procurement marketplaces (see, e.g., Jap, 2002, 2003, Arora et al., 2007). For example,

in Freemarkets,1 a firm that specializes in organizing electronic procurement markets, the buyer

who convenes the market has a wide range of policy choices. At one end of the spectrum, the

buyer can accept sealed bids and simply notify sellers individually whether each of them won or

not. At the other end, all bids can be revealed as they are submitted, allowing bidders to respond

in real time. Different information policies have also been adopted in traditional marketplaces.

In federal and some state procurement auctions, the government is legally mandated to disclose

only the winner’s bid at the end of the auction (Milgrom and Weber, 1982). By contrast, in

municipal construction contracting all bids are often revealed after the winner is selected (Thomas,

1996). Note that these procurement contexts typically feature repeated competition among the

same suppliers across different auctions (e.g., Milgrom and Weber, 1982). Because of this repeated

competition, the information revealed provides an opportunity for bidders to learn about their
1Freemarkets has merged with Ariba.
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opponents’ private information (such as their costs) across auctions. This opportunity can lead

bidders to alter their behavior, which in turn affects the buyer’s procurement costs.

In this context, we build on Kannan (2010) to model a procurement auction as a sequential

private value auction in which winners do not drop out from subsequent auctions. Our model also

permits bidders to have non-neutral risk preferences, since risk aversion has been documented as

important in environments such as auctions, where agents face uncertainty related to the value of

the object, the strategies used by others, and the private information possessed by their opponents.

We use the model to study the following two policies in a first price sealed bid procurement auction:

(i) the Incomplete Information Revelation Policy (IIP), in which only the winner’s bid is revealed

at the end of every auction, similar to the federal government mandated revelation policy; and (ii)

the Complete Information Revelation Policy (CIP), in which all bids are made public at the end of

every auction, similar to that in municipal construction auctions.

The perfect Bayesian Nash equilibrium analysis of the two policies identifies two key learning

effects. The extraction effect, which occurs under IIP, refers to the bidders’ desire to alter their

bids so as to learn about the opponents’ private information. The deception effect, which occurs

only under CIP, refers to the bidders’ desire to prevent their opponents from learning about their

own private information by pooling with higher cost types. Although both these effects arise from a

bidder’s desire to maintain a relative informational advantage over her competitors, their influence

on market outcomes can be different. Both effects lead to higher prices, but either may have a more

dominant impact on procurement costs, depending on the degree of competition. Our analysis also

presents insights into how the learning effects interact with risk aversion. While the bids in IIP

decrease as the degree of risk aversion increases – a result consistent with previous findings, e.g.,

Maskin and Riley (1984) and Maskin and Riley (1987) – the analysis of CIP reveals a surprising

result. We find that the pooling rate (submitting a high bid) actually increases with risk aversion.

The steep informational and rationality requirements imposed to compute the two stage Bayesian

Nash equilibria are demanding, so the practical and descriptive value of the theory may be limited.

This highlights the need to test the predictive power of the theoretical results. An obvious way

to test the model would be through an empirical analysis of field data. However, private infor-

mation about costs is typically not available, making such an analysis difficult. The choice of the

information policy is also endogenous in the field, which complicates causal inferences.
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An experimental study, through its use of a controlled setting and exogenous manipulation of

information policies, can overcome these problems. Our experiment allows us to study bidding

behaviors under different, exogenously-imposed information policies. The experiment focuses on

the learning-related bidder behaviors which a buyer should consider when choosing procurement

auction information policies in environments characterized by different degrees of competition.

The analysis of our experimental data shows that bidders pool with high-cost types to prevent

opponents from learning significantly more often under CIP, and the procurer pays less under IIP

only when the degree of competition is high. These results indicate that subjects behave as if they

can compute a perfect Bayesian-Nash equilibrium of this dynamic game, or at least appreciate the

intuition of the learning effects (the extraction and deception effects). We also observe that, in

general, learning effects shift bids in the predicted direction with regard to treatment variations in

the information policies and the degree of competitiveness in the market.

We also use the experimental data to apply a structural estimation procedure to estimate the

degree of risk aversion most consistent with the bidding behavior. Our estimation results show

that risk aversion is consistent with most of the overly-agressive bidding relative to the risk neutral

Bayesian-Nash equilibrium observed. Bidders in the CIP treatment, however, do not pool with

high-cost types at the high rates predicted by risk aversion. This may occur because cognitive

limitations prevent subjects from understanding the risk reduction benefits of pooling, or because

of non-pecuniary benefits of winning an auction. Thus, policy comparisons should also take these

cognitive limitations and winning incentives into account.

Our paper is distinct in the literature in several ways. An extensive literature in auctions has

analyzed the problem of information revelation in various contexts (e.g., Goeree, 2003, Das Varma,

2003, Katzman and Rhodes-Krop, 2008, de Silva et al., 2008, Chen and Vulcano, 2009). To the

best of our knowledge, our paper is the first to experimentally study information revelation policies

in a repeated procurement auction setting. Moreover, the notion of learning we focus on is across

multiple stages within a game. It is different from prior experimental research which has exten-

sively analyzed learning across multiple iterations of the same game (e.g., Camerer and Ho, 1999).

Furthermore, the paper features theoretical, experimental, and structural estimation components.

Thus, by drawing upon a diverse set of research methodologies, we provide a comprehensive analy-

sis of the information policy choice problem. The analysis offers actionable managerial insights into
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the interaction between information disclosure policies and bidder learning effects. For example,

there is a perception in the industry that bid transparency leads to aggressive bidding behavior

and, therefore, lower buyer procurement costs, see e.g. Elmaghraby and Keskinocak (2000). How-

ever, the perception does not take into account obfuscation strategies which can be optimal with

complete revelation of bids.

The rest of the paper is organized as follows. Section 2 reviews the related literature, and Section

3 summarizes the theoretical model and results. Section 4 presents the research hypotheses and the

experiment designed to test them. Section 5 reports the basic results and main hypothesis tests,

and Section 6 presents the structural estimation of the risk aversion model. Section 7 concludes.

2 Literature Review

2.1 Sequential Auctions with the Winner not Dropping Out

Suppliers in procurement auctions frequently compete against the same set of opponents across

different markets or in different auctions held sequentially by the same buyer. Therefore, we

model the procurement context as a sequential auction with the winner not dropping out. More

specifically, the procurement setting is modeled as a private value auction, consistent with prior

works (e.g., Maskin and Riley, 2000, Bajari, 2001).

Most prior work in the area of sequential auctions has focused on winners dropping out (e.g.,

Krishna, 2009, Klemperer, 2004). One of the first papers on sequential auctions with no winner

drop out is Ortega-Reichert (1968), where a CIP-like policy is considered but in a common-value

setting. A few other related papers have studied private value auction settings but have focused on

results when the objects across the stages are stochastically equivalent (Branco, 1997, Englebrecht-

Wiggans, 1994); have diminishing marginal valuations (Donald et al., 2006); or exhibit synergies

(Jeitschko and Wolfstetter, 1998).

Hausch (1986) extends the Ortega-Reichert (1968) common value framework to compare the

CIP-like sequential auction and the simultaneous auction. Two other closely related papers dealing

with private value auctions are Thomas (1996) and Tu (2005). Thomas (1996) focuses on studying

mergers, although part of his analysis compares policies that are similar to CIP and IIP. The model

is similar to the case in which two bidders repeatedly compete and each is equally likely to be a

low- or a high-cost type and their own cost type information is private. He concludes that CIP
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always generates higher buyer surplus and lower bids than IIP. This result is different from the

conclusion in Kannan (2010), which shows that the surplus ranking of IIP or CIP depends on

the distribution of cost types. In a recent work simultaneous to Kannan (2010), Thomas (2010)

considers a distribution of cost types but continues to recommend CIP based on the analysis

executed at the probability when the types are equally likely. Tu (2005) also analytically studies a

two bidder game where bidders have private information about their cost types, except that their

cost is drawn from a continuous distribution. He explicitly imposes an assumption that suppliers

cannot pool with other cost types and determines that CIP generates higher buyer surplus than

IIP. However, pooling is an important strategy we focus on in the present analysis.

2.2 Auction Experiments

Auctions have been studied extensively using experiments, including very practical applications

such as for the design of FCC spectrum auctions (e.g., Goeree et al., 2006). Kagel and Levin

(2010) provides a recent survey. Few experiments have focused on comparing the outcomes of

different information revelation policies in sequential auctions, and only two studies focused on

contexts similar to ours. Dufwenberg and Gneezy (2002) analyze the importance of information

disclosure policy in a common value setup like Hausch (1986). The main difference, however, is

that while Hausch (1986) considers first-price sealed-bid auctions, Dufwenberg and Gneezy (2002)

consider a setup where bidders agree to share the royalty with the buyer. They consider three

types of information revelation policies, including both of our policies where all bids, or all winning

bids, are announced by the auctioneer between stages. They consider a common value setting,

however, and bidders have no private value that could be potentially revealed from earlier bids,

and competing bidders do not interact repeatedly. Theory does not predict any difference in bid

prices between the bid revelation policies, but they find that when bidders are informed about

the losing bids in previous stages, prices are significantly higher than the theoretical prediction.

Bidders become more competitive when this information is not revealed, which moves bids closer

to the theoretical prediction.

3 Theoretical Model, Equilibrium and Insights: Summary

In this section, we develop the theoretical results using a model similar to Kannan (2010), which

considers a two-stage, private-value, sequential auction model with no winner drop outs. While
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Kannan (2010) permits an arbitrary number of potential competitors, we examine the special case

of two bidders (or suppliers) in our experiment. However, in the present model, bidders can be risk

averse, while in the previous one they are all treated as risk neutral.

3.1 Model

Bidders are assumed to be characterized by a constant relative risk averse (CRRA) utility function

of the form U(x) = x(1−r), where x is the payoff and r is the risk aversion coefficient. Thus, the

risk neutral analysis is a special case of our model when r = 0. The CRRA approach ”is the

most widely used parametric family for fitting utility functions to data” (Wakker, 2008, p. 1329).

We also assume that bidders have private costs which are drawn from a discrete distribution of

two cost types.2 Let cl be the marginal cost of production for a low-cost supplier and ch for a

high-cost supplier, and θ be the probability with which a bidder is a low-cost type. We assume

common knowledge of all three variables, although the outcome of the cost draw for each supplier

is private information. Since we focus on bidders’ learning across auctions, we model a two stage

game, with each stage corresponding to an auction initiated by a buyer. The cost type for a bidder

is determined before the beginning of the first stage and remains the same for both stages. In

each stage, both suppliers simultaneously submit a sealed bid, p ∈ [0,∞). Only one winner is

picked in each stage and he is the bidder with the lowest bid price in that stage (ties are broken

randomly). The winner’s payoff is his bid price minus his marginal cost, and the loser’s payoff is

zero. Therefore, the auction in each stage is a first-price sealed bid type. Between the first and

the second stages, information is revealed according to the policy. Under CIP, all bids are revealed

at the end of the first stage; while in IIP, only the winner’s bid is revealed. We are interested in

comparing the impact of the different information policies on bid prices and procurer surplus.

3.2 Equilibrium

The model specified above does not always have an equilibrium. Even single stage games, similar

to the ones we encounter in the second stage, may not have an equilibrium. We follow Maskin
2Prior work has also used a two-type framework to study information policies in other settings, in part because

some interesting aspects of learning across auction rounds do not exist in the continuous cost distribution case
(Jeitschko, 1998). The main advantage of the two-type model is that the second stage is a relatively straightforward
game and the analysis can focus on the learning effects in the first stage. This advantage is lost even in a three-cost
type model, where the nature of the second stage equilibrium varies significantly depending on the first stage outcome,
which must also be considered by bidders in the first stage.
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and Riley (1985) to overcome the non-existence problem by implicitly assuming discrete bids in

infinitesimal increments.3 The game then has a unique Bayesian Nash equilibrium under CIP

and IIP for each stage. We focus on the bidding behavior of the low-cost types since the bidding

behavior of the high-cost type is uninteresting. A high-cost type always bids ch in equilibrium

independent of the policy. In the rest of this section, we summarize the equilibrium results.

3.2.1 Second Stage

Since the equilibrium is derived by backward induction, consider first the second stage. The second

stage across the two policies has commonality, which can be captured as follows. Suppose one

bidder, say A, believes that his opponent B is low-cost type with a probability of α, while B believes

that A is low-cost type with a probability of β. Let α ≤ β, and suppose further that A already won

the previous period with a price of p. The profit expressions for A and B when they are low-cost

types and bidding a price of q are: πA(q) = (1− αFB(q))
(
(p− cl + q − cl)1−r − (p− cl)1−r

)
+ (p−

cl)1−r and πB(q) = (1 − βFA(q))(q − cl)1−r, where FA(q) and FB(q) are the cumulative density

functions (cdfs) of the bid distributions from players A and B. The equilibrium bid distributions

are computed in Appendix A.1.

3.2.2 CIP Game

The nature of the equilibrium in the first stage game varies depending on θ and r. We first consider

a separating equilibrium in the first stage.

Separating Equilibrium

Suppose a separating equilibrium exists in the first stage. This implies that the first stage reveals

the type of the bidder. As a result, the second stage simply corresponds to a Bertrand game. The

payoff across both stages from bidding p in the first stage is πCIP-sep,θ(p) = (1 − θ)(ch − cl + p −

cl)1−r+θ(1−FCIP-sep,θ(p))(p−cl)1−r, where FCIP-sep,θ(p) is the cdf. The equilibrium bid distribution

is computed in Appendix A.2.1. Such an equilibrium is valid in the first stage under CIP only when

θ < 21−r−1
21−r+1

. When θ is larger than this threshold, the appendix also shows that only a semipooling

equilibrium exists. Since ∂
∂r (21−r−1

21−r+1
) < 0, the threshold degree of competition (i.e., θ), above which

3Maskin and Riley’s footnote 2 is directly applicable to our context: “As our model is formulated, an equilibrium
in the sealed-bid auction may not exist. The nonexistence problem, however, is an artifact of our allowing literally
a continuum of possible bids. In fact, we can restore existence even with a continuum by allowing the possibility of
positive but infinitesimal bids, which we implicitly assume in our analysis.”
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the semipooling equilibrium exists, decreases with r.

Semipooling Equilibrium

A semipooling equilibrium in the first stage is one where the low-cost type pools with the high-cost

type and bids ch with a probability γ < 1, or submits a bid p < ch, which reveals the low-cost type,

according to the cdf FCIP-semi,θ(p). Let the corresponding pdf be fCIP-semi,θ(p) and the infimum of

the distribution be pCIP
l .

In the second stage game, three different possibilities exist: (a) When both bidders reveal their

type to be low-cost, the second stage game is a Bertrand game. (b) When both bidders pool, the

second stage game has α = β = θγ
1−θ(1−γ) . (c) When one bidder pools but the other does not, the

second stage game has β = 1 and α = θγ
1−θ(1−γ) . Using these second stage games, we compute the

first stage profits from a non-pooling bid and a pooling bid:

πCIP-semi,θ(p) = θ(1− FCIP-semi,θ(p))(p− cl)1−r + (1− θ)(ch − cl + p− cl)1−r. (1)

πCIP-semi,θ(ch) =
1
2

(ch − cl)1−r((1− θ)21−r + θγ)

+θ
∫ ch

pl

((
(1− θ)(ch − cl + p− cl)1−r

1− θ(1− γ)
+
θγ(p− cl)1−r

1− θ(1− γ)

) 1
1−r

− (p− cl)

)1−r

dp

+
1− θ + θγ

2

((
(1− θ)

1− θ + θγ
21−r +

θγ

1− θ + θγ

) 1
1−r

− 1

)1−r

(ch − cl)1−r (2)

We use these expressions to compute the first stage equilibrium in Appendix A.2.2.

Under CIP, our main focus is on the low-cost bidders’ desire to pool in the first stage with the

high-cost type. That incentive exists because, by preventing their opponent from learning about

their type, bidders gain an information advantage for the second stage. To see this, consider bidder

A who pools with the high-cost type in the first stage. Then, a Bayesian-updating bidder B will

lower his belief in the second stage that bidder A is a low-cost type. This, in turn, allows bidder A

to undercut bidder B with higher probability in the second stage. We refer to this pooling strategy

in the first stage as the deception effect.

3.2.3 IIP Game

Under IIP, where only the winner’s bid is revealed, the equilibrium in the first stage is separating

in nature. Suppose F IIP,θ(p) and f IIP,θ(p) are the cdf and the pdf of the first stage bid distribution,

and pIIP
l represents the infimum of the bid distribution. Then, the second stage game in IIP has

β = 1 and α = (1−F IIP,θ(pw))θ
1−θF IIP,θ(pw)

, where pw is the first stage winning bid. We account for the second
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stage game in computing the first stage profits:

πIIP,θ(p) = θ

∫ pw=p

pw=pIIP
l

((
α(ch − cl + pw − cl)1−r + (1− α)(pw − cl)1−r

) 1
1−r − (pw − cl)

)1−r
f IIP,θ(pw)dpw

+(1− θF IIP,θ(p))(p− cl)1−r + (1− θ)
(
(ch − cl + p− cl)1−r − (p− cl)1−r

)
(3)

We can use this equation to compute the first stage equilibrium (see Appendix A.3 for details.).

Note that there is no incentive under IIP for a low-cost bidder to pool with high-cost types in

equilibrium. To see this, consider deviations by one of the bidders from the separating equilibrium

identified under IIP. Instead of deviating and submitting a pooling bid, a low-cost bidder will be

better off with a bid slightly less than the pooling bid. If the opponent is a high-cost type, a pooling

bidder runs the risk of losing the first stage with a probability of one-half; with a bid slightly less

than the pooling bid, she would have won the first stage with certainty. The pooling bidder also

does not generate any benefit when facing a low-cost opponent. When competing against a low-

cost opponent who is playing the strategy of the separating equilibrium, the pooling bid is never

revealed. Hence, deviating to a pooling bid does not alter the first stage winner’s belief for the

second stage. The pooling bid does not allow the deviating bidder to learn about the opponent

anymore than the bid slightly less than the pooling bid.

In IIP, only the extraction effect exhibited by the bidders comes into play. Since only the

winner’s bid is revealed under IIP, a low-cost bidder gains more information about his opponent

for the second stage if he loses the first. A winner, however, gains less information. Thus, the

policy creates an incentive for a low-cost bidder to bid higher and risk losing the first stage game

to extract information about the opponent’s type.

3.2.4 Analyses of Equilibrium Bids

This subsection characterizes properties of equilibrium bids that will be tested in the experiment.

Kannan (2010) identifies the properties analytically under risk neutrality. In general, the equilib-

rium bid distributions are not analytically tractable for an arbitrary r. Hence, we characterize the

equilibrium bid properties through numerical analysis for the θ values we use in our experiments,

θ = {0.5, 0.9}. These values satisfy the conditions in our theory for the extraction and the deception

effects to exist.

Figures 1(a) to 1(d) show the first stage bid distributions under different CIP and IIP treatments
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(a) IIP (θ = 0.5) (b) IIP (θ = 0.9)

(c) CIP (θ = 0.5) (d) CIP (θ = 0.9)

Figure 1: First stage bid distributions for a low-cost type under IIP and CIP for different degrees
of risk aversion when cl = 200 and ch = 400.

for various r values. Figures 1(a) and 1(b) illustrate that bid distributions shift leftwards under

IIP as risk aversion increases. Hence, as risk aversion increases, individuals bid more aggressively

to increase the probability of winning. The shape of the bid distributions also show that there is

no positive probability for bids equal to ch under IIP, i.e., no pooling bids are submitted under IIP.

Comparing Figure 1(a) with Figure 1(b) shows that the bid distributions shift towards the left as

θ increases. Hence, as the degree of competition increases, more weight is placed on lower bids.

Figures 1(c) and 1(d) show the bid distributions under CIP. Unlike for IIP, the bid distributions

in CIP for the risk neutral case do not first-order stochastically dominate the risk averse cases. As

risk aversion increases, the bid distributions shift leftwards only in the lower and intermediate bid

ranges. In the upper bid range, however, the bid distributions shift downward. The downward shift
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in the bid distribution for bids of ch illustrates that players submit more pooling bids as the degree

of risk aversion increases. This result may be surprising at first glance since pooling increases the

likelihood of losing in the first stage and therefore appears to be a risky strategy. However, in this

multi-stage environment, one can show that pooling increases the likelihood of obtaining a positive

payoff in the second stage and, hence, reduces the overall risk across the two stages. Recall that if

both bids are smaller than ch in the first stage, both bidders are revealed to be low cost and thus

Bertrand competition results in zero profits in the second stage. Figure 2(a) shows the pooling

rates under both CIP treatments for different r values. The pooling rates increase in the degree

of risk aversion indicating the fact that bidders increase their pooling activity in both treatments.

The pooling rates increase faster in the less competitive environment than in the more competitive

environment.

Figure 2(b) shows the variation with respect to r of the expected first stage bid from low-cost

bidders under CIP and IIP for the two θ values. Consider the learning effects when risk aversion

(r) is low. The value gained from bid manipulations using both the extraction or the deception

effect depends on the priors. The extraction effect corresponds to bidders learning if the opponent

is a low-type. So, if the opponent is more likely to be a low-cost type anyway (i.e., θ is large),

the additional information value a bidder acquires through extraction is low. The deception effect

corresponds to a bidder preventing his opponent from learning about his low-cost type. So, if the

opponent is expecting the bidder to be a high-cost type anyway (i.e., θ is small), the additional value

from deceiving this opponent diminishes. Because of these two reasons, the extraction (deception)

effect dominates for lower (higher) θ values, resulting in higher expected first stage bids under IIP

(CIP), as observed in the figure.

As risk aversion increases, the comparison between CIP and IIP is also affected. The increasing

pooling probability under CIP leads to higher expected prices under CIP. The bids in IIP (θ = 0.5),

however, decrease with an increase in r. Consequently, the difference between the first stage

expected prices under CIP and IIP policies decrease with r. When θ = 0.5, the dominance of the

extraction effect over the deception effect can even vanish for very large levels of risk aversion (i.e.,

r > 0.7).

Figure 2(c) shows the expected price paid by the procurer across two stages in the four treat-

ments. We find that when the competition is weak (strong), the prices paid in CIP are lower
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(a) Pooling rates (b) Expected first stage prices

(c) Expected prices paid by the procurer

Figure 2: Pooling rates, expected first stage prices and expected price paid by the procurer for
different treatments and different degrees of risk aversion.

(higher). The dominance of the extraction (deception) effect, which we noted earlier to occur when

the competition is weak (strong), is also the reason for this observation. This is valid for any

constant relative risk aversion parameter r.

4 Testable Hypotheses and Experiment Design

With the objective of experimentally studying the trade-offs between the two learning effects, the

first subsection below builds on the equilibrium results in the previous section to develop hypotheses

which we test in the experiment. The second section describes the experimental design.
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4.1 Hypotheses

Note that the learning effects of interest are behaviors exhibited in the first stage by the low-cost

types. Therefore, the first three of our four hypotheses are related to the first stage bids. The first

hypothesis concerns pooling. For reasons discussed earlier, bidders submit pooling bids under CIP

but not under IIP. Therefore,

Hypothesis 1 The likelihood of pooling by a low-cost bidder is higher under CIP than under IIP.

The second hypothesis is straightforward and intuitive from the equilibrium bid distributions

(Figure 1).

Hypothesis 2 As the probability of observing a low-cost opponent increases, the average price bid

by the low-cost suppliers decreases.

The third hypothesis involves the comparison of the extraction and the deception effects. Notice

from Figure 2(b) that the dominance of one effect over the other depends on the risk aversion

parameter. Prior work (e.g., Goeree et al., 2002, Campo et al., 2003, Holt and Laury, 2002)

has identified a constant relative risk aversion parameter to be typically between r = 0.3 and

r = 0.6. Corresponding to that range, our theory predicts higher average bids in CIP for the

highly competitive (θ = 0.9) treatment, and lower average bids for the less competitive (θ = 0.5)

treatment. Therefore,

Hypothesis 3 When the probability of facing a low-cost opponent is low, the average price bid in

the first stage by the low-cost suppliers is higher under IIP than CIP and vice-versa.

While the first three hypotheses focus on the variations in the first stage bidding behavior, the

next hypothesis concerns the procurer surplus over both stages. Based on the comparisons of the

expected price paid by the procurer across both stages, we have the following hypothesis.

Hypothesis 4 When the probability of facing a low-cost opponent is low, the total buyer payment

across both periods is higher under IIP than CIP and vice-versa.

Thus, we hypothesize that the procurer pays lower prices and obtains greater surplus on average

by choosing CIP in less competitive conditions.
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4.2 Experimental Design

To test these hypotheses, we employ an experimental framework that implements the stylized model

summarized in Section 3 for the two values of θ (0.5 and 0.9). For the experiments, we set cl = 200

and ch = 400. From the theoretical results in Section 3.2.4, it should be clear that policy variations

generate qualitative changes in bidder behavior because of the differences in how bidders process

the information revealed. However, changes to θ merely generate quantitative variations in the

strength of these incentives since the type of equilibrium remains unchanged. For this reason, we

vary θ within the experimental sessions and vary the policies across sessions.

We created two datasets in the experiment, which differ in the restriction imposed on maximum

bids (the details are provided later). Each experimental dataset comprises of 8 sessions, with four of

them devoted to each information policy. Each session employs 12 subjects and involves 50 periods,

and each period consists of two stages. An iid Bernoulli process is conducted in each period to

determine the cost type for every subject, and this type remains the same for both stages of that

period. Since we are testing a noncooperative equilibrium of a one-shot, two-stage game, we reduce

repeated game incentives by randomly re-pairing the subjects with new opponents in each period.

Although subjects interact repeatedly across the 50 periods, their interactions are anonymous and

the identity of their interacting subject is never revealed. In each session, 25 periods are conducted

with one θ treatment, followed by 25 periods for the other θ treatment. We vary the sequence of

the θ treatments across sessions in order to control for possible order effects. Thus, our combined

dataset consists of 9, 600 bids in each stage from 192 different participants across the 16 sessions.

For the first dataset, we assume that buyers have outside options to buy from suppliers if the

bids exceed the high costs. For example, this could arise if the buyers can produce in-house at the

same cost as the most inefficient potential supplier, allowing them to credibly commit to a reserve

price of ch (Thomas, 2010).4 For this dataset we therefore explicitly restrict the maximum bid that

subjects can submit to ch. As we will present later, restricting the maximum bid to ch is quite

useful in providing managerial insights regarding the learning effects. The other advantage of this

restriction is that it facilitates an accurate identification of pooling bids, which are defined to be

equal to ch. However, the restriction may appear to be too strong as it rules out certain strategies,
4This is similar to the standard restriction in the extensive experimental literature on buying auctions that bids

are not allowed to be below the lowest possible buyer value.
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such as collusion among potential high-cost suppliers. Furthermore, the imposed bidding cap may

act as a focal point for bidders, leading to a second incentive for pooling besides the deception effect

identified in the model for the CIP condition. Therefore, as a robustness check we also conduct a

second set of experimental sessions.

This second dataset does not impose any explicit maximum bid restriction. We still, however,

implicitly restrict the maximum bid to be ≈ 35
18ch (=777) since without a cap our exposure for

potential monetary payments to subjects would be unbounded. Thus, in this design, the subjects

know that a cap on the maximum bid exists but are not aware of its value. The restriction is not

made explicit so that the revealed maximum bid does not become a focal point for the subjects.

We also choose a non-intuitive limit that is large enough to facilitate potential collusion but also

one that the subjects cannot easily arrive at through trial and error.5 Thus, our second dataset

overcomes the key potential problems with the first dataset. The one obvious disadvantage is that

it becomes more challenging to define pooling bids, since high-cost types often bid above ch. As we

will discuss in the results section, this implies that low-cost bidders who submit bids of ch might

not be interpreted as pooling.

The experimental sessions were conducted in the Vernon Smith Experimental Laboratory at

Purdue University. The subjects were recruited by email from the undergraduate student popula-

tion and each subject was limited to participate in one session. Upon arrival at their experimental

session, subjects were randomly assigned to individual computers and no communication between

subjects was permitted throughout the session. At the start of the experiment, the instructions

were read orally by an experimenter while the subjects followed along on their own copy. A sample

of the instructions is provided in Appendix C. A computerized program written in z-Tree was used

to implement the experimental environment (Fischbacher, 2007). The subjects in our experiment

act as bidders, who receive monetary payments of their bid price minus their cost when they win

an auction round and zero otherwise. The buyer’s decision problem of picking the winner is com-

puterized because buyers have no strategic role for exogenously-determined auction policies. All

transactions and earnings are in experimental Francs, which are converted and paid in U.S. dollars

at the end of experiment using a known and constant conversion rate. The feasible bids are in 0.01
5Subjects who bid above this threshold of 777 received the following ”error” message from the experiment software:

”The price you entered was too high. Please choose a lower price.”
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precision between 0 up to the maximum value imposed for that dataset.

In the theoretical analysis, bidders update their beliefs using Bayes’ Rule. To understand the

updating of beliefs in our experiment, we adopt a procedure (now common in the experimental

economics literature) to elicit beliefs directly. In each period at the end of the first stage, every

subject is asked to state – based on the information revealed – his belief (expressed as a proba-

bility) that his opponent has a cost of cl. Monetary incentives are provided for making accurate

guesses. Specifically, for eliciting the beliefs, we applied a quadratic scoring rule, which is incentive

compatible for players to state their true their beliefs (Selten, 1998, Nyarko and Schotter, 2002,

Costa-Gomes and Weizsacker, 2008). To reduce the likelihood that the belief elicitation reward sig-

nificantly affects bidding behavior, the maximum reward for the beliefs (20 experimental Francs)

is kept low relative to the difference in ch and cl.

The sequence of the experiment is as follows: Each bidder submits his bid for the first stage.

The buyer buys from the lowest bidder (ties are broken randomly). After all bids are submitted,

information about bids is revealed according to the chosen policy. Each subject then enters his

belief about the opponent’s cost type and his bid for the second stage. At the end of the second

stage, the computers display the opponent’s bids in the two stages and also the opponent’s costs

and the subject’s own earnings. Subjects record all this information on hard copy record sheets

so their personal history was easily accessible. Across all the 8-sessions, the earnings for the 192

subjects ranged from $17.00 to $40.00 with an average of $25.25 per subject. Sessions typically

lasted 90 to 100 minutes in total, including instruction time.

5 Results

In this section, we present the analyses of data obtained from our experimental sessions. Hereafter,

we refer to the data collected from the first and the second set of experiments as Datasets 1 and 2,

respectively. Table 1 provides the summary statistics of the bids submitted by the low-cost bidders

for the first and the second stages for both datasets. The top panel is based on data from all 25

periods of each treatment sequence while the middle panel is only from the last fifteen periods in each

treatment sequence. The first ten periods are excluded in the middle panel since those initial periods

may involve subjects learning about the process of bidding. The bottom panel shows the theoretical

mean values for the risk neutral case (r = 0). The variables used in the table correspond to the
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notation in the theoretical section: for a given treatment l ∈ L = {CIP, IIP}× {θ = 0.5, θ = 0.9},

p̄l is the average first stage bid submitted by the low-cost bidders, and γ̄l is the rate with which a

low-cost type bidder submits a bid ≥ 400.

Dataset 1 Dataset 2
Treatment CIP IIP CIP IIP

l→ θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9
All 25 p̄l 355.37 298.14 368.33 287.06 394.77 325.58 379.92 288.97
periods Stdev (44.94) (60.02) (41.52) (44.42) (43.40) (74.48) (50.61) (52.65)
included γ̄l 8.16% 11.78% 2.21% 0.99% 49.66% 25.99% 32.31% 4.77%

N 588 1,112 588 1,112 588 1,112 588 1,112
Only p̄l 358.73 299.46 372.00 277.12 390.29 328.20 379.99 284.55

periods Stdev (39.87) (64.76) (35.38) (41.47) (31.34) (77.85) (40.76) (49.24)
11-25 γ̄l 4.83% 15.36% 1.14% 0.45% 44.03% 29.22% 28.69% 1.66%

included N 352 664 352 664 352 664 352 664
Theory p̄l 366.08 339.33 385.77 309.97 366.08 339.33 385.77 309.97
r = 0 γl 23.95% 28.85% 0% 0% 23.95% 28.85% 0% 0%

Table 1: Descriptive statistics for bids submitted by low-cost bidders under CIP and IIP in both
datasets.

One can note from the top two panels of the table that several observations are consistent with

the theory across both datasets. For a given θ, the pooling probabilities are higher under CIP than

under IIP in each of the datasets. The average bids in less competitive treatments (θ = 0.5) are

higher than the bids in more competitive (θ = 0.9) treatments. Also, the bids are lower in IIP than

in CIP when θ = 0.9.

We also note that some results are not similar across the datasets (but those dissimilarities are

valid across the top two panels). When θ = 0.5, the average first stage bids from low-cost types

are higher under CIP in Dataset 2 while the opposite holds in Dataset 1. Another result that is

not consistent across the datasets is the pooling probability under the IIP (θ = 0.5) treatment. For

that treatment, while γ̄ is close to zero and seems consistent with theory in Dataset 1, it is not the

case in Dataset 2.

Table 1 shows that the average first stage bid in each dataset is lower for all but one treatment

compared to the predicted Nash Equilibria under risk neutrality. The only exception occurs in

the CIP (θ = 0.5) treatment in Dataset 2. These observations can also be inferred from the bid

distributions for all treatments shown in Figure 3, which usually indicate a greater weight on lower
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(a) CIP (θ = 0.5) (b) CIP (θ = 0.9)

(c) IIP (θ = 0.5) (d) IIP (θ = 0.9)

Figure 3: Theoretical and empirical first stage bid distributions for a low-cost type

bids. These increased frequencies on lower bids support the notion that risk aversion may help

explain players’ bidding behavior. We investigate the role of risk aversion later in Section 6.

5.1 Hypotheses Testing

The first three hypotheses concern the first stage bids from the low-cost sellers. We test these

hypotheses using both datasets and apply regression models which include the following control

variables: (i) the inverse of period (Inv Period) to account for nonlinear time trends, and (ii) treat-

ment order effects (Treat Seq), a dummy variable to differentiate the first and second treatments

run within a session. These control variables allow for learning or other time series adjustments

in behavior that are unrelated to the hypotheses of interest. In addition, we employ independent

variables that are relevant for the respective hypothesis. The regressions for Hypothesis 1, 2, and

3 account for unobserved subject heterogeneity as random effects in order to control for additional
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Hypothesis 1 Hypothesis 2

Dataset 1 – Probit Dataset 2 – Probit Dataset 1 – Tobit Dataset 2 – Tobit
θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9 IIP CIP IIP CIP

Dependent Var. If a low-cost type pooled in the first stage First stage bid from a low-cost type

Intercept -10.03** -4.78** -1.42** -3.46** 362.91** 358.29** 384.31** 402.81**
(1.18) (1.59) (0.57) (0.48) (4.15) (6.76) (4.92) (6.36)

Inv Period 0.98 -1.97** 1.59** -0.03 7.02* -21.02** 5.61 -7.60
(0.89) (0.49) (0.37) (0.25) (3.56) (6.85) (4.73) (7.07)

Treat Seq -0.37 0.28 -2.19** -0.33** 18.94** 17.30** -9.48** -17.35**
(0.92) (0.53) (0.64) (0.39) (1.84) (3.53) (2.43) (3.62)

Dummy CIP 3.76** 2.96** 1.61** 2.61**
(1.11) (1.34) (0.63) (0.48)

Dummy θ 0.9 -96.90** -58.14** -95.96** -63.98**
(1.84) (3.54) (2.44) (3.65)

Observations 704 1,328 704 1,328 1,016 1,016 1,016 1,016

Log L -41.18 -193.67 -248.96 -329.12 -4,856.04 -4,988.29 -5,163.81 -5,562.71

Table 2: Regressions to test Hypotheses 1 and 2 using both datasets. Numbers in parentheses
indicate the standard errors. Note that ** indicates a significance level of 1%, and * a significance
level of 5%. Regressions include subject random effects. The first ten periods are omitted from the
analysis.

factors not captured by our independent variables.

Hypothesis 1 concerns the impact of the policy on the propensity to submit pooling bids. We

estimate a probit model with the dependent variable being a binary indicator that takes on a value

of one when the low-cost bidder bids 400 in the first stage for both datasets. Since the focus here

is on the information policy, we consider the bids from low-cost bidders corresponding to each θ

separately but pool the data across the policies. The base case corresponds to IIP, and the dummy

for CIP is the independent variable of interest. The regression coefficients are shown in the left panel

of Table 2. They provide support for Hypothesis 1 for both datasets: the likelihood of observing

pooling is significantly higher in CIP than IIP. Bidders perceive correctly that bidding to prevent

an opponent from learning one’s cost type is more useful under CIP than under IIP.6

For the regressions testing Hypothesis 2, the dependent variable is the bid submitted by a low-

cost bidder. Since the maximum bid in Dataset 1 is 400, we employ a Tobit model with a 400

upper-bound. For Dataset 2, we employ a Tobit model as well with an upper limit of 777. We

consider the bids submitted by low-cost bidders under each policy separately. The base case is

when θ = 0.5, and a dummy variable, Dummy θ 0.9, is set to one for θ = 0.9. The rightmost panel

in Table 2 shows the regression results for both datasets. The coefficients on Dummy θ 0.9 are
6A Hausman test confirms that fixed effect results are not statistically different from the random effects results.
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Hypothesis 3 Hypothesis 4

Dataset 1 – Tobit Dataset 2 – Tobit Dataset 1 – Tobit Dataset 2 – Tobit
θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9

Dependent Var. First stage bid from a low-cost type Total price paid by the procurer

Intercept 373.82** 262.87** 383.75** 292.67** 784.28** 497.75** 790.18** 525.76**
(5.69) (7.01) (5.98) (8.27) (9.46) (5.46) (10.10) (5.70)

Inv Period -5.92* -7.51 1.58 -3.85 -28.65 -38.85** -6.08 -24.48**
(3.77) (4.84) (3.32) (5.30) (19.57) (11.69) (20.46) (12.21)

Treat Seq 4.28 31.73** -10.78 -13.60 14.36 33.03** -6.15 -34.60**
(6.51) (7.99) (6.85) (9.45) (9.34) (5.55) (9.72) (5.80)

Dummy CIP -14.87** 26.02** 10.46 43.30** -38.99** 26.47** -12.48 48.54**
(6.51) (7.99) (6.85) (9.45) (9.37) (5.55) (9.75) (5.80)

Observations 704 1,328 704 1,328 720 720 720 720

Log L -3,252.38 -6,550.25 -3,273.51 -7,125.47 -2,668.32 -4,105.69 -2,473.01 -4,094.52

Table 3: Regressions to test Hypotheses 3 and 4 using both datasets. Numbers in parentheses
indicate the standard errors. Note that ** indicates a significance level of 1% and * indicates
significance level of 5%. Regressions for Hypothesis 3 include subject random effects. The first ten
periods are omitted from the analysis.

negative and highly significant, consistent with Hypothesis 2. The data thus provide evidence that

as the fraction of low-cost bidders increases, the first stage bids by low-cost bidders decrease.

To test Hypothesis 3, the regressions again use the bid submitted by a low-cost bidder as the

dependent variable. We consider low-cost bids from each θ separately but pool the data across

policies. The base case corresponds to IIP, and a dummy variable equal to one for CIP is the

independent variable of interest. As before, we apply Tobit estimators for both datasets. The

regression results are shown in the leftmost panel of Table 3. The results for Dataset 1 are consistent

with the predictions of Hypothesis 3. The CIP dummy variable is negative and significant for the

less competitive treatment, and positive and significant for the more competitive treatment. This

indicates that the desire to learn dominates if the competition is weak (i.e., a lower θ value), so

switching to a complete information policy lowers average bids. The results for Dataset 2, however,

are in line with Hypothesis 3 only for the more competitive environment (θ = 0.9). For the

less competitive environment (θ = 0.5) the estimate is not significantly different from zero. We

investigate this deviation after testing Hypothesis 4.

For testing Hypothesis 4, the dependent variable is the sum of the prices paid by the buyer across

the two stages. We adopt IIP as the base case and measure the impact of switching to CIP through

the independent variable Dummy CIP . As before, we use Tobit models for both datasets.7 The
7Unlike the previous cases, these regression models do not include random subject effects because this market

level performance measure depends on both sellers in each market and sellers are randomly re-paired each period.
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regression results are shown in the rightmost panel of Table 3. For Dataset 1, the Dummy CIP

coefficient is negative and significant when θ = 0.5, but positive and significant when θ = 0.9. This

result is consistent with Hypothesis 4, as the procurer pays less when adopting CIP only when the

environment is less competitive. In more competitive environments, the procurer pays more when

employing CIP since the low-cost bidders more frequently bid high prices to hide their type from

the other bidder. As in the previous hypothesis, for Dataset 2, the result is consistent with our

expectation only for θ = 0.9. For θ = 0.5, the Dummy CIP coefficient is not significantly different

from zero. This implies that a procurer pays about the same in CIP and IIP in an environment

characterized by low competition. Note that, while much of the results are consistent with our

expectations, the theoretically demonstrated dominance of the extraction effect over the deception

effect for average bids and procurement costs is valid only in Dataset 1.

5.2 Pooling in Dataset 2

To understand better why the last two hypotheses receive only partial support in Dataset 2, consider

again the pooling rates shown in Table 1 (Page 17). Note that these rates are significantly higher

than the theoretical risk neutral case only for θ = 0.5 in Dataset 2 under both policies. If we

specifically focus on IIP across both datasets, observe from the table that the pooling rates are

much higher than the theoretically predicted value of zero for θ = 0.5 in Dataset 2, and are always

higher in Dataset 2 than Dataset 1. These observations lead us to the following question: is the

definition of a pooling bid, based on theoretical reasoning, appropriate for Dataset 2?

Recall that in equilibrium the high-cost type bids ch regardless of their risk attitude, based on

the standard reasoning behind Bertrand price competition. The maximum bid of ch imposed in

Dataset 1 is therefore not binding in equilibrium, but when this bid cap is relaxed in Dataset 2

many high-cost bidders bid greater than ch. The bid distributions for these high-cost types shown

in Figure 4 indicate that these higher bids are most common in the less competitive (θ = 0.5)

environment. Dufwenberg and Gneezy (2000) have shown in related experimental settings that

prices are significantly higher than marginal costs in a two player Bertrand game. Similarly, our

high-cost types sometimes bid prices higher than their marginal costs. This provides opportunities

for the low-cost types to improve their profits with higher bids.

The price offers in Dataset 2 complicate our identification of a pooling bid by a low-cost type.
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Nearly 88% of all bids submitted by high-cost types exceed ch = 400, so by merely bidding at 400

a low-cost type is hardly pooling with the high-cost bidders behavior.

Pooling is only successful if it leads the other bidder to increase her belief that she is facing a

high-cost type, so the belief data that we have elicited from bidders can provide direct evidence

to infer pooling. This is easiest to illustrate in the CIP condition where all bids are observed. In

Dataset 1, where bids above 400 are not possible, for θ = 0.5 a bid equal to 400 in stage 1 causes

the rival bidder to update her belief that the bidder is low cost to 0.17; and for θ = 0.9 a bid equal

to 400 causes the rival bidder to update her belief that the bidder is low cost to 0.39. Thus, a bid

equal to 400 causes the rival to report a belief on average that the bidder is more likely to be a

high-cost type.8

By contrast, in Dataset 2 for θ = 0.5, the high-cost types bid strictly greater than 400 in stage

1 almost 92% of the time. Consequently, a bid equal to 400 causes the rival bidder to update her

belief that the bidder is low cost to 0.57. That is, a bid of 400 leads the rival to believe that the

high-cost type is less likely than the prior. For θ = 0.9 the high-cost types bid strictly greater than

400 in stage 1 83% of the time, and a bid equal to 400 causes the rival bidder to update her belief

that the bidder is low cost only to 0.70. Thus, in both cases a bid of 400 does not lead to a belief

update that a bidder is substantially more likely to be high cost and cannot be considered a bid

that is pooling with that type.

To pool with the high-cost types in Dataset 2, the low-cost types must bid somewhere within

the distribution of bids chosen by the high-cost types, and not on the boundary of this distribution.

Figure 4 shows that the distribution of these high-cost bids differs across treatments, with higher

bids considerably more common when θ = 0.5. Thus, an empirically-based definition of a threshold

for identifying a pooling bid should vary with the treatment.

We considered a variety of alternatives for such an empirically-based definition of pooling bids.

We settled on a straightforward definition of a pooling bid: One that is greater than or equal

to the median bid submitted by the high-cost bidders in each treatment. Table 4 displays these

treatment-specific median-bid thresholds.

This table indicates that the median bids from the high-type, hMedian, are approximately equal
8These beliefs should not be updated in equilibrium to indicate the high-cost type with certainty, of course, because

some low-cost bidders are pooling with bids of 400.
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Figure 4: First stage bids by high-cost types, Dataset 2.

Treatment CIP IIP
l→ θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9
hMedian 420 404 419 401
γp≥hMedian 10.5% 16.1% 2.6% 0.6%

Table 4: Treatment-specific pooling bid thresholds in Dataset 2. hMedian is the median of bids
from high-cost types, and γp≥hMedian is the probability that a low-cost type bids equal to or above
hMedian.

between the CIP (θ = 0.5) and IIP (θ = 0.5) treatments. However, the frequency that the bids

submitted by a low-cost type are greater than or equal to hMedian is much higher under CIP than

IIP. This is consistent with the theoretical prediction that the deception effect is only present in the

CIP condition. Regardless of whether the pooling definition is adjusted as just described, pooling

is more common in CIP (Table 1), and regression results (available upon request) using the median

price for the pooling definition provide conclusions that are similar to those drawn from Table 2.

This complication for Dataset 2 arises because of non-Bertrand behavior by high-cost types in

stage 1. This may be because only two bidders compete in each auction. Dufwenberg and Gneezy

(2000) showed that Bertrand behavior is much more common with three or four sellers, which leads

us to conjecture that the high-cost types will typically submit bid equal to their marginal costs

when more than two bidders compete. Thus, differences between Datasets 1 and 2 arising from

different bid caps may decrease substantially in less concentrated markets, with both behaving

similarly to Dataset 1 with its ch cap. Hence, we believe that the insights from the analysis of

Dataset 1 are more broadly relevant.
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6 Risk Aversion

The previous section shows that the experimental data are broadly consistent with the comparative

static predictions of the theoretical model. Subjects exhibit behavior that appears to appreciate

the two learning effects. However, several quantitative deviations exist. As pointed out earlier,

most notably the observed average bids in Table 1 (Page 17) are lower for most treatments than

the risk neutral theoretical prediction. We next investigate how well risk aversion accounts for this

deviation. Note that risk aversion has also been proposed as an explanation for such deviations in

non-experimental auction data, even with large firms as bidders (e.g., Campo et al., 2003). In this

section, we use the theoretical results from Section 3 and follow a structural approach to estimate

the degree of risk aversion that is most consistent with observed behavior.

While the process can be applied to both our datasets, we only present the results for Dataset

1. In Dataset 2, the estimates obtained through the same procedure are problematic because, as

documented above, the bids from the high-cost types do not conform to the Bertrand prediction of

marginal cost offers. There is no easy structural way of accounting for this deviation, since it leads

low-cost bidders to bid above ch, which never occurs in equilibrium for any level of risk aversion.

For completeness, however, we report the risk aversion estimations for Dataset 2 in Appendix B.

6.1 Structural Approach for Estimating Risk Aversion

In this section, we account for mixed equilibrium strategies and apply a structural approach that

relies on the assumption that observed bids are generated from the equilibrium model, allowing

for risk aversion. Specifically, we estimate the degree of risk aversion that minimizes the distance

between the theoretical and the empirical bid distributions.

Let pl1, . . . , p
l
n be the observed first stage bids from low-cost suppliers under treatment l ∈ L =

{CIP, IIP} × {θ = 0.5, θ = 0.9},9 and X l be a set such that all the observed first stage bids from

low-cost types are included distinctly (only once). The cdf of the observed bid distribution for

an arbitrary bid x is 1
n

∑n
i=1I

(
pli ≤ x

)
≡ F̃ l (x), where I is the indicator function. Let the bids

originate from an underlying distribution with cdf for x being F l(x, r̂), where r̂ is the risk aversion

coefficient of the subjects. For any arbitrary risk coefficient r, F l(x, r) indicates the cdf of the

theoretically generated bid distribution. For any x, the squared difference between the cdfs of the
9Note that p̄l in Table 1 is 1

n

∑n

i=1
pli.
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theoretical distribution computed at a risk aversion coefficient of r and the empirical distribution

is given by

εlr(x) =
(
F̃ l(x)− F l(x, r)

)2
.

The objective is to find the risk aversion parameter that minimizes the sum of squared differences

between the theoretical and empirical bid distributions:10

r̂ = arg min
r

∑
l∈L

1
|X l|

∑
x∈Xl

εlr(x). (4)

The differences εlr(x) can be interpreted as the errors arising from the agent’s optimization, or

from considering a subset of the whole population. Since no closed form solution exists for the

equilibrium with non-neutral risk preferences, we apply a grid search over r in increments of 0.01.

In order to test for statistical significance as well as equality of risk aversion estimates between

treatments we compute the standard errors using the non-parametric bootstrap method (with

replacement) as suggested by Efron (1982). Our estimate of the standard error is obtained using

500 bootstrap samples from the empirical distribution of the data.11

6.2 Results from the Estimation Procedure

We estimate the risk aversion coefficient using the datasets with the first 10 periods in each treat-

ment omitted in order to reduce the influence of learning effects and adjustments to the treatment

conditions.12 The risk aversion coefficient that best fits the 2, 032 observations pooled across all

treatments is r = 0.38 and the bootstrapped standard error is 0.03. Thus, the estimate is signifi-

cantly different from zero (risk neutrality). This estimate is consistent with previous findings and

well-documented in experimental research focusing on first price auctions with competing buyers;

see for instance Goeree et al. (2002), Cox et al. (1988), Harrison (1989) and Kagel (1995).
10In order to check for the robustness of this metric, we also use tests based on the supremum distance norm as

suggested by Romano (1988) and Romano (1989). We use a Kolmogorov-Smirnov test using the supremum distance
between the theoretical and empirical bid distributions and search over the different risk aversion parameters according
to the minimum distance principle. The optimal risk aversion parameter satisfies r̂ = arg minr sup

∣∣F̃ l(x)− F l(x, r)
∣∣.

The results are quite similar for most of the treatments, and they are available from the authors upon request.
11For tests at level 0.05, Efron and Tibsharani (1993) and Davidson and MacKinnon (2000) recommend 200 and

399 samples, respectively.
12This is the same subsetting to later periods employed in the initial equilibrium hypothesis testing in Section 5.

The estimation results using all periods are similar to the reported ones.
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All CIP IIP
Treatments θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9

Dataset 1 Risk aversion coefficient 0.38** 0.01 0.26** 0.57** 0.68**
Stdev (0.03) (0.01) (0.02) (0.17) (0.02)
Observations 2,032 352 664 352 664

Table 5: Results for estimated risk aversion coefficients. Numbers in parentheses indicate the
bootstrapped standard errors. Note that ** indicates a significance level of 1%. The first ten
periods are omitted from the estimations.

Table 5 shows the risk aversion coefficient estimated overall and separately for every treatment.

Interestingly, the only treatment in which the data appear most consistent with risk neutrality

(r = 0) is the CIP (θ = 0.5) treatment, which we investigate further.

For this CIP (θ = 0.5) treatment, Table 6 shows the fit error for various bid price ranges based

on the treatment-specific risk estimate (which corresponds to risk neutrality, r = 0) and the overall

risk estimate (which is r = 0.38). The overall risk estimate appears to be a better fit for lower bid

prices. It is only in the higher bid prices does the fit become better with the risk neutral case. One

of the key factors contributing to the better fit at higher bid prices is the pooling rate. Notice that

the observed pooling rate (0.05 in these late periods) is much lower than the risk neutral equilibrium

(0.24), and is smaller than any higher theoretical risk aversion rate (cf Figure 2(a)). Consequently,

risk aversion does not fit better in the last two rows in Table 6. The aggressive bidding in general

seems to indicate bidder behavior that is consistent with risk aversion. However, the lower pooling

rate and the continued aggressive bidding behavior at higher bid prices suggests that bidders do not

recognize the somewhat counter-intuitive incentive to increase their pooling rate with risk aversion.

This may be attributed to the cognitive limitation of our human subjects. While we have only

focused on risk aversion, other motivations such as a non-monetary utility of winning the auction

(Sheremeta, 2010), regret (Engelbrecht-Wiggans and Katok, 2008) or spite/envy Morgan et al.

(2003), can also influence bidder behavior.

7 Conclusion

This study represents a first step to provide empirical evidence regarding repeated auctions with in-

formation asymmetry and independent private values. We experimentally investigate how different

information revelation policies affect submitted bids in sequential auctions with private information.
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χ
∑
χ ε

CIP,0.5
r=0

∑
χ ε

CIP,0.5
r=0.38

≤ 300 0.056 0.056
≤ 320 0.179 0.092
≤ 340 0.225 0.096
≤ 360 0.237 0.117
≤ 380 0.258 0.216
≤ 390 0.264 0.412
≤ 400 0.385 1.018

Table 6: Sum of squared errors under CIP, based on Dataset 1.

Motivated by practical concerns faced by managers involved in intermediate goods transactions,

our analysis considers two stage procurement auctions in which bidders are uncertain about their

opponent’s cost structure. We compare two different information revelation policies that could be

chosen by the procurer, one in which only the winning bid is revealed (IIP) and one in which all

bids are revealed (CIP).

Our analysis also provides several important managerial insights for participants in these tradi-

tional and online procurement markets. It shows that human bidders, even with limited training,

indeed appreciate the intuitions regarding the extraction and the deception effects. The theoretical

and empirical analysis shows that either effect can dominate the other, so buyer surplus could be

higher in either auction format depending on the perceived competitiveness in the market. There-

fore, both these effects are important and should be considered when choosing the appropriate

information revelation policy. Although the theoretical model with risk averse bidders shows a

surprising result – the direct variation of the pooling probability with the degree of risk aversion

– the experimental subjects do not appear to correctly appreciate the risk reduction provided by

pooling. They bid aggressively even when pooling could reduce risk, perhaps due to an extra utility

of winning. We recommend that a manager also consider such cognitive limitations and winning

incentive when choosing the auction rules.

One may wonder about the applicability of our results beyond the two cost types studied.

As Lambson and Thurston (2006) note, a model assuming discrete type bidders is more realistic

than continuous type bidders. The discreteness naturally leads to bidders exhibiting learning-

related behaviors (Jeitschko, 1998), which is the focus of our paper. For an arbitrary number

of consumer types, the analyses of the two policies are not tractable. For the three-cost type
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framework, Kannan (2010) has already shown the existence of the extraction and the deception

effects. Using numerical analyses, he demonstrates cases when one effect dominates the other.

Given how remarkably subjects in our experiment appreciate the learning behaviors without even

computing the equilibria, we believe that those learning behaviors will be relevant even to settings

with an arbitrary number of cost types.

Future research could investigate whether the model is also generally well-supported if bidders

face more than one opponent. As theoretically shown by Kannan (2010), when the number of

bidders increases, this changes the equilibrium bidding behavior in the first and the second stages.

It would also be useful to broaden the economic environment to include richer, possibly continuous

cost distributions, as well as more than two periods. Although these extensions have not been

addressed theoretically for repeated auctions of this type due to intractability, it is straightforward

to extend the present laboratory setup in this direction to assess the robustness of our main empirical

conclusions.
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Appendix A: Derivation of the Theoretical Model allowing for Risk Aversion

A.1 Second Stage Game Equilibrium

Note that the bid price infinitesimally smaller than ch is the supremum of the strategy space and,

in a mixed strategy equilibrium, payoffs from any price q should yield the same payoff. Based on

that, we can compute

FB(q) =
1
α

(
1− (1− α)

(ch − cl + p− cl)1−r − (p− cl)1−r

(p− cl + q − cl)1−r − (p− cl)1−r

)
.

We find that the infimum of FB(q) is q = 2cl − p+ ((1− α)(ch − cl + p− cl)1−r + α(p− cl)1−r)
1

1−r .

This price will also correspond to the infimum of FA(q). Using that information, we compute

FA(q) =
1
β

(
1− (

q− cl
q − cl

)1−r
)

and a masspoint of 1
β (q−cl

q−cl )
1−r at the price infinitesimally smaller than ch. In this case, the second

stage expected profits for A is (1−α)((ch−cl+p−cl)1−r−(p−cl)1−r), and for B is (q− cl)1−r. Using

these cdfs, one can directly obtain the pdf of the bid distributions. Let the respective probability

density functions (pdfs) be fA(q) and fB(q). Note that even if the beliefs are symmetric, the bid

distributions may be different because of A’s gain from the previous period. Also, by rearranging

πA(q), we obtain the following expression, which will be useful later:

(1− αFB(q))
(
(p− cl + q − cl)1−r − (p− cl)1−r

)
= (1− α)((ch − cl + p− cl)1−r − (p− cl)1−r) (5)

A.2 First Stage Game: CIP

Recall that under CIP, all bids are revealed. Two cases are possible
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A.2.1 Separating Equilibrium Case

Note that the price infinitesimally smaller than ch is in the supremum of the strategy set and the

expected profit from any p in the mixed strategy equilibrium strategy set should be the same. Based

on that, we can obtain the expected profit from any p is (2(ch − cl))1−r(1− θ) and FCIP-sep,θ(p) =

1− 1−θ
θ

(
(2(ch−cl))1−r−(ch−cl+p−cl)1−r

(p−cl)1−r
)
. As expected, the bids tend to be lower with increasing risk

aversion (=r) and higher degrees of competition (θ). The separating equilibrium is only sustained

under a certain condition. To determine when the separating equilibrium exists, consider deviations

by one of the bidders. Suppose a bidder pretends to be a high-cost type in the first stage. The

expected profit for that bidder is:

πpool =

High-cost rival︷ ︸︸ ︷
Bidder wins both stages︷ ︸︸ ︷

(1− θ)1
2

(2(ch − cl))1−r +

Bidder wins second stage︷ ︸︸ ︷
(1− θ)1

2
(ch − cl)1−r +

Low-cost rival︷ ︸︸ ︷
Bidder wins second stage︷ ︸︸ ︷
θ(ch − cl)1−r.

We can observe that πpool > (2(ch − cl))1−r(1− θ), i.e., pooling is more profitable, if θ > 21−r−1
21−r+1

.

A.2.2 Semipooling Equilibrium Case

We first define the variables for the second stage game. For case (b), the cdf of the first winner’s

bid distribution is denoted by Fws(q) and of the loser by Fls(q); the subscript s corresponds to the

case with symmetric beliefs. For case (c), the winner bids according to the cdf Fwa(q), and the

loser according to Fla(q), where the subscript a represents the asymmetric case. The corresponding

pdfs are fws(q), fls(q), fwa(q) and fla(q).

We next characterize the expected payoffs under two scenarios: (i) when the bid in the first

stage reveals the type, and (ii) when the low-cost bidder pools with a high-cost type. Consider

scenario (i). The profit from bidding p < ch in the first stage and q in the second is:

πCIP-semi,θ(p, q) =

High-cost rival︷ ︸︸ ︷
(1− θ) fCIP-semi,θ(p)fwa(q)(p− cl + q − cl)1−r

+

Bidder wins stage 1; Both low-costs revealed =⇒ 0 profit in stage 2︷ ︸︸ ︷
θ(1− FCIP-semi,θ(p)− γ) fCIP-semi,θ(p)(p− cl)1−r

+

Bidder wins both stages; low-cost rival hides︷ ︸︸ ︷
θγ(1− Fla(q)) fCIP-semi,θ(p)fwa(q)(p− cl + q − cl)1−r

+

Hiding low-cost rival wins stage 2︷ ︸︸ ︷
θγFla(q) fCIP-semi,θ(p)fwa(q)(p− cl)1−r
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By rearranging and integrating with respect to the second stage bid, we obtain the conditional

profit of bidding p as:

πCIP-semi,θ(p) = (1− θFCIP-semi,θ(p))(p− cl)1−r +∫ q=ch

q=q
(1− θ + θγ(1− Fla(q)))

(
(p− cl + q − cl)1−r − (p− cl)1−r

)
fwa(q)dq

= (1− θFCIP-semi,θ(p))(p− cl)1−r + (1− θ)((ch − cl + p− cl)1−r − (p− cl)1−r)

The second equality is due to Equation 5. Simplifying the expression, we get 1. The expected

profit from any bid p can be obtained by setting FCIP-semi,θ(p) for a p price infinitesimally smaller

than ch to be 1− γ. Therefore,

πCIP-semi,θ(p) = (θγ + (1− θ)21−r)(ch − cl)1−r. (6)

Next, we focus on scenario (ii). Consider the profit from submitting a pooling bid when q is

bid in the second stage:

πCIP-semi,θ(ch, q) =

Bidder wins both stages︷ ︸︸ ︷
High-cost rival︷ ︸︸ ︷

(1− θ) +

Hiding low-cost rival︷ ︸︸ ︷
θγ(1− Fls(q))
2

(ch − cl + q − cl)1−rfws(q)

+

Hiding low-cost rival and bidder wins stage 1︷ ︸︸ ︷
θγFls(q)

2
(ch − cl)1−rfws(q) +

Bidder wins only second stage︷ ︸︸ ︷
High-cost rival︷ ︸︸ ︷

(1− θ) +

Hiding low-cost rival︷ ︸︸ ︷
θγ(1− Fws(q))
2

(q − cl)1−rfls(q)

+

Revealing low-cost rival and bidder wins stage 2︷ ︸︸ ︷
θ

∫ pw=ch

pw=pCIP
l

(
(1− Fwa(q))(q − cl)1−rfla(q)

)
fCIP-semi,θ(pw)dpw

Corresponding to the first three terms, the winning bid price in the first stage is always ch, and for

the last one it is some arbitrary p < ch. The first two terms together relate to ΠA, and the third

and the fourth terms relate to ΠB in the second stage game. Using them, we have Equation 2.

We solve for the two variables FCIP-semi,θ(p) and γ using two equations, which are obtained by

setting any two of the following three equations equal: expected profit in Equation 1 for any p < ch;

the expected profit computed at the supremum of the strategy set, which is infinitesimally smaller

than ch, in Equation 6; and Equation 2. The equilibrium bid distribution does not have a closed

form expression for any arbitrary r but is available for r = 0 (Kannan, 2010).
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A.3 First Stage Game: IIP

We again begin with the definition of the second stage variables. We represent Fw(q) and fw(q) as

those for the first stage winner in the second stage; and Fl(q) and fl(q) for the first stage loser in

the second stage. The expected payoff from bidding p in the first stage and q in the second stage is

πIIP,θ(p, q) =

High-cost rival︷ ︸︸ ︷
(1− θ)fw(q)(p− cl + q − cl)1−r f IIP,θ(p)

+

Low-cost rival exists but bidder wins both stages︷ ︸︸ ︷
θ(1− F IIP,θ(p))(1− Fl(q))fw(q)(p− cl + q − cl)1−r f IIP,θ(p)

+

Low-cost rival exists but bidder wins stage 1︷ ︸︸ ︷
θ(1− F IIP,θ(p))Fl(q)fw(q)(p− cl)1−r f IIP,θ(p)

+

Low-cost rival exists but bidder wins stage 2︷ ︸︸ ︷
θ

∫ pw=p

pw=pIIP
l

(
(1− Fw(q))fl(q)(q − cl)1−r

)
f IIP,θ(pw)dpw f IIP,θ(p)

= (1− θF IIP,θ(p))(p− cl)1−r +

(1− θF IIP,θ(p))(α+ (1− α)(1− Fl(q)))
(
(p− cl + q − cl)1−r − (p− cl)1−r

)
fw(q) +

θ

∫ pw=p

pw=pIIP
l

(
(α(ch − cl + pw − cl)1−r + (1− α)(pw − cl)1−r)

1
1−r − (pw − cl)

)1−r
f IIP,θ(pw)dpw

Simplifying this, we obtain Equation 3. We differentiate that equation with respect to p. The

left hand side expression tends to zero since the expectation of the profit from any of the actions

in the strategy set is the same. Using that, we obtain a differential equation involving f IIP,θ(pw)

and F IIP,θ(pw), which when solved yields the equilibrium bid distribution. The differential equation

does not have a closed form expression and has to be solved numerically.

Appendix B: Risk Aversion Estimates for Dataset 2

All CIP IIP
Treatments θ = 0.5 θ = 0.9 θ = 0.5 θ = 0.9

Dataset 2 Risk aversion coefficient 0.51** 0.62** 0.26** 0.01** 0.63**
Stdev (0.02) (0.03) (0.02) (0.001) (0.02)
Observations 2,032 352 664 352 664

Table 7: Results for estimated risk aversion coefficients. Numbers in parentheses indicate the
bootstrapped standard errors. Note that ** indicates a significance level of 1%. The first ten
periods are omitted from the estimations.
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Appendix C: Experiment Instructions (Complete Information Policy, θ=0.9) 

 This is an experiment in the economics of strategic decision making. Purdue University 

has provided funds for this research. If you follow the instructions and make appropriate 

decisions, you can earn an appreciable amount of money. The currency used in the experiment is 

francs. Your francs will be converted to U.S. Dollars at a rate of _____ francs to one dollar. At 

the end of today’s session, you will be paid in private and in cash. 

 It is important that you remain silent and do not look at other people’s work. If you have 

any questions, or need assistance of any kind, please raise your hand and an experimenter will 

come to you. If you talk, laugh, exclaim out loud, etc., you will be asked to leave and you will 

not be paid. We expect and appreciate your cooperation. 

 The experiment consists of 50 decision making periods. Each period you will be grouped 

with one other person in the experiment. At the beginning of each decision making period you 

will be randomly re-grouped with another person. Since the groupings change randomly every 

period, you will be grouped with a new person in almost every period. These instructions are for 

Part 1, which lasts for 25 periods. You will receive additional instructions for Part 2. 

Your Offer Prices and Profits 

During each period, you can sell units of a fictitious commodity. If you sell a unit, then 

you will have to incur that unit’s production cost. Each period you and all other participants will 

make two choices—an offer price in stage 1 and an offer price in stage 2. Each represents an 

offer price to sell a unit of a fictitious good to the experimenter. You can sell one unit in each of 

the two stages. If you sell your unit, then you will earn profits (in experimental francs) equal to 

Your profits = Your offer price – Your production cost 

If you do not sell your unit in a stage, then your profit for that stage is 0. This will happen 

frequently, since only one of the two people in your group can sell a unit in each stage. 

For example, suppose your production cost is 200 and your offer price is 322, and you 

sell a unit in this stage. Then your profit would be 322 – 200 = 122 for this stage. Note that you 

only incur your production cost if you sell a unit. 

Costs are Determined Randomly 

Your costs and the costs of the other person in your group are determined randomly by 

the computer at the start of each period. Everyone’s costs remain unchanged for both stage 1 and 
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stage 2 within a period, but then they are randomly determined again at the start of each period. 

There is a 90% chance that your cost is 200 and a 10% chance that your cost is 400. 

Which cost you have this period is determined through a (virtual) “ball draw” from a bingo cage 

containing 10 balls, comprised of 9 red and 1 black balls. If a red ball is drawn then your cost is 

200 and if a black ball is drawn then your cost is 400. The other person in your group will have a 

separate ball draw (with replacement) to determine his or her cost. Everyone will have a new ball 

draw to determine cost at the start of every period. Everyone always simply has a 90% chance 

(that is, a 0.9 probability) of having a 200 cost. Remember, everyone’s cost also remains 

unchanged over the 2 stages of each period. 

 

Submitting Your Offer Prices 

You will submit your offer prices using your computer. An example screen for Stage 1 is 

shown above. As you can see on this screen, you will know your cost for the period before you 
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submit your offer, but you will not know the cost (or the offer price) of anyone else at this stage. 

Up to two decimal places are permitted for any price offer. 

Determining Who Makes the Sale 

The computer determines whether you or the other person in your group makes the sale 

each stage following a very simple rule: The lowest offer price in your two-person group sells 

the unit, as long as this lowest offer price is not greater than 400. Since the computerized buyer 

will not pay more than 400 for a unit, any offer that you submit that is greater than 400 will be 

automatically lowered to 400. If the two offer prices are equal, then the person who sells the unit 

is determined randomly. The buyer will buy at most one unit in each stage from each two-person 

group.  
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Stage 2: New Offer Prices 

You will learn the Stage 1 offer price submitted by the other person in your group at the 

start of Stage 2, as shown above. This screen will also indicate who sold a unit in Stage 1. At this 

point you will submit a Stage 2 offer price, at the same time the other person submits her price. 

Your cost does not change between the two offer stages. 

Guessing the Cost for the Other Person 

 The other person’s cost also does not change between the offer stages. At the same time 

that you submit your Stage 2 offer price, you will also enter a guess about the chances that the 

other person has a cost of 200. (Remember, we already told you that costs are determined 

randomly at the beginning of the period, and everyone always has a 90-percent chance of having 

the cost of 200 for the period.) What you enter on your screen is the probability that the other 

person has a cost of 200 this period. For example, if you think that she has a 50-percent chance 

of having a cost of 200, then you enter 0.5. Or, if you think that she is three times as likely to 

have a cost of 200, rather than the cost of 400, then you enter 0.75. (Up to two decimal places are 

allowed.) Or, if you think that she certainly does not have a cost of 200, then you enter 0. 

 Your guess can earn you additional money. At the end of the period, we will show you 

the cost of this other person, and compare it to your guess. We will then pay you for the accuracy 

of your guess as follows: 

Suppose you guess that the person you are grouped with has a cost of 200 with a 75% 

chance and a cost of 400 with a 25% chance (as in one example above). Suppose further that this 

person actually has a cost of 400. In that case your  

Guess Payoff = 20 – 10(1-0.25)2 – 10(0.75)2 = 8.75 francs. 

In other words, we will give you a fixed amount of 20 francs from which we will subtract 

an amount that depends on how inaccurate your guess was. To do this we use the cost of the 

person you are grouped and we will take the probability you assigned to that cost, in this case 

25% on 400, subtract it from 100% and square it. We will then take the probability you assigned 

to the wrong cost, in this case the 75% you assigned to 200, and square it also. These two 

squared numbers will then be multiplied by 10 and subtracted from the 20 points that we initially 

gave you, to determine your final guessing payoff (which is 8.75 francs in this example).  
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Note that you get the lowest payment under this payoff procedure when you state that 

you believe that there is a 100% chance that the other person has a particular cost when it turns 

out that she actually has the other cost. In this case your guessing payoff would be 0, so you can 

never lose earnings from inaccurate guesses. You get the highest payment if you guess correctly 

and assign 100% to the cost that turns out to the actual cost of the person you are grouped with; 

in this case your guessing payoff would be 20 francs. 

Note that since your guess is made before you know the cost of the person you are 

grouped with, you maximize the expected size of your guessing payoff by simply stating 

your true beliefs about what you think this other person’s cost is. Any other guess will 

decrease the amount you can expect to earn from your guessing payoff. 

The End of the Period 

 After everyone has submitted offer prices for both stages of the current period you will be 

shown the final results screen, as shown on the next page. This screen displays your offer prices 

as well as the offer price and cost of the person you are grouped with for the current decision 

making period. It also shows your total earnings for this period and your cumulative earnings for 

the experiment so far.  

Once the outcome screen is displayed you should record your offer prices, cost, and the 

other person’s offer prices and cost on your Personal Record Sheet. Also record your current and 

cumulative earnings. Then click on the continue button on the lower right of your screen. 

Remember, at the start of the next period all participants are randomly re-grouped, and you are 

randomly re-grouped each and every period of the experiment. 
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Personal Record Sheet – Part 1 
 

Period  
Your 
Cost this 
Period 

Your 
Stage 1 
Offer 
Price 

Other 
Seller’s 
Stage 1 
Offer Price 

Your 
Stage 2 
Offer 
Price 

Other 
Seller’s 
Stage 2 
Offer Price 

Other 
Seller’s 
Cost this 
Period 

Your 
earnings 
this 
period  

Total 
earnings in 
Part 1 so 
far 

1         

2         

3         

4         

…         

24         

25         
 




