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Abstract

This paper examines conflicts in which performance is measured by the players’ success or

failure in multiple component conflicts, commonly termed “battlefields.” In multi-battlefield

conflicts, behavioral linkages across battlefields depend both on the technologies of conflict

within each battlefield and the nature of economies or diseconomies in how battlefield out-

comes and costs aggregate in determining payoffs in the overall conflict.
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1 Introduction

Within the economic, information, military, and political sciences the study of conflict often

examines environments in which the outcome of a given conflict is determined by performance

in multiple component conflicts or “battlefields.” In most studies linkages exist between the

component conflicts that require study as an overall system. In this survey we examine

conflicts comprised of component conflicts that are winner-take-all contests. That is, one

of the two parties in the component conflict (players) wins the component conflict and the

other loses. Examples of such conflicts include: (i) product innovation, which often involves

procuring a collection of interrelated patents, (ii) counterterrorism efforts and information

systems security, which involve the defense of complex networks of different targets, each

of which may be viewed as a battlefield, and (iii) presidential campaigns, which involve

competing to win a majority of the votes within each state in a combination of states that

results in an Electoral College victory. In each of these examples behavior and payoffs

across the complete set of contests depend on the structural linkages between the individual

contests. These linkages arise from economies or diseconomies in how battlefield outcomes

and costs aggregate in determining performance in the overall conflict and may depend on

the technology of conflict within each battlefield.

Structural linkages may be symmetric across players, as in presidential campaigns or

product innovation, where the players share the same objective of securing any one of the

winning combinations of contests – either a combination of states that wins the Electoral

College or a combination of patents that result in the innovation. Conversely, structural

linkages may be asymmetric across players, such as the weakest-link and best-shot objectives

arising in the defense against terrorism, in which the loss of any single target may be sufficient

to create a spectacular terrorism event but the entire collection of targets must be defended

in order to prevent such an event.

Conflicts involving multiple component contests with structural linkages play a prominent

role in the history of game theory. In one of the first problems examined in modern game

theory, Borel (1921) introduced a foundational model of multiple contests with linkages.

Borel’s formulation, known as the Colonel Blotto game, is a constant-sum game involving two

players who must each allocate a fixed amount of a resource over a finite number of contests.

Each player must distribute their resource without knowing their opponent’s distribution of

the resource. In each contest, the player who allocates the higher level of the resource wins,

and the payoff for the whole game is a function of the sum of the wins across the individual

contests. This particular game, which highlights the role of budget constraints as a structural
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linkage, was a focal point in the early game theory literature and captured the attention of

prominent scholars across a range of disciplines (see, for example, Bellman 1969; Blackett

1954, 1958; Gross and Wagner 1950; Shubik and Weber 1981; Tukey 1949). The Colonel

Blotto game has also experienced a recent resurgence of interest (see, for example, Golman

and Page 2009; Hart 2008; Kovenock and Roberson 2008a, 2009; Kvasov 2007; Laslier 2002;

Laslier and Picard 2002; Roberson 2006, 2008; Weinstein 2005). One of the primary appeals

of the Colonel Blotto game is that it provides a unified theoretical framework that sheds light

on a host of important issues in a broad set of environments. Most of the models examined

in this chapter may be viewed as variants and extensions of Borel’s original theme.

We focus on conflicts in which the payoff to each of two risk-neutral players is given by the

difference between an “objective” function — which aggregates the outcomes (wins or losses)

in the individual component contests into the total benefit from engaging in the conflict —

and a cost function — which aggregates the efforts allocated to the individual component

contests into a total cost of effort for the conflict. We divide our analysis into two parts

corresponding to whether the linkages across battlefields arise through the aggregation of

battlefield outcomes (objective-side linkages) or in the aggregation of battlefield costs (cost-

side linkages). On the cost side we examine structural linkages such as budget constraints and

investments which provide a uniform level of force across all of the component contests, which

we call “infrastructure investments.” On the objective side we examine several objectives

in which the benefit from engaging in the conflict is measured by some function of the sum

of the values of battlefields won. This includes objectives which measure the benefit as the

sum itself, as well as objectives in which a positive benefit accrues only if the sum reaches

some critical value, for example half the total value at stake.

In addition to breaking down our analysis according to the nature of the linkages across

contests, we also divide the analysis according to the type of contest success function (CSF)

employed in each battlefield contest. The CSF maps the players’ resource expenditures

in a contest into their respective probabilities of winning the contest. We focus on two

types of CSFs, chosen both because of their prominence in the literature and the contrasting

emphasis each places on the role of random noise in determining the contest outcome. Under

the auction contest success function the player with the larger resource expenditure within

the battlefield wins the battlefield with certainty. Under the lottery contest success function

the probability that a player wins the battlefield is equal to the ratio of the player’s resource

expenditure to the sum of the players’ expenditures within the battlefield.

The auction CSF may be viewed as capturing environments in which random noise plays
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little role in determining the contest outcome. Alternatively, it may be viewed as representing

a modeling strategy in which all factors influencing the contest outcome are captured in the

model and unmodeled factors play little or no role. Because the auction CSF is discontinuous

when players have the same expenditure, small differences in resources expended may lead

to large differences in the probability of winning. The auction CSF thereby represents

cutthroat competition in sunk expenditure. In single battlefield contests employing the

auction CSF generally leads to the nonexistence of pure strategy Nash equilibrium and

requires nondegenerate mixed strategies in equilibrium. Our analysis shows that this feature

of contests with the auction CSF carries over to multibattlefield contests, where mixed

strategies are multivariate joint distribution functions. In examining such strategies, we

focus attention on both the randomization in resources allocated to each battlefield and how

structural linkages across battlefields lead to behavioral linkages in the form of endogenous

correlation structures in the players’ joint distributions.

The lottery CSF is perhaps the most popular method for modeling single battlefield

contests. Under the lottery CSF expenditure by the two players may be interpreted as the

purchase of lottery tickets, where a random draw from the outstanding tickets determines

the winner. One consequence of the random noise that persists conditional on the players’

expenditures is that under the lottery CSF competition is softened relative to the auction

CSF. Under standard cost assumptions, the lottery CSF yields a concave payoff function in

single battlefield contests leading, in turn, to the existence of Nash equilibrium in pure strate-

gies. Our analysis shows that this feature of contests with the lottery CSF generally carries

over to multibattlefield conflicts. However, there are examples of structural linkages that

generate nonquasiconcave objectives and therefore require mixed strategies in equilibrium.

Section 2 introduces the formal framework used in this chapter. This includes the specifi-

cation of payoffs in terms of objective functions and cost functions and the determination of

battlefield outcomes. Our treatment of the objective and cost functions includes an outline of

the structural linkages that are the focus of our analysis. Section 3 examines the behavioral

linkages arising from cost-side linkages, and Section 4 examines the behavioral linkages aris-

ing from objective-side linkages. Section 5 concludes by discussing extensions and pointing

to areas for future research, including alternative contest success functions, n-player versions

of the models, incomplete information, dynamics, and empirical evaluation.
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2 Conflict with Multiple Battlefields

Consider two players, A and B, competing in a conflict consisting of n battlefields. The two

players simultaneously expend nonnegative n-tuples of a (sunk) resource, xi = (xi,1, ..., xi,n),

i ∈ {A,B}, where xi,j is the allocation of the resource (or allocation of force) by player i

to battlefield j. If the two players allocate xA,j and xB,j to battlefield j, then each player’s

outcome in battlefield j, vi,j(xi,j, x−i,j, ω̃j), i ∈ {A,B}, is a real-valued function of the

allocations (xA,j, xB,j) and the realization of a real-valued random variable ω̃j, where it is

assumed that the random variables ω̃1, ω̃2, ..., ω̃n are independent. The total benefit to player

i from engaging in the multi-battlefield conflict is assumed to be a real-valued function of the

player’s respective battlefield outcomes, vi(vi,1(xi,1, x−i,1, ω̃1), ..., vi,n(xi,n, x−i,n, ω̃n)), which

we call player i’s objective function. The cost of player i’s vector of expenditures is given by

ci(xi). We assume that each player is a risk neutral expected payoff maximizer and that the

expected payoff of an arbitrary player A is the expected benefit minus the cost:1

UA(xA,xB) ≡ E(vA(vA,1(xA,1, xB,1, ω̃1), ..., vA,n(xA,n, xB,n, ω̃n)))− cA(xA)

= VA (xA,xB)− cA(xA)
(1)

Before investigating the linkages across battlefields that arise from the objective and cost

functions, we first examine the determination of battlefield outcomes.

2.1 Battlefield Outcomes

The focus of this chapter is on conflicts comprised of battlefields that are winner-take-all

contests. That is, for any given (xA,j, xB,j, ωj) exactly one of the two players “wins” the

battlefield and the other “loses,” with battlefield outcomes that are explicitly dependent on

the event of winning or losing. As described below we focus on a formulation of the contest

in which, for any given (xA,j, xB,j) pair, the value of the random variable ω̃j determines only

the identity of the winner, and not the values of the battlefield contingent on winning or

losing. In this formulation, (xi,j, x−i,j, ωj) ∈ Wi,j(W−i,j) indicates that given the resource

levels xi,j and x−i,j and the realization ωj of the random varible ω̃j player i(−i) is the winner

(and therefore player −i(i) the loser) in battlefield j. Within component contest j, we may

1If the players are not risk neutral, an arbitrary player A would maximize a nonaffine function of
vA(vA,1(xA,1, xB,1, ω̃1), ..., vA,n(xA,n, xB,n, ω̃n)) − cA(xA), and payoffs would no longer be separable in the
objective and cost. This creates a different, but interesting, set of behavioral linkages across battlefields that
are not examined in this chapter.
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define pA,j(xA,j, xB,j) = Pr((xA,j, xB,j, ωj) ∈ WA,j) to be the probability that player A wins

the component contest j conditional on the two players’ expenditures in the contest and

pB,j(xA,j, xB,j) = 1− pA,j(xA,j, xB,j) to be the corresponding probability that player B wins

the component contest. Consistent with popular usage, we will refer to pi,j(xA,j, xB,j) as the

contest success function for battlefield j.

In the sections that follow we will restrict ourselves to independent random variables

ω̃1, ω̃2, ..., ω̃n which generate one of the following two contest success functions (commonly

known as the “auction” and “lottery” contest success functions), independently across each

battlefield:

(i) Under the auction contest success function2

pA,j(xA,j, xB,j) =


1 if xA,j > xB,j

IC if xA,j = xB,j

0 if xA,j < xB,j

(ii) Under the lottery contest success function

pA,j(xA,j, xB,j) =

{
xA,j

xA,j+xB,j
if (xA,j, xB,j) 6= (0, 0)

1
2

if (xA,j, xB,j) = (0, 0)

For each player i ∈ {A,B} we attach to each battlefield j a battlefield specific value to

winning, wi,j > 0, and a battlefield specific value to losing, li,j, that are independent of the

expenditures (xA,j, xB,j) and the realized value of ωj. To facilitate the exposition, we further

assume that li,1 = ... = li,n = 0, so that vA,j(xA,j, xB,j, ωj) takes on a value 0 or wA,j > 0.

We may therefore write

vA,j(xA,j, xB,j, ωj) =

{
wA,j if (xA,j, xB,j, ωj) ∈ WA,j

0 if (xA,j, xB,j, ωj) /∈ WA,j

2.2 Objective Functions

When analyzing the aggregation of battlefield outcomes we examine count objectives — that

is, objectives for which the total benefit from the overall conflict is measured by some function

of the sum of the values of battlefields won. More formally, let I{(xA,j ,xB,j ,ωj)∈WA,j} denote

2Ic in this formulation refers to an indicator that depends on the particular model of conflict being
examined. Often, in games with discontinuous payoffs, such as winner-take-all contests with an auction
contest success function, the modeler must employ a judicious choice of a tie-breaking rule in order to avoid
having to revert to the use of ε-equilibrium concepts.
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the indicator function that takes the value 1 if player A is a winner, (xA,j, xB,j, ωj) ∈ WA,j,

and 0 otherwise. Player A is said to have a count objective if there exists a function f such

that for every n-tuple of battlefield outcomes (vA,1(xA,1, xB,1, ω1), ..., vA,n(xA,n, xB,n, ωn))

vA(vA,1(xA,1, xB,1, ω1), ..., vA,n(xA,n, xB,n, ωn)) ≡ f

(
n∑

i=1

wA,jI{(xA,j ,xB,j ,ωj)∈WA,j}

)

There are two prominent types of count objectives that will be examined in this chapter, the

linear count objective and the critical-value count objective. Under a linear count objective,

f is the identity:

vA(vA,1(xA,1, xB,1, ω1), ..., vA,n(xA,n, xB,n, ωn)) =
n∑

i=1

wA,jI{(xA,j ,xB,j ,ωj)∈WA,j}. (2)

In this formulation, a player maximizes the expected sum of the values of battlefields won

minus the cost of expenditures. Under a critical-value count objective,

vA(vA,1(xA,1, xB,1, ω1), ..., vA,n(xA,n, xB,n, ωn)) =


wA if

n∑
i=1

wA,jI{(xA,j ,xB,j ,ωj)∈WA,j} ≥ mA

0 otherwise

(3)

In this case, if the sum of the values of the battlefields that player A wins is at least mA,

then he earns a constant wA > 0 before netting out the cost of all expenditures. Otherwise,

player A earns nothing and loses his costs.

We will often focus on the case in which all battlefields won are of equal individual value,

normalized to 1, i.e. wA,1 = ... = wA,n = 1. Under this normalization, the sum of the values

of battlefields won is equal to the number of battlefields won,
∑n

i=1wA,jI{(xA,j ,xB,j ,ωj)∈WA,j} =∑n
i=1 I{(xA,j ,xB,j ,ωj)∈WA,j}. A count objective satisfying this restriction is labeled a pure-count

objective, and the two types of count objectives given in equations (2) and (3) are referred

to as the linear pure-count objective and the critical-value pure-count objective respectively.

Three special cases of critical-value pure-count objectives that are examined in this chap-

ter are the cases of a majoritarian objective, where, for n odd, mA = n
2
, a weakest-link

objective, where mA = n, and a best-shot objective where mA = 1.

It should be emphasized that the models we examine will generally feature some type

of count objective, but these may or may not be identical across the two players. So, for

instance, in the next two sections we will examine games in which (i) both players have
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linear count or linear pure-count objectives, (ii) both players have majoritarian objectives,

and (iii) one player has a weakest-link objective and the other a best-shot objective.

2.3 Cost Functions

In the multi-battlefield conflicts that we examine, the cost function cA(xA) may or may not

be additively separable in battlefield expenditures. If the function is additively separable, it

takes the form cA(xA) = cA,1(xA,1) + ... + cA,n(xA,n), where the total cost of the allocation

xA is the sum of the costs of the battlefield specific allocations. One special case that will be

used in the continuation is the case of identical battlefield specific cost functions of a linear

form, cA(xA) = c · (xA,1 + ... + xA,n), where c > 0. We refer to this as the case of linear

costs. Two types of nonseparable cost functions will be employed in the following sections.

One is the case of a linear technology up to an overall budget constraint, which we term

budget-constrained linear costs,

cA(xA) =

c · (xA,1 + ...+ xA,n) if (xA,1 + ...+ xA,n) ≤ BA
∞ (xA,1 + ...+ xA,n) > BA

.

Here, BA has the interpretation of a resource or budget constraint on a one dimensional

resource that is allocated across the n battlefields, where this resource has a constant op-

portunity cost of use elsewhere of c. A special case used in the classical Colonel Blotto game

is the case where each unit of the resource up to the budget constraint has a zero oppor-

tunity cost, c = 0, so that the resource budget is use-it-or-lose-it. We refer to this case as

budget-constrained use-it-or-lose-it costs.

The second nonseparable cost function that will be examined is the case of a multi-

battlefield cost function arising from the inclusion of an infrastructure investment. By in-

frastructure investment, we mean a nontargetable technology that provides a uniform allo-

cation of a resource across all battlefields. A natural way to think of such an investment is

as one that is a “public good” in the sense that it provides an input of the resource that

is nonrival across all battlefields. For instance, in a military setting, a fixed investment in

an innovative weapons system or a high-tech command and control center may be applied

across all battlefields simultaneously at the same cost that it might be applied to a subset

of battlefields.

In our treatment, we assume that the resource corresponding to an investment in infras-

tructure serves as a perfect substitute for the targetable resource in each battlefield. This
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assumption allows us to treat the sum of player i’s infrastructure investment and his tar-

geted resource to a given battlefield j as a single choice variable x̂i,j, which we call player

i’s effective force allocation to battlefield j. It is this allocation that enters into the contest

success function for that battlefield.

If in addition the (constant) per unit cost, cu, of the infrastructure investment is less than

the cost per unit, nc, of allocating the targetable resource uniformly across all n battlefields,

cost minimization implies that we can write the cost function as:

cA(x̂A) = c · ((x̂A,1 −min
j
x̂A,j) + ...+ (x̂A,n −min

j
x̂A,j)) + cu ·min

j
x̂A,j.

As is clear from the formulation, it is cost minimizing to employ the infrastructure investment

to provide all units up to the minimum effective force allocation across battlefields, with the

difference between this minimum effective force allocation and the allocation in any other

given battlefield being met by the targetable resource. We refer to this case as infrastructure

costs.3

2.4 Multi-Battle Conflict with Structural Linkages

Before outlining the structural linkages examined in this chapter, it is useful to make the

following straightforward observation: If each player i = A,B has a linear count objective

and an additively separable cost function, then each player i’s expected payoff may be

written as [Evi,1(xi,1, x−i,1, ω1)− ci,1(xi,1)] + ... + [Evi,n(xi,n, x−i,n, ωn)− ci,n(xi,n)] . In this

case, maximizing the expected payoff in the overall conflict is equivalent to maximizing

the expected payoff in each battlefield contest separately, Evi,j(xi,j, x−i,j, ωj) − ci,j(xi,j),

j = 1, .., n. Solving for a Nash equilibrium in the multi-battlefield conflict reduces to the

simultaneous solution of n independent single-input winner-take-all contests. Lemma 1 states

this formally.

Lemma 1. If each player i = A,B has a linear count objective and an additively separable

cost function then maximizing the expected payoff for the overall conflict, given in equation

(1), is equivalent to maximizing the expected payoff, Evi,j(xi,j, x−i,j, ωj) − ci,j(xi,j), in each

battlefield contest separately.

In the pages that follow, we detail the intricate linkages between contests that arise in

3Because an infrastructure investment, by definition, raises all battlefield allocations by the amount of
the investment, the existence of a cost efficient infrastructure investment yields a cost function which may
be decreasing over regions of the domain of battlefield allocations.
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cases where either there is a deviation from the assumption of a linear count objective or the

cost function is not additively separable. The layout of this chapter is as follows. In section

3 we examine cost-side linkages in games with linear count and pure-count objectives and

nonseperable cost functions. Subsection 3.1 examines the behavioral linkages arising from a

budget-constrained use-it-or-lose-it cost function. Under the auction CSF, the combination

of a linear pure-count objective and symmetric budget-constrained use-it-or-lose-it costs

yields the classic Colonel Blotto game due to Borel. Extensions of this model to the case of

asymmetric budget constraints (Roberson 2006) and, in subsection 3.2, budget-constrained

linear costs (Kvasov 2007, Roberson and Kvasov 2008) are treated. We also present a class

of models, due to Friedman (1958) and Robson (2005), that address the same issues but

employ the lottery contest success function in each component contest. We end the section

by examining the case of an infrastructure investment.

In section 4 we investigate objective-side linkages. In subsection 4.1 we examine the

majoritarian objective with linear costs and briefly discuss the case of budget-constrained

use-it-or-lose-it costs. An approach to this problem with a generalization of the lottery con-

test success function and a linear cost function is examined by Snyder (1989) and Klumpp

and Polborn (2006). The problem of a majoritarian objective assuming an auction con-

test success function and budget-constrained use-it-or-lose-it costs was first addressed by

Borel and Ville (1938), who examine the case of three battlefields.4 Szentes and Rosenthal

(2003a) solve for an equilibrium under a majoritarian objective with three battlefields and

linear costs, and Szentes and Rosenthal (2003b) examine equilibria of games with more than

three battlefields and linear costs in which players must achieve the same supermajority of

battlefield victories.

Subsection 4.2 looks at the case in which one of the players has a best-shot objective

and his opponent a weakest-link objective. For the lottery contest success function, an

equilibrium for this case is provided by Clark and Konrad (2007). For the auction contest

success function, an equilibrium (in nondegenerate mixed strategies) and properties satisfied

by any equilibrium are provided by Kovenock and Roberson (2009). In subsection 4.3, we

briefly examine extensions in which the expenditure of resources across multiple battlefields

contributes to the construction of aggregate measures of resource allocation that map the

vector of battlefield allocations to the real line. Success or failure in the conflict is then a

(potentially stochastic) function of the two players’ aggregate measures.

4See also Laslier (2003) who allows the three battlefields to have different weights.
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3 Multiple Battlefields with Cost Linkages

We begin in section 3.1 with linear count and pure-count objectives and examine the link-

ages that arise from budget-constrained use-it-or-lose-it costs. In section 3.2 we extend the

analysis to budget-constrained linear costs and, in section 3.3, infrastructure costs.

3.1 Budget-Constrained Use-It-Or-Lose-It Costs

Borel’s Colonel Blotto game — an auction battlefield contest success function, linear pure-

count objective, and budget-constrained use-it-or-lose-it costs — highlights the nature of the

battlefield linkages arising from a constraint on the sum of additively separable battlefield

expenditures. In the Colonel Blotto game each of the two players has a resource constraint

(or budget). Let A denote the strong player with resource constraint BA, and B denote the

weak player with resource constraint BB, where BA ≥ BB. For player i, the set of feasible

force allocations across the n battlefields is denoted by

Si =

{
x ∈ Rn

+

∣∣∣∣ n∑
j=1

xi,j ≤ Bi

}
.

Although, Theorem 1 below can be extended to allow for heterogenous battlefield valu-

ations,5 we will focus on the simplest case in which all battlefields are of equal individual

value, normalized to 1 (i.e., wi,j = 1 for i = A,B and all j). The total value of battlefields

contested in the Colonel Blotto game is then n. Each player’s objective is to maximize the

expected number of individual battlefields won.

In each battlefield, or component contest, j, the probability that player i wins battlefield

j with an allocation of force xi,j when player −i allocates x−i,j units of force is determined by

the auction CSF. Consequently, for any feasible n-tuple of force allocations xi ∈ Si, player

i’s expected payoff is given by

Ui(xA,xB) =
n∑

j=1

pi,j(xA,j, xB,j)

where pi,j(xA,j, xB,j) denotes the auction CSF.

5For the case of symmetric resource constraints, BA = BB , see Laslier (2002). For asymmetric resource
constraints (BA > BB) Theorem 1 can be extended to allow the battlefield valuations to vary across the
individual component contests as long as for each distinct battlefield valuation there are at least three
battlefields with that valuation.
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If the strong player (A) has sufficient resources to outbid the weaker player’s (B’s) max-

imal force allocation on all n battlefields (i.e., if BA ≥ nBB) then there, trivially, exists

a pure strategy equilibrium, and the strong player (A) wins all of the battlefields.6 It is

well known that for the remaining parameter configurations, (1/n)BA < BB ≤ BA, there

is no pure strategy equilibrium for this class of games. A mixed strategy, which we term

a distribution of force, for player i is an n-variate distribution function Pi : Rn
+ → [0, 1]

with support (denoted Supp(Pi)) contained in player i’s set of feasible force allocations Si
and with the set of one-dimensional marginal distribution functions {Fi,j}nj=1, one univariate

marginal distribution function for each battlefield j. The n-tuple of player i’s allocation of

force to each of the n battlefields is a random n-tuple drawn from the n-variate distribution

function Pi.

Optimal Strategies

Theorem 1 summarizes Roberson’s (2006) characterization of equilibrium in the Colonel

Blotto game in the case that n ≥ 3 and BB/BA satisfies (2/n) < (BB/BA) ≤ 1. See

Roberson (2006) for the remaining case with n ≥ 3 and (1/n) < (BB/BA) ≤ (2/n). The case

of n = 2 is dealt with in Gross and Wagner (1950) and Macdonell and Mastronardi (2009).

The following result holds for a range of tie-breaking rules, including fair randomization

(IC = (1/2)).

Theorem 1 (Roberson (2006)). If n ≥ 3 and BB/BA satisfies (2/n) < (BB/BA) ≤ 1, then

the pair of n-variate distribution functions P ∗A and P ∗B constitutes a Nash equilibrium of the

Colonel Blotto game (i.e., auction CSF, linear pure-count objective, and budget-constrained

use-it-or-lose-it costs) if and only if it satisfies the following two conditions: (1) For each

player i, Supp(P ∗i ) ⊆ Si and (2) P ∗i , i = A,B, provide the corresponding unique set of

univariate marginal distribution functions {F ∗i,j}nj=1 outlined below.

∀ j ∈ {1, . . . , n} F ∗B,j

(
x
)

=
(
1− BBBA

)
+ x

2
n
BA

(BB
BA

)
for x ∈

[
0, 2

n
BA
]
.

∀ j ∈ {1, . . . , n} F ∗A,j

(
x
)

= x
2
n
BA

for x ∈
[
0, 2

n
BA
]
.

Moreover, such strategies exist, and in any Nash equilibrium the expected payoff of the weak

player (B) is n(BB/2BA) and the expected payoff of the strong player (A) is n−n(BB/2BA).

6When BA = nBB , in each battlefield we must employ a tie-breaking rule that selects the stronger player
(A).
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For a proof of Theorem 1 see Roberson (2006). A major part of this proof is establishing

the existence of a pair of n-variate distributions P ∗A and P ∗B with the prescribed univariate

marginal distribution functions and with supports contained in the feasible sets of force

allocations, SA and SB respectively. Note that uniqueness of the equilibrium expected payoffs

follows immediately from the fact that the Colonel Blotto game is constant-sum.

In the Colonel Blotto game the primary linkage is an implicit opportunity cost that arises

from the fact that resources which are used in one particular battlefield cannot be used in any

of the other battlefields. As a result, even though resources are use-it-or-lose-it, the implicit

opportunity costs create incentives that behave much like linear costs. In fact, if BB/BA
satisfies (2/n) < (BB/BA) ≤ 1, then the unique set of univariate marginal distributions in

the Colonel Blotto game corresponds to the unique set of univariate marginal distributions in

a game with two unconstrained-budget players and a set of n independent all-pay auctions,

where each auction has value (2/n)BA for player B and value (2/n)(B2
A/BB) for player A.

Another distinctive feature of the equilibria in the asymmetric Colonel Blotto game is that

the disadvantaged player uses a “guerrilla warfare” strategy which involves the stochastic

allocation of zero forces to a subset of the battlefields. Conversely, the player with the larger

budget plays a “stochastic complete coverage” strategy that stochastically allocates forces

across all battlefields, with each battlefield receiving a strictly positive level of forces with

probability one. This feature does not arise under the corresponding game with battlefield

outcomes determined by the lottery CSF.

Friedman (1958) analyzes a Blotto-type game which replaces the auction CSF, of the

original Colonel Blotto game, with the lottery CSF7 and replaces the linear pure-count

objective with a linear count objective and common but heterogeneous battlefield valuations

{vj}nj=1 (i.e., wi,j = vj for i = A,B and all j). That is, Friedman’s Blotto-type game consists

of: (i) the lottery component contest success function, (ii) a linear count objective function

with heterogenous battlefield valuations {vj}nj=1 that are symmetric across players, and (iii)

budget-constrained use-it-or-lose-it costs with resource constraints BA and BB. Theorem 2

provides Friedman’s characterization of equilibrium in this Blotto-type game.

Theorem 2 (Friedman (1958)). The pair of n-tuples x∗A and x∗B constitutes a Nash equilib-

rium of the Blotto-type game with the lottery CSF, heterogenous battlefield valuations {vj}nj=1,

7See also Robson (2005) who examines this environment under a wider range of Tullock CSFs of the form
pi(xi,j , x−i,j) = xri,j/(x

r
i,j + xr−i,j) for r ∈ (0, 1].
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and budget-constrained use-it-or-lose-it costs with resource constraints BA and BB, if

∀ j ∈ {1, . . . , n} x∗A,j = (BA)
vj∑n

j′=1 vj′
and x∗B,j = (BB)

vj∑n
j′=1 vj′

.

The equilibrium expected payoffs are (BB/(BA + BB))
∑n

j=1 vj for the weak player (B), and

(BA/(BA + BB))
∑n

j=1 vj for the strong player (A).

In the Blotto-type game with lottery CSF, an implicit opportunity cost linkage arises and

each player uses a “deterministic complete coverage” strategy that proportionally allocates

forces based on the relative values of the battlefields. Robson (2005) shows that if the

lottery CSF is replaced by the variation of the Tullock CSF examined in Skaperdas and

Syropoulos (1998), then there may exist “non-participation equilibria” in which one or both

players deterministically drop out of a subset of the battlefields. Note, though, that this

deterministic non-participation strategy is qualitatively different from the stochastic guerilla

warfare strategy employed by the weaker player in the Colonel Blotto game, in which (only)

the weaker player stochastically allocates zero forces to a subset of the battlefields.

3.2 Budget-Constrained Linear Costs

The classic constant-sum formulation of the Colonel Blotto game provides an important

benchmark in the study of strategic multi-dimensional conflict. In this formulation, any

unused resources have no value. Kvasov (2007) introduces a non-constant-sum version of

the two-player Colonel Blotto game that relaxes the use-it-or-lose-it feature of the original

formulation and, for the case of symmetric resource endowments, finds that there is a one-to-

one mapping from the unique set of equilibrium univariate marginal distribution functions

in the constant-sum game to those in the non-constant-sum game. Roberson and Kvasov

(2008) extend this analysis to the case of asymmetric resource endowments and find that —

as long as the level of asymmetry between the players’ budgets is below a threshold — this

relationship between the constant-sum and non-constant-sum games is preserved.

In the taxonomy of section 2, the non-constant-sum formulation of the Colonel Blotto

game utilizes the auction component contest success function, a linear count objective with

n homogenous battlefields of common value v (i.e., wi,j = v for i = A,B and all j), budget-

constrained linear costs with c = 1 and resource constraints BA and BB, BA ≥ BB.

Let B̂i : R4
+ → R denote player i’s modified resource constraint, given by

B̂B (BA,BB, v, n) = min
{
BB,

nv

2

}
13



for player B, and

B̂A (BA,BB, v, n) = min
{
BA,

nv

2
,

(
nvBB

2

)1/2 }
for player A. Clearly, BA ≥ BB implies B̂A ≥ B̂B. In the case that B̂B/B̂A satisfies (2/n) <

(B̂B/B̂A) ≤ 1, a modified statement of Theorem 1 — in which each player i’s resource

constraint Bi is replaced with his modified resource constraint B̂i — applies. That is, for

(2/n) < (B̂B/B̂A) ≤ 1 any equilibrium of the constant-sum Colonel Blotto game with n

battlefields and resource constraints B̂A(BA,BB, v, n) and B̂B(BA,BB, v, n) is an equilibrium

of the non-constant-sum Colonel Blotto game with n battlefields of common value v and

resource constraints BA and BB. See Roberson and Kvasov (2008) for the remaining case

where (B̂B/B̂A) ≤ (2/n).

Theorem 3 (Roberson and Kvasov (2008)). If n ≥ 3 and B̂B/B̂A satisfies (2/n) <

(B̂B/B̂A) ≤ 1, then the pair of n-variate distribution functions P ∗A and P ∗B constitutes a Nash

equilibrium of the non-constant-sum Colonel Blotto game (i.e., auction CSF, linear count

objective with common battlefield value v, and budget-constrained linear costs with c = 1 and

resource constraints BA and BB) if and only if it satisfies the following two conditions: (1)

For each player i, Supp(P ∗i ) ⊆ Si and (2) P ∗i , i = A,B, generates the corresponding unique

set of univariate marginal distribution functions {F ∗i,j}nj=1 outlined below.

∀ j ∈ {1, . . . , n} F ∗B,j

(
x
)

=
(
1− B̂B

B̂A

)
+ x

2
n
B̂A

( B̂B
B̂A

)
for x ∈

[
0, 2

n
B̂A
]
.

∀ j ∈ {1, . . . , n} F ∗A,j

(
x
)

= x
2
n
B̂A

for x ∈
[
0, 2

n
B̂A
]
.

Moreover, such a Nash equilibrium exists, and in any Nash equilibrium the expected payoff

of the weak player (B) is nv(B̂B/2B̂A)− B̂B and the expected payoff of the strong player (A)

is nv − nv(B̂B/2B̂A)− B̂A.

The modified budgets delineate the three classes of equilibria in the non-constant-sum

Colonel Blotto game. If B̂i = Bi for each i = A,B, then the players’ resource constraints are

so low, that in equilibrium both players expend all of their available resources. Conversely,

if B̂i = (nv/2) for each i = A,B, then the players’ resource constraints are so high, that

in equilibrium neither player expends all of his available resources. Lastly, if B̂B = BB and

B̂A = (nvBB/2)1/2, then the weak player (B) has a resource constraint that binds, but the

strong player (A) has a non-binding resource constraint.

In a similar manner, Friedman’s Blotto-type game with the lottery CSF can also be

14



extended to allow for budget-constrained linear costs with c = 1. In this case, it is straight-

forward to show that a modified form of Theorem 2 applies in which each player’s resource

constraint Bi is replaced with his modified resource constraint defined as:

B̂B = min
{
BB,

∑n
j=1 vj

4

}
for player B, and

B̂A = min
{
BA,

∑n
j=1 vj

4
,
(
BB

n∑
j=1

vj

)1/2
− BB

}
for player A. As before, BA ≥ BB implies B̂A ≥ B̂B.

Theorem 4. The pair of n-tuples x∗A and x∗B constitutes a Nash equilibrium of the Blotto-

type game with the lottery CSF, heterogenous battlefield valuations {vj}nj=1, and budget-

constrained linear costs with c = 1 and resource constraints BA and BB, if

∀ j ∈ {1, . . . , n} x∗A,j = (B̂A)
vj∑n

j′=1 vj′
and x∗B,j = (B̂B)

vj∑n
j′=1 vj′

.

The equilibrium expected payoffs are (B̂B/(B̂A + B̂B))
∑n

j=1 vj − B̂B for the weak player (B),

and (B̂A/(B̂A + B̂B))
∑n

j=1 vj − B̂A for the strong player (A).

Again, the modified budgets delineate the three classes of equilibria that arise in the

case that unused resources have positive value. As in the constant-sum formulations of

the Colonel Blotto game and Friedman’s Blotto-type game, the primary linkage across the

individual component conflicts is through the implicit opportunity cost of resources. Thus,

the nature of the incentives in the constant-sum games is, for the most part, robust to the

relaxation of the use-it-or-lose-it cost feature.

3.3 Infrastructure Costs

The case of costs arising from infrastructure investment provides another example of a non-

separable cost function. Recall that by an infrastructure investment, we mean a nontar-

getable force technology that provides a uniform level of force across all battlefields. We also

assume that an investment in infrastructure serves as a perfect substitute for the targetable

force in each battlefield. This assumption allows us to treat the sum of player i’s infrastruc-

ture investment and his targeted force to a given battlefield j as a single choice variable x̂i,j,
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which we call player i’s effective force allocation to battlefield j. It is this allocation that

enters into the contest success function for that battlefield.

Application of this type of nonseparable cost function originates with Lizzeri and Per-

sico (2001), who examine two political parties engaged in redistributive competition with a

continuum of voters, targetable taxes and transfers, and public good provision.8 We follow

Lizzeri and Persico’s focus on the case of a zero-one infrastructure technology that, when

employed, provides a uniform level of force across all of the battlefields. However, our re-

sults may be directly extended to allow for a more general lumpy, or discrete, infrastructure

technology.

Consider a game with the auction battlefield contest success function and a linear count

objective function with homogeneous battlefields with common value v. For simplicity we

focus on the asymmetric case in which, both players have linear costs with c = 1, but only

player B has the opportunity to invest in infrastructure. That is, in addition to the direct

targeting of forces, player B has the opportunity to make a zero-one infrastructure investment

(denoted by an indicator function ιI) at cost cI which provides an effective force allocation of

I to each of the n battlefields. We focus on the case in which the infrastructure investment

is efficient, cI < nI, and the value of each battlefield is larger than the per battlefield

cost of the infrastructure investment, v > (cI/n). If player B utilizes the infrastructure

technology (ιI = 1), then the total force that player B allocates to each battlefield j is

calculated as the sum of the targetable forces, xB,j, and the infrastructure investment, I.

Let x̂B ≡ (xB,1 + ιII, xB,2 + ιII, . . . , xB,n + ιII) denote player B’s effective force allocation.9

When the two players allocate the same level of effective force, xA,j = x̂B,j, to a battlefield

j, player B is assumed to win the battlefield.

It is clear that there is no pure-strategy equilibrium for this class of games. For player A, a

mixed strategy is an n-variate distribution function which specifies player A’s randomization

in the allocation of targetable forces across the battlefields. Because (i) player B’s effective

force allocation is given by the n-tuple x̂B = (xB,1+IιI , . . . , xB,n+IιI) and (ii) for any n-tuple

of effective forces there exists a unique cost-minimizing combination of the targetable force

and the infrastructure investment, it will be convenient to state player B’s mixed strategy

in terms of his n-tuple of effective forces.

8Because the model in Lizzeri and Persico (2001) assumes a continuum of voters, mixed strategies are
unidimensional. A variation of this game with a finite set of voters and multidimensional mixed strategies
is examined in Roberson (2008).

9Under these assumptions, the unit cost of infrastructure investment is cu = (cI/I). This zero-one
infrastructure investment corresponds to a simplified form of infrastructure costs in which the term minj x̂B,j

is replaced with ιI · I, where ιI takes a value of one if minj x̂B,j ≥ I.
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Theorem 5. Assume that v > I > (cI/n) and c = 1. A Nash equilibrium of the game with

asymmetric infrastructure investment is for each player to allocate his forces according to

the following n-variate distribution functions. For player A and x ∈ [0, v]n

P ∗A (x) =

(
1− v − I + (cI/n)

v

)
+

minj{min{xj, cI/n}}
v

+
minj{max{xj − I, 0}}

v

Similarly for player B’s effective force

P̂ ∗B (x̂) =


minj{min{x̂j ,cI/n}}

v
if x̂ ∈ {[0, v]n − [I, v]n}

minj{x̂j}
v

if x̂ ∈ [I, v]n

Player B chooses to make the infrastructure investment with probability 1− cI/n
v

. The expected

payoff for player A is 0, and the expected payoff for player B is nI − cI .

It is straightforward to demonstrate that this pair of strategies is indeed an equilibrium.

Note also that one may verify that if an n-tuple of effective forces x̂B is contained in the

support of player B’s mixed strategy (Supp(P̂B)), then either ιi = 0 and the n-tuple of

targetable forces xB is contained in the set [0, (cI/n)]n or ιi = 1 and the n-tuple of targetable

forces xB is contained in the set xB ∈ [0, v − I]n. The linkage in player B’s force allocations

arises from the fact that it is suboptimal for player B to choose an n-tuple of targetable forces

xB ∈ [(cI/n), I)n and to not make the infrastructure investment, ιI = 0, a strategy that has

a corresponding cost of
∑n

j=1 xB,j ∈ [cI , nI). By choosing to make only the infrastructure

investment, ιI = 1, at cost cI ≤
∑n

j=1 xB,j, player B obtains a strictly higher level of effective

force, (I, . . . , I) > xB for any xB ∈ [(cI/n), I)n. That is, by choosing the infrastructure

investment, ιI = 1 at cost cI , over an n-tuple of targetable forces xB ∈ [(cI/n), I)n (and

no infrastructure investment, ιI = 0) player B strictly increases his level of effective force,

but does not increase his costs. Then, because in any equilibrium the support of player B’s

randomization over effective forces contains no n-tuples x̂B in the set [(cI/n), I)n, it follows

directly that for any equilibrium strategy PA for player A, the intersection of Supp(PA) with

[(cI/n), I)n is also necessarily empty.

Intuitively, when player B stochastically employs the infrastructure investment, the fact

that the investment provides an identical (positive) level of force to each battlefield means

that there is automatically a linkage in the effective force allocations across battlefields.

Moreover, this lumpy infrastructure choice also induces correlation in the allocation of the

targetable forces across battlefields. Due to the construction of equilibrium mixed strategies,
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a similar type of correlation structure arises in player A’s strategy, despite the fact that he

does not have access to the infrastructure investment.

The intuition of this example also extends to the case of the budget-constrained use-it-or-

lose-it cost structure. As long as we maintain the assumption of an auction contest success

function, the tradeoff between targetability and efficiency is captured in the endogenous

correlation structure arising in the mixed-strategy equilibria. Under the lottery contest

success function and a linear count objective, equilibrium does not in general require mixed

strategies. As a consequence incorporating infrastructure investments does not lead to the

same tradeoff between efficiency and targetability that arises with an auction contest success

function. To our knowledge infrastructure investments have not yet been formally examined

in this context, although, due to the non-monotonicity of the cost of providing different

effective force levels, we expect a wealth of equilibrium behaviors to arise.

4 Multiple Battlefields with Objective Linkages

The objective function maximized in the standard formulation of the Colonel Blotto game

is the linear pure-count objective. This is only one of many objectives that are relevant

to applications of the model. Consider for example the nonlinear majoritarian objective

in which the overall conflict is winner-take-all, and the winner is the player who wins a

majority of battlefields (with n – the number of battlefields – odd). Such structural linkages

may also be asymmetric across the set of players. For example, in the case of the attack

and defense of a network of targets, the loss of a single target, or a particular configuration

of targets, may be sufficient to disable the entire network. Thus, the attacker has a best-

shot objective and seeks to destroy any one of the subsets of targets that would disable the

network. Conversely, the defender has a weakest-link objective and seeks to prevent the

network from being disabled.

4.1 Majoritarian Objective

The characterization of Nash equilibrium in the multi-battlefield conflict with a majoritarian

objective and an auction battlefield contest success function is largely an open question. Only

the case of three battlefields with symmetric battlefield values and costs has been addressed

in the literature. We begin with the case of linear costs, and then examine the case of

budget-constrained use-it-or-lose-it costs.
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Suppose that the benefit from winning a majority of battlefields is symmetric across

players, wA = wb = w = 2 in equation (3), and that players have symmetric linear costs

with c = 1. Szentes and Rosenthal (2003a) provide an equilibrium which is summarized in

the following theorem.

Theorem 6 (Szentes and Rosenthal (2003a)). Let the tetrahedron T be defined by the convex

hull of the four points (1, 1, 0), (1, 0, 1), (0, 1, 1), and (0, 0, 0). A Nash equilibrium of the

symmetric majoritarian objective game with n = 3, w = 2, linear costs with c = 1, and

the auction CSF is for each player to allocate his forces as follows. Each player draws 3-

tuples, (x1, x2, x3), from the uniform probability measure on the surface S of T and allocates

resources according to ((x1)
2, (x2)

2, (x3)
2). The equilibrium expected payoff to each player is

0.

Although in Szentes and Rosenthal (2003a) each battlefield is modeled as a standard

first-price (winner-pay) auction, one can appeal to Szentes’s (2005) result on transforming

an equilibrium strategy profile from one auction to another in order to solve for the case

of sunk expenditure. Given the transformation from the equilibrium strategy profile in the

first-price winner-pay auction to that in an all-pay auction, the proof of Theorem 6 follows

along the line of argument for the first-price auction given in Szentes and Rosenthal (2003a).

In the following discussion we provide only a brief sketch of the proof of Theorem 6. Let P ∗

denote the trivariate joint distribution function generated by the randomization described

above, and let F ∗j,j′ denote P ∗’s bivariate marginal distribution function for battlefields j and

j′. For any allocation of resources ((x1)
2, (x2)

2, (x3)
2) ∈ R3

+, the probability that player i

wins at least two battlefields, or equivalently a majority, is given by

Prob

(
3∑

j=1

I{(xA,j ,xB,j ,ωj)∈WA,j} ≥ 2
∣∣∣((x1)2, (x2)2, (x3)2), P ∗) =

F ∗1,2((x1)
2, (x2)

2) + F ∗1,3((x1)
2, (x3)

2) + F ∗2,3((x2)
2, (x3)

2)− 2P ∗((x1)
2, (x2)

2, (x3)
2)

where the last term corrects for the fact that the probability that player i wins all three

battlefields is counted three times, once in each of the three bivariate marginal distributions.

As Szentes and Rosenthal (2003a) show, for any x on the surface S of the tetrahedron T ,

the resource allocation ((x1)
2, (x2)

2, (x3)
2) is distributed according to

P ∗((x1)
2, (x2)

2, (x3)
2) =

x1x2
2

+
x1x2

2
+
x1x2

2
− (x1)

2 + (x2)
2 + (x3)

2

4
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and for each j, j′ ∈ {1, 2, 3} has the corresponding bivariate marginal distributions

F ∗j,j′((xj)
2, (xj′)

2) = xjxj′ .

It then follows that for any (x1, x2, x3) on the surface S, player i’s expected payoff from the

resource allocation ((x1)
2, (x2)

2, (x3)
2) is

Ui

(
((x1)

2, (x2)
2, (x3)

2), P ∗
)

=

2 · Prob

(
3∑

j=1

I{(xA,j ,xB,j ,ωj)∈WA,j} ≥ 2
∣∣∣((x1)2, (x2)2, (x3)2), P ∗)− 3∑

j=1

(xj)
2

which is equal to zero. Ruling out profitable deviations to 3-tuples outside of the surface S

is more involved. For further details see Szentes and Rosenthal (2003a).

In the case of the symmetric Colonel Blotto majority game with n = 3 (i.e., auction

CSF, majoritarian objective, and budget-constrained use-it-or-lose-it costs with symmetric

resource constraints BA = BB = B), any solution to the pure count objective game is also

a solution to the majoritarian objective game (see Borel and Ville 1938). To see this note

that as a result of the symmetric resource constraint and the fact that each player uses all of

his available resources, each player wins at least one battlefield. Formally, let Pi be a mixed

strategy in which Supp(Pi) ⊆ S ≡ {x ∈ R3
+|
∑3

j=1 xj = B} and which does not place strictly

positive mass on any n-tuple. If player i is playing such a mixed strategy Pi, then for all

budget-balancing n-tuples of resources x−i ∈ S the probability that player −i wins all three

battlefields, Pi(x−i,1, x−i,2, x−i,3), is equal to zero.10 Let Fi,j,j′ denote Pi’s bivariate marginal

distribution function for battlefields j and j′. Because for all budget-balancing resource

allocations no player wins all three battlefields (i.e., Pi(x1, x2, x3) = 0 for all x ∈ S), it

follows that if player i uses the strategy Pi with Supp(Pi) ⊆ S and player −i uses any

n-tuple x ∈ S then11

Fi,1(x1) + Fi,2(x2) + Fi,3(x3)− Fi,2,3(x2, x3)− Fi,1,2(x1, x2)− Fi,1,3(x1, x3) = 1.

10Intuitively, if Supp(Pi) ⊂ S, then for all x−i ∈ S the measure of the support of Pi over the 3-box
[0, x−i,1]× [0, x−i,2]× [0, x−i,3] is necessarily zero. It is also clear that this does not apply if BA > BB .

11This expression is for the case that a tie occurs with probability zero. It is straightforward to incorporate
a tie-breaking rule into this expression. However, it is clear that in any equilibrium ties occur with probability
zero.
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Moreover, the probability that player −i wins two battlefields, or a majority, is given by

Prob

(
3∑

j=1

I{(xA,j ,xB,j ,ωj)∈W−i,j} ≥ 2
∣∣∣x, Pi

)
= Fi,2,3(x2, x3) + Fi,1,2(x1, x2) + Fi,1,3(x1, x3).

Combining these two expressions, we see that

Prob

(
3∑

j=1

I{(xA,j ,xB,j ,ωj)∈W−i,j} ≥ 2
∣∣∣x, Pi

)
= Fi,1(x1) + Fi,2(x2) + Fi,3(x3)− 1.

Suppose player i employs an equilibrium strategy P ∗i with the corresponding unique set

of equilibrium univariate marginal distributions given in Theorem 1 for the Colonel Blotto

game with a linear pure-count objective. Then, player −i’s expected payoff from the pure

strategy x is

U−i(x, P
∗
i ) = w·Prob

(
3∑

j=1

I{(xA,j ,xB,j ,ωj)∈W−i,j} ≥ 2
∣∣∣x, P ∗i

)
= w·

[
x1
2
3
B

+
x2
2
3
B

+
x3
2
3
B
− 1

]
≤ w

2

for all budget-balancing resource allocations x. Because the game is constant sum and

symmetric (with value w), it follows that this is also an equilibrium of the majority game.

The majoritarian game with the auction CSF and three battlefields has been extended

in several directions. Laslier (2003) examines a variant of the symmetric Blotto majority

game in which the three battlefields enter into the critical value count function with differing

weights. Weinstein (2005) provides bounds on the equilibrium payoffs in the Blotto majority

game with asymmetric budgets. Lastly, it should also be noted that it is straightforward to

demonstrate that the relationship between the Colonel Blotto game and the non-constant-

sum formulation of the Colonel Blotto game (Kvasov 2007, Roberson and Kvassov 2008) may

be extended to examine a non-constant-sum formulation of the symmetric Blotto majority

game with budget-constrained linear costs. In particular in the case of three homogenous

battlefields and symmetric budget-constrained linear costs with resource constraint B ≤
(w/2) and c = 1, any equilibrium of the symmetric Colonel Blotto pure-count objective

game is an equilibrium of the symmetric Blotto majority game with budget-constrained

linear costs.

Under the Tullock contest success function (see footnote 7), Snyder (1989) and Klumpp

and Polborn (2006) examine a symmetric game with the majoritarian objective (wA = wB =
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w) and linear costs (c = 1).12 Consider the special case of the lottery CSF and an odd

number of battlefields. For any collection C of battlefields, the probability that player i wins

each and every battlefield in the set C and none of the battlefields outside C is given by

fi(C) =
[∏
j∈C

pi,j(xi,j, x−i,j)
][∏

j /∈C

(1− pi,j(xi,j, x−i,j))
]
.

The probability that player i wins a majority of the battlefields is given by

qi,m(xi,x−i) =
n∑

S=n+1
2

∑
{C|#C=S}

fi(C)

and player i’s expected payoff is given by

ui(xi,x−i) = wqi,m(xi,x−i)−
n∑

j=1

xi,j.

Theorem 7 addresses the special case of the symmetric majoritarian game with the lottery

CSF and linear costs. See Snyder (1989) and Klumpp and Polborn (2006) for the case of the

Tullock CSF.

Theorem 7. Suppose the number of battlefields n is odd. In the symmetric majoritarian

game with wA = wB = w, linear costs with c = 1, and the lottery CSF:

1. [Snyder(1989)] There exists a pure-strategy Nash equilibrium for n ≤ 5. Any pure-

strategy Nash equilibrium (x∗A,x
∗
B) satisfies

∀ j ∈ {1, . . . , n} x∗A,j = x∗B,j = w
4

[
(n−1)!

[((n−1)/2)!]2

(
1
2

)(n−1)]
.

The equilibrium expected payoffs for each player are (w
2
)− nw

4

[
(n−1)!

[((n−1)/2)!]2

(
1
2

)(n−1)]
.

2. [Klumpp and Polborn (2006)] There exists no pure-strategy Nash equilibrium for n ≥ 7.

In any mixed strategy equilibrium players randomize over allocations that are uniform

across battlefields (i.e. of the form (x, x, . . . , x)) and earn expected payoffs equal to 0.

A symmetric mixed strategy equilibrium exists.

As a point of reference, in the case of a single symmetric contest with common value v,

linear costs with c = 1, and the lottery CSF, each player i’s equilibrium resource allocation

12Snyder (1989) examines a CSF in which the Tullock CSF is a special case.
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is xi = (v/4). In any pure-strategy Nash equilibrium of the majoritarian objective game,

part 1 of Theorem 7 shows that each player i’s resource allocation to battlefield j is equal to

(w/4) times the probability that battlefield j is pivotal, where the probability that battlefield

j is pivotal is equal to the probability that player i wins exactly (n− 1)/2 of the other n− 1

battlefields. In a symmetric equilibrium each player wins each battlefield with probability

(1/2), and thus, the probability that player i wins exactly (n − 1)/2 of the other n − 1

battlefields is given by13

(
n− 1

(n− 1)/2

)(
1
2

)(n−1)
=
[

(n−1)!
[((n−1)/2)!]2

(
1
2

)(n−1)]
.

As Klumpp and Polborn (2006) show, for n ≥ 7, the expected payoffs given in part 1 of

Theorem 7 are strictly negative, and thus, there exists no pure-strategy Nash equilibrium

over this parameter range. The intuition for this is that increasing the number of battlefields

n essentially reduces the level of noise in the overall contest because the randomization in

the lottery CSF is independent across battlefields. As in a single contest with the Tullock

CSF, pure-strategy equilibria fail to exist once the value of the CSF is sufficiently sensitive to

the players’ relative resource allocations.14 For n ≥ 7, Klumpp and Polborn (2006) provide

a symmetric mixed strategy equilibrium in which players randomize over allocations of the

form (x, x, . . . , x) that are uniform across battlefields. These equilibria involve full rent

dissipation.

The majoritarian objective is only one of many possible critical-value pure-count objec-

tives. The case of a critical-value pure-count objective with the critical value m = n − 1

(i.e., success requires winning all but one battlefield) and with a sufficient number of players

(strictly greater than two) is examined by Szentes and Rosenthal (2003b), who characterize

an equilibrium. For the case of three battlefields, a critical value of m = 2 corresponds

to the majoritarian objective, but with four or more battlefields the m = n − 1 critical

value is more closely related to the weakest-link objective in that success requires winning a

super-majority of the battlefields.

13Using Stirling’s formula for factorials, this pivot probability is approximately equal to [π((n−1)/2)]−1/2,
which approaches zero as n becomes arbitrarily large, but, as discussed in Chamberlain and Rothschild (1981),
the rate of convergence is relatively slow.

14For a two-player symmetric contest with Tullock CSF and linear costs this arises when the exponent r
is geater than 2. See Baye et al. (1994) and Alcalde and Dahm (2010).
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4.2 Weakest-Link and Best-Shot Objectives

A line of research that examines games of attack and defense with multiple battlefields

in which the players have asymmetric objective functions includes Gross (1950), Cooper

and Restrepo (1967), Shubik and Weber (1981), Coughlin (1992), and Clark and Konrad

(2007).15 For example, Clark and Konrad (2007) use the terms weakest-link objective and

best-shot objective to describe the objectives of a defender and an attacker, respectively,

who face each other in a network of battlefields in which successful defense requires that

all targets within the network be successfully defended and successful attack requires only

that at least one battlefield be won.16 The combination of the weakest-link and best-shot

objectives accurately captures the attack and defense of a network consisting of numerous

individual components but in which the failure or loss of a single component may be sufficient

to disable the network. Such linkages arise in a number of infrastructure networks including

electrical power grids, oil pipelines, transportation systems, communication systems, and

cyber security.

Consider a game with n battlefields, an attacker with the best-shot objective, a defender

with the weakest-link objective, and linear costs with c = 1. Let A denote the attacker who

obtains a payoff of wA if he wins one or more battlefields, and B denote the defender who

obtains a payoff of wB if he wins every battlefield. In the case that the players allocate the

same level of resources to a battlefield, we assume that the defender wins the battlefield.

We begin with the case in which in each battlefield the probability that player i wins is

determined by the auction CSF, and then examine the case of the lottery CSF.

Under the auction CSF it is clear that there is no pure strategy equilibrium for this class

of games. As before a mixed strategy, or distribution of force, for player i is an n-variate

distribution function Pi : Rn
+ → [0, 1]. The proof of Theorem 8 is given in Kovenock and

Roberson (2009). This theorem examines the game in which wB ≥ nwA. The discussion

following Theorem 8 also provides a summary of the equilibria in the remaining parameter

15Also related is the literature on terrorism and optimal defensive strategies (for a survey see Sandler and
Enders (2004) or Kardes and Hall (2005)). Within this literature the focus is typically on attack and defense
in the case that the attacker’s objective is to successfully attack one target, rather than a subset of targets, and
the defender’s objective is to successfully defend all targets (see for example Bier, Oliverios, and Samuelson
(2007) and Powell (2007a, b)). However, that literature differs from the formulation examined in this article
in that the attacker’s strategy space is restricted to choosing which single target to attack (or mixed strategies
that are a probability distributions across targets). In contrast, the contest structure examined in this article
allows the attacker to endogenously choose how many targets to attack, the correlation of attacks, and the
level of force used in each attack.

16See also Hirshleifer (1983) who coins the terms “best-shot” and “weakest-link” in the context of voluntary
provision of public goods.
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configurations.

Theorem 8 (Kovenock and Roberson (2009)). Consider an n-battlefield game of attack and

defense in which player A has a best-shot objective and valuation wA, player B has a weakest-

link objective and valuation wB, both players have linear costs with c = 1, and battlefield

outcomes are determined by the auction CSF. If wB ≥ nwA, then a Nash equilibrium of the

game is for each player to allocate his forces according to the following n-variate distribution

functions: For player A and x ∈ [0, wA]n

P ∗A (x) =
(

1− nwA

wB

)
+
(

x1+x2+...+xn

wB

)
and for player B and x ∈ [0, wA]n

P ∗B (x) =
min {x1 + x2 + . . .+ xn}

wA

The expected payoff for player A is 0, and the expected payoff for player B is wB − nwA.

It is useful to provide some intuition for Theorem 8. Recall that in a weakest-link network

of n-targets the attacker need only win one target within the network in order to win the

network and receives no additional benefit from winning more than one target. In the

equilibrium characterized in Theorem 8, for any realization of his random allocation xA, the

attacker optimally allocates a strictly positive level of force to at most one target within the

network. Given the defender’s equilibrium distribution of force, the attacker receives a lower

expected payoff from attacking more than one target. Although in equilibrium the attacker

randomizes choosing each target with equal probability, the attacker’s allocation of force to

the target chosen varies stochastically in magnitude. Kovenock and Roberson (2009) show

that this single attack property in which the attacker allocates a strictly positive level of

force to at most one target applies to all Nash equilibria of the game in Theorem 8. They

also extend the analysis to all other parameter configurations and to the case in which the

game of attack and defense is over a weakest-link supra-network of best-shot and weakest-link

networks.

The version of this game with lottery CSFs is analyzed by Clark and Konrad (2007) and

for wB > (n−1)wA, equilibrium is characterized by Theorem 9 below. See Clark and Konrad

(2007) for the remaining case that wB ≤ (n− 1)wA.

Theorem 9 (Clark and Konrad (2007)). Consider an n-battlefield game of attack and defense

in which player A has a best-shot objective and valuation wA, player B has a weakest-link
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objective and valuation wB, both players have linear costs with c = 1, and battlefield outcomes

are determined by the lottery CSF. If wB ≥ (n−1)wA, then the n-tuples x∗A and x∗B constitute

a Nash equilibrium of the game if

∀ j ∈ {1, . . . , n} x∗A,j = (wA)2(wB)n

(wA+wB)n+1 and x∗B,j = (wA)(wB)n+1

(wA+wB)n+1 .

Both players have strictly positive expected payoffs in equilibrium.

The primary difference in the equilibrium behaviors described in Theorems 8 and 9 is

that under the auction CSF the attacker, by attacking at most one target, randomizing

over the identity of the target attacked, and randomizing over the size of the force used in

the attack, optimally chooses to use a type of ”stochastic guerilla warfare” strategy. The

defender, although choosing to cover every target with a common, positive force level, also

randomizes over the size of the force allocated. In contrast, under the lottery CSF, the noise

in the outcome conditional on allocations is sufficient to eliminate the need to randomize

over allocations. Even though a successful attack requires only that a single target in the

weakest-link network be disabled, the attacker employs a pure strategy that allocates a

strictly positive common level of force to every target. The defender responds in kind.

4.3 Multiple Inputs

In modeling multiple battlefields we have assumed that the outcome in each component

contest j is determined solely by the one-dimensional resource allocated by each player to

that contest and a contest-specific random variable ω̃j.
17 There are also many instances

in which the outcome in a component contest is determined by the interaction of multiple

inputs. Golman and Page (2009) examine a game with budget-constrained use-it-or-lose-it

costs and an augmented linear pure-count objective that sums the n battlefield outcomes

and the outcomes of additional contests formed by taking subsets of the n battlefields and

setting each player’s allocation equal to the product of his allocations to battlefields in the

subset. For example, consider a variant of the linear pure-count objective that has been

augmented to allow for (n2 ) additional contests formed by taking all pairs of battlefields. In

each of the additional contests, denoted by j, k, the outcome is determined by the auction

contest success function applied to the allocations xA,j · xA,k and xB,j · xB,k. The outcome

17The one exception is the case of infrastructure costs, in which two perfectly substitutable inputs are
collapsed into a one-dimensional allocation.
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function then takes the form,

VA(xA,xB) =
n∑

j=1

pA,j(xA,j, xB,j) +
n−1∑
j=1

n∑
k>j

pA,j,k(xA,j · xA,k, xB,j · xB,k),

where pA,j(xA,j, xB,j) denotes the auction contest success function in component contest

j. This variation of the multiple battlefield model results in a constant-sum game with

valuation n + (n2 ). Golman and Page (2009) show that although there is no pure-strategy

Nash equilibrium in this variation of the game with the (n2 ) additional contests, there does

exist a pure-strategy Nash equilibrium to the corresponding game in which there is one

contest for each of the possible nonempty subsets of the n allocations.

Also related is Arbatskaya and Mialon (2010) who examine a single contest with linear

costs in which a Cobb-Douglas production function is used to map multiple inputs (or “ac-

tivities”) into an aggregate effort variable that is, in turn, entered into the lottery contest

success function. Inputs may enter the production function asymmetrically and unit costs

may differ across both inputs and players. In the model, placing a common, binding cap on

each player’s use of a given input tends to decrease the discriminatory power of the contest,

thereby softening competition. At the same time, the cap may alter the relative strengths of

the players. Because symmetry between players tends to increase competition, this may have

an offsetting effect. As a consequence, unless the cap makes the conflict more symmetric, it

tends to reduce rent dissipation.

5 Conclusion

Despite the significant progress since Borel’s (1921) foundational model, the study of multi-

battlefield conflict remains an area with important open theoretical problems and potentially

large returns to new conceptual formulations, practical application, and empirical testing.

Space constraints have prevented us from examining many important extensions of the basic

models described in this chapter. We briefly discuss a few of these here.

First, it is obvious that other contest success functions may be applied within battlefields

such as the Tullock contest success functions with exponent greater than two,18 Lazear and

Rosen’s (1981) difference-form contest success functions,19 Konrad’s (2002) treatment of

18In the case of a single contest, partial characterizations of equilibrium for this model for discrete ap-
proximations to a continuous strategy space have been derived by Baye et al. (1994) and Alcalde and Dahm
(2010).

19Previous analyses of the Lazear-Rosen (1981) difference-form contest success function for single contests
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affine handicapping in the context of the auction CSF, or Skaperdas and Syropoulos’s (1998)

treatment of weighted asymmetric lottery CSFs. These last two contest success functions

may be particularly useful in the analysis of conflicts in which each rival is advantaged in

subsets of the battlefields (perhaps due to geography or pre-conflict investment in defensive

position).

Moreover, although the existing literature has led us to frame the general problem of

conflict with multiple battlefields as one with sunk costs of contesting and fixed prizes for

winning each battlefield, other formulations of the contest within each battlefield are useful.

One important case is that of count objectives in which individual battlefield values are

dependent on the forces of the two players expended in the battlefield. For instance the

game with a linear count objective, auction contest success function, and budget-constrained

linear costs can be altered so that the victor in each each battlefield has a portion of his own

expenditure above that of his rival reimbursed. When the portion of the victor’s expenditure

above that of his rival is completely reimbursed, the contest within each battlefield resembles

a war of attrition with a constraint across battlefields on the sum of own bids.20

Previous work on multi-battlefield conflicts has focused almost exclusively on two-player

games. The characterization of equilibrium for n > 2 players engaged in conflict is of

great interest. A wide array of issues arise n-player extensions that are either absent or

unimportant in two-player games, including the exogenous or endogenous segmentation of

conflict as well as the possibility that identity-dependent externalities may exist with respect

to the overall contest winners or the winners of individual battlefields.

Friedman (1958) examines an n-player extension of the model described in Theorem 2,

which employs a lottery contest success function, a linear count objective with heterogeneous

battlefield valutions that are symmetric across players, and asymmetric budget constrained

use-it-or-lose-it costs. He finds that each player allocates the same fraction of their respective

budgets to a given battlefield and this fraction is the ratio of the battlefield value to the sum of

generally assume sufficient noise in the outcome and/or concavity of utility or convexity of cost to insure
a pure strategy equilibrium. However, pure strategy equilibria do not generally exist for all specifications
of noise and costs and the characterization of equilibrium in these models is incomplete. See for example
Che and Gale (2000), who provide a partial characterization of the set of mixed strategy Nash equilibria
with a specific type of exogenous noise. Dixit and Londregan (1995, 1996) employ the Lazear-Rosen CSF
to model political competition across multiple battlefields.Their model may be interpreted as multi-battle
conflict with a linear count objective and budget-constrained use-it-or-lose-it costs. See also Lindbeck and
Weibull (1987) and Cox and McCubbins (1986).

20Standard (single battle) contests with rank-order externalites from rival bids have been analyzed by
Baye et al. (2010) for the auction contest success fucntion and Chowdhury and Sheremeta (2010) for the
lottery contest success function.
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battlefield values. An initial approach to the analysis of n-player multi-battlefield conflicts

with an auction contest success function is Kovenock and Roberson’s (2008b) analysis of

the symmetric n player Colonel Blotto game with a linear pure-count objective. In this

extension, not only do equilibria exist in which each player competes in every battlefield,

but segmented equilibria exist in which disjoint subsets of players in a partition of the

set of np players are matched with disjoint subsets of battlefields in a partition of the nb

battlefields. In these segmented equilibria, each subset of players competes only for those

battlefields in the matched subset of battlefields. Kovenock and Roberson also show that a

type of segmented equilibrium exists with asymmetric budgets.

Multi-battlefield conflicts with incomplete information also remain relatively neglected.

Natural candidates for parameters that are private information are parameters of the play-

ers’ objective functions such as battlefield valuations or parameters of cost, such as budget

constraints or unit cost of expenditures. To our knowledge, little work has been published to

date in this area. Exceptions are Matros (2008) and Adamo and Matros (2009) who examine,

under the lottery and auction CSFs respectively, games with a linear count objective that

is symmetric across players and budget-constrained use-it-or-lose-it costs, where the players’

budgets are private information.

All of the models examined in this chapter have involved a single stage with simultaneous

moves. The introduction of dynamics into the analysis can take several forms. First, the

assumption that the battlefields are contested simultaneously can be relaxed. Models in

which battlefields are contested sequentially include Harris and Vickers (1987), Klumpp and

Polborn (2006) and Agastya and McAfee (2006), Konrad and Kovenock (2005, 2009) and Sela

(2008). The assumption that the contest within a given battlefield involves a simultaneous

one-shot expenditure can also be relaxed. Alternating move models of sunk expenditure

within a single contest environment in the spirit of the Shubik “Dollar Auction Game” (see

O’Neill (1986) and Leininger (1989, 1991)) have been extended to cover multiple battlefield

conflicts (in the context of vote buying) by Dekel et al. (2008, 2009).21 Finally, the fact

that the main results of this chapter provide equilibrium payoffs in terms of exogenous

parameters such as resource budgets, number of battlefields, values of battlefields, unit

costs of expenditures, and network structures, facilitates the use of these models as the

final stage of multistage games in which these values are determined endogenously. This

opens up a conflict theoretic framework with which to generate equilibrium models of the

endogenous determination of the configuration of battlefields (including endogenous network

21See Konrad’s chapter in this volume for more on dynamic conflicts.
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structures and network redundancies),22 resources constraints and cost structures,23 and

coalition formation.24

In concluding, we note that the process of empirically testing the equilibrium predictions

of the models described in this chapter has already begun. Several variants of the Colonel

Blotto game described in section 3 have been examined experimentally by Avrahami and

Kareev (2009), Arad and Rubinstein (2009), and Chowdhury, Kovenock and Sheremeta

(2009). The game of attack and defense with weakest link and best-shot objectives in section

4.2 has been examined by Kovenock, Roberson and Sheremeta (2009). Clearly, at this time,

this remains a relatively untouched area of research.
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