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Abstract—Resource constraints are commonly found in classification tasks. For example, there could be a budget limit on 

implementation and a deadline for finishing the classification task. Applying the top-down approach for tree induction in this 

situation may have significant drawbacks. In particular, it is difficult, especially in an early stage of tree induction, to assess an 

attribute’s contribution to improving the total implementation cost and its impact on attribute selection in later stages because of 

the deadline constraint. To address this problem, we propose an innovative algorithm, namely, the Cost-Sensitive Associative 

Tree (CAT) algorithm. Essentially, the algorithm first extracts and retains association classification rules from the training data 

which satisfy resource constraints, and then uses the rules to construct the final decision tree. The approach has advantages over 

the traditional top-down approach, first because only feasible classification rules are considered in the tree induction and, second, 

because their costs and resource use are known. In contrast, in the top-down approach, the information is not available for 

selecting splitting attributes. The experiment results show that the CAT algorithm significantly outperforms the top-down 

approach and adapts very well to available resources. 

 
Index Terms—Cost-sensitive learning, mining methods and algorithms, decision trees 

 

I. INTRODUCTION 

esource constraints are often imposed on a classification task. In medical diagnosis and marketing 

campaigns, for example, it is common to have a deadline and budget for finishing the task.  The objective 
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of this paper is to develop an algorithm for tree induction when costs and multiple resource constraints 

are explicitly considered in developing a decision tree.  To our best knowledge, the problem has not been 

studied in the literature. 

Decision trees are one of the most popular predictive models in data mining. The advantages of using 

a decision tree has been well documented, including its ability to handle high dimensional data, its simple 

structure in communicating with users, and the fact that its classification results are accurate in many 

application areas [9]. Many well-known tree induction algorithms have been developed, such as: ID3 [15], 

C4.5 [16]. CART [3], and GATree [13].  These algorithms are based on a top-down approach, which 

recursively selects attributes to partition the data to form a hierarchical tree structure with a goal of 

maximizing classification accuracy or minimizing classification error. 

Recently, researchers have discussed economic factors in the process of developing decision trees, 

such as the costs of procuring, preparing, and storing training datasets and the computational costs of 

generating classification rules [23].  The research field, known “cost-sensitive decision trees,” explicitly 

aims to minimizing the total cost of using a tree in classification [20].  Two cost components are often 

considered: the cost of using attributes in classification, and the cost or penalty incurred by 

misclassification. For example, in medical diagnosis, attributes may represent the results of diagnosis 

procedures. If an attribute appears on the decision tree, the cost of performing the diagnosis procedure is 

incurred for all cases going through the corresponding node [21]. Furthermore, the misclassification cost 

is the economical consequences associated with classification errors [1]. Studies have concentrated solely 



on attribute (test) costs [4][12][18], the misclassification cost [6][7][19][27], or the sum of the two costs 

[10][11][20][24][26].   

Several researchers have considered one resource constraint for a cost-sensitive decision tree. Yang, 

Ling, Chai, and Pan [24] assumed that patients have a limited budget for performing medical tests and 

that the tree traveling stops when the limit is reached. Qin, Zhang, and Zhang [14] defined a general 

problem with one target and one resource component. A top-down algorithm is developed using the ratio 

of the gain in the target and the resource utilization as the splitting criteria. Chen, Wu, and Tang [4] 

considered a situation, where multiple targets exist for a classification task. Since targets may share 

common predictors, it may be beneficial to develop one decision tree with multiple targets, instead of 

separate trees for individual targets. A top-down approach was used to develop an algorithm for tree 

induction under a constraint limiting the cost of classifying an instance.     

It is well known that the top-down approach is a greedy method, which selects attributes sequentially 

without back tracking. In other words, the method uses a heuristic attribute selection criterion, and a 

selected attribute cannot be removed from the tree structure in later stages. Both aspects may result in 

major drawbacks for using the approach in the situation under consideration. As applied in solving 

unconstrained problems, it is difficult to assess an attribute’s contribution to improving the goal of the 

classification task during the tree-induction process. Furthermore, it is especially difficult to evaluate the 

impact an attribute selected in an early stage on attribute selection in later stages because of the resource 

constraints. For example, when a medical test is considered in medical diagnosis, the time for performing 



the test will limit other tests that can be used when a deadline has been specified for the diagnosis 

procedure. Note that when one constraint is considered, it is possible to use the cost reduction per unit 

resource used as a reasonable criterion for selecting a splitting attribute. When multiple constraints are 

considered, it is difficult to define a reasonable criterion. This further makes the top-down approach even 

less attractive or effective in this situation.   

The drawbacks of the top-down approach motivate the development of an innovative algorithm, as 

illustrated in Fig. 1. Instead of deriving a decision tree directly from the training dataset, our algorithm 

consists of two steps. In the first step, we extract association classification rules from the training 

dataset first and retain those that satisfy the resource constraints. In the second step, we use the 

association classification rules obtained in the first step to develop a cost-sensitive decision tree.   
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Fig. 1. The concept of our approach 
 

The algorithm has two main advantages:  

(1) Since only feasible classification rules are retained in the first step, we can focus on cost 

minimization without considering the resource constraints in step 2.  

(2) All feasible classification rules are considered in tree induction, whereas the top-down approach 

considers only those resulting from node splitting.    



The remainder of this paper is organized as follows. In Section II, we formalize the problem under 

consideration, and, in Section III, present the proposed algorithm, namely the Cost-Sensitive Associative 

Tree (CAT) algorithm. Numerical evaluations of the algorithm are presented in Section IV. A summary 

and discussion are given in Section V. 

II. PROBLEM DEFINITION 

A decision tree is built with a training dataset that is usually represented as a relational table shown 

in Table I. We assume the dataset does not contain missing values. Let A = {A1, A2, …, Am} be the set 

of all attributes in this table, and C = {c1, c2, …, cn}  the set of all classes. Each tuple in the table is a 

record consisting of attribute values and its corresponding class. We use dk to denote the kth record, 

ax(dk) the value of Ax of dk, and c(dk) the class of dk. 

TABLE I. 
An Example of Training Data 

 
ID A1 A2 A3 Class
1 A A A T 
2 A B B F 
3 A A A T 
4 B B B T 
5 B A A F 
6 B A B F 
7 C A A F 
8 C B B F 
9 B A A T 
10 A A A T  

An item is denoted by (Ax, ixa ), where Ax is an attribute and
ixa is a possible value of Ax. For 

example: (A1, A) is an item. An itemset is a set of items. An itemset is a set of items. {(A1, A), (A3, B)} 

is an example of itemset. A record dk can be represented as (att(dk), c(dk)), which is a pair of an itemset 

and a class, where att(dk) = {(A1, a1(dk)), (A2, a2(dk)), …, (Am, am(dk))}, is the set of all attribute-value 

pairs of dk. For example, the record with ID 1 can be represented as ({(A1, A), (A2, A), (A3, A)}, T). 



A decision tree TR is a directed acyclic graph. Fig. 2 is an example of a decision tree. We use a 

circle to represent an internal node and a square to represent a leaf node. We use ni to denote a node in 

a decision tree, and n0 is the root. An internal node ni in a decision tree is associated with an attribute 

s(ni) which is used to split ni, while a leaf node nj in a decision tree is labeled with a class l(nj). For 

example, n0 is an internal node with s(n0) = “A1.” n011 is a leaf node with l(n011) = “T.” <ni, nj> is an 

edge that links node ni with node nj, where ni is the parent node of nj. v<ni, nj>, which is a possible 

value of s(ni), the value assigned on edge <ni, nj>. For example, <n0, n01> is an edge that links node n0 

with n01, and v< n0, n01> = “A” is the value along this edge, which is a possible value of attribute A1. 
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Fig. 2. An example of decision tree  

We define ante(ni) as the antecedents of node ni. Suppose the sequence of nodes between the root 

and ni are n1, n2, n3, …, nm, and the values on edges <n0, n1>, <n1, n2>, …, <nm, ni> are v<n0, n1>, v<n1, 

n2>, …, v<nm, ni> respectively, ante(ni) = {(s(n0), v<n0, n1>), (s(n1), v<n1, n2>), …, (s(nm), <nm, ni>)}. 

Fig. 3 shows the antecedents of the nodes in our example decision tree. A record travels the decision 

tree according to the attributes in the internal nodes and the values on the edges. A record dk can arrive 

ni if and only if ( ) ( )ki dattnante ⊆ . We use
inD to denote a subset of D, where a record dk belongs to

inD if and only if dk can arrive node ni. That is, ( ) ( ){ }kikkn dattnanteDddD
i

⊆∈=  and ,| . 
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In most of the related studies, a misclassification cost is defined as the cost incurred by assigning a 

case to class i when it actually belongs to class j. Suppose there are m distinct classes, the 

misclassification costs can be represented as an mm ×  matrix. We use MisCost(i, j) to denote the 

misclassification cost of assigning a case of class j to class i. Consider the example dataset in Table I. 

There are two classes, “T” and “F”, and the misclassification cost matrix is a 22×  matrix shown in 

Table II, where MisCost(T, F) = 10, MisCost(F, T) = 20, and MisCost(T, T) = MisCost(F, F) = 0. 

TABLE II.  
An Example of Misclassification Cost Matrix 

 
Class T F 

T 0 10 
F 20 0  

When we designate a node as a leaf node and assign a label, the misclassification cost at the node is 

determined. Let NodeCost(ni) denote the misclassification cost of assigning ni as a leaf node, which is 

determined using the label that gives the lowest misclassification cost; i.e., 

( ) ( )( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

∈∀
∀

ink
j Dd

kjli dclMisCostnNodeCost ,min .  

For example, in Fig. 2, n0 can be labeled with “T” or “F.” If we label n0 with “T,” the 



corresponding misclassification cost would be 50. In contrast, the cost would be 100 if “F” is assigned. 

In this case, we have NodeCost(n0) = 50. 

Measuring an attribute may consume several types of resources, such as cost and time. We use 

ResCony(Ax) to denote the number of units of the yth resource needed to measure attribute Ax. For 

example, the resource consumptions of the attributes in Table I are listed in Table III. 

TABLE III. 
The Example of Resource Consumptions 

 
Attribute ResCon1(Ax) ResCon2(Ax)

A1 6 5 
A2 4 2 
A3 2 10  

When a record arrives at a node from the root, we must accumulate the number of units of 

resources consumed to reach the node. We use TotalCony(ni) to denote the total consumption of the yth 

resource for moving a record from the root node to node ni. Suppose A1, A2, …, and Am are the 

attributes appearing in ante(ni), respectively, ( ) ( )∑
=

=
mx

xyiy AResConnTotalCon
  to1

. For example, in Fig. 

1, we have TotalCon1(n02) = 6 and TotalCon2(n011) = 7. 

We use MaxResCony to denote the maximum consumption of the yth resource to complete the 

classification task for a record. For any leaf node ni in a decision tree, the total consumption of any 

resource TotalCony(ni) cannot exceed MaxResCony.  

Given a training dataset, our goal is to develop a cost-sensitive tree that minimizes the total 

misclassification cost under multiple resource constraints. The proposed algorithm is given in the next 

section. 



III. ALGORITHM 

There are three phases in the CAT algorithm:   

Phase 1: Extract all classification rules satisfying the resource constraints from the training dataset 

Phase 2: Build a decision tree from the classification rules extracted in phase 1  

Phase 3: Adjust the result of phase 2 to produce the final decision tree 

A classification rule r can be represented in form of: ( ) ( )rconsequentrcondition → . The condition 

of this rule is an itemset, and the consequent is a class. For example, ( ) ( ) ( ){ } TA,,B,,C, 321 →AAA  is a 

classification rule. Semantically, the condition of this rule is a conjunction of items. The rule above can 

be interpreted as ( ) ( ) ( ) TA,B,C, 321 →∧∧ AAA . We use Dr to denote the set of records covered by rule 

r. That is, a record dk belongs to Dr if and only if ( ) ( )kdattrcondition ⊆ . For example, 

( )( ) { } ( )( )F,10321T, 11
,,, →→ == AAAA DddddD . We define ( ) rDrcov = , the coverage of rule r, which is the 

number of records in D covered by rule r or matching condition(r).  

The total consumption of resource y associated with rule r is denoted as RuleCony(r). Suppose A1, 

A2, …, and Am are the attributes appearing in condition(r), ( ) ( )∑
=

=
mx

xyy AResConrRuleCon
  to1

. For 

example, RuleCon1((A1,C)∧(A2,B) ∧(A3,A)→T) = 12. 

We use RuleCost(r) to denote the total misclassification cost of applying rule r to the records in Dr, 

which is determined by: 

( ) ( ) ( )( )∑
∈∀

=
rk Dd

kdcrconsequentMisCostrRuleCost , .  

We demonstrate our algorithm using the training dataset in Table I, the misclassification cost 



matrix in Table II, and the resource consumption matrix shown in Table III. Both thresholds of 

resource 1 and resource 2 are set to 10. 

III.1  Phase 1: Extract classification rules 

In this phase, we first extract all classification rules and then prune those rules in rule set Rpruned, 

where a rule r is in Rpruned if cov(r) is smaller than a threshold mincov or RuleCony(r) > MaxResCony 

for any resource. We prune rule r∈Rpruned because each rule r corresponds to a node nr in decision tree, 

where: 

• condition(r) = ante(nr)  

• consequent(r) = l(nr), suppose that nr is a leaf node 

• RuleCony(r) = TotalCony(nr) 

• ( )
rnDrCov =  

When cov(r) < mincov, indicating only a small number of records support this rule, the rule is 

discarded to avoid a potential over-fitting problem. Furthermore, when RuleCony(r) > MaxResCony, the 

rule is not feasible because the resource constraint associated with the yth resource is violated.  

To extract the classification rules, we first transform the relational database D into transaction 

database DItemset and then find all frequent patterns in DItemset. We use an apriori-like algorithm and find 

all the frequent itemsets in DItemset which is shown in Table IV. For all records dk belong to D, 

( ) Itemsetk Ddatt ∈ .  



TABLE IV. 
A DItemset Transformed from Table I. 

 
1 (A1, A), (A2, A), (A3, A) 
2 (A1, A), (A2, B), (A3, B) 
3 (A1, A), (A2, A), (A3, A) 
4 (A1, B), (A2, B), (A3, B) 
5 (A1, B), (A2, A), (A3, A) 
6 (A1, B), (A2, A), (A3, B) 
7 (A1, C), (A2, A), (A3, A) 
8 (A1, C), (A2, B), (A3, B) 
9 (A1, B), (A2, A), (A3, A) 

10 (A1, A), (A2, A), (A3, A)  

For each frequent itemset, we select the class that minimizes the misclassification cost as the 

consequent of the generated rule. For example, consider the frequent itemset (A2, A). 

( )( ) 30TA,2 =→ARuleCost , while ( )( ) 80FA,2 =→ARuleCost . Therefore, we generate Rule 

( ) TA,2 →A  from frequent itemset (A2, A). 

After phase 1, we obtain R, which is the pruned classification rules set extracted from the training 

dataset. The rules are ranked mainly in terms of the average misclassification cost. Given two rules ri 

and rj in R, ri precedes rj if 

• 
( )

( )
( )

( )j

j

i

i

rcov
rRuleCost

rcov
rRuleCost

<  

• 
( )

( )
( )

( ) ( ) ( )ji
j

j

i

i rcovrcov
rcov

rRuleCost
rcov

rRuleCost
>∧=  

• 
( )

( )
( )

( ) ( ) ( )ji
j

j

i

i rcovrcov
rcov

rRuleCost
rcov

rRuleCost
=∧= , but there are less items in the antecedent of ri 

than those of rj.  

• All the criteria above are tied, but ri was generated earlier than rj. 

After sorting, the rules extracted in our example are listed in Fig. 4. 



 

{A1 = A}→T, coverage: 4, misclassification cost: 10, average cost: 2.5 

{A1 = B}→T, coverage: 4, misclassification cost: 20, average cost: 5 

{A1 = C}→F, coverage: 2, misclassification cost: 0, average cost: 0 

{A2 = A}→T, coverage: 7, misclassification cost: 30, average cost: 4.3 

{A2 = B}→T, coverage: 3, misclassification cost: 20, average cost: 6.7 

{A3 = A}→T, coverage: 6, misclassification cost: 20, average cost: 3.3 

{A3 = B}→F, coverage: 4, misclassification cost: 20, average cost: 5 

{A1 = A, A2 = A}→T, coverage: 3, misclassification cost: 0, average cost: 0 

{A1 = A, A2 = B}→F, coverage: 1, misclassification cost: 0, average cost: 0 

{A1 = B, A2 = A}→T, coverage: 3, misclassification cost: 20, average cost: 6.7 

{A1 = B, A2 = B}→T, coverage: 1, misclassification cost: 0, average cost: 0 

{A1 = C, A2 = A}→F, coverage: 1, misclassification cost: 0, average cost: 0 

{A1 = C, A2 = B}→F, coverage: 1, misclassification cost: 0, average cost: 0 

Fig. 4. The extracted rules  

III.2  Phase 2: Build a decision tree with extracted rules 

In this phase, we build a decision tree from the rules extracted in phase 1. An overview of this 

phase is shown in Fig. 5. 

1. Starting with a single node, root 

2. For each non-leaf node, ni 

2.1. Make two estimates for each attribute. 

2.2. Select the best splitting attribute according to splitting criteria. 

2.3. If terminal condition is satisfied, stop splitting and assign ni as a leaf node. 

        Else, split ni with the splitting attribute of ni. 

Fig. 5. An overview of phase 2 
 

Phase 2 starts with a single root marked as n0, the whole training dataset D and R, which is the set 

of all the rules extracted in phase 1.  

If an attribute Ax was selected to split ni, we use only the rules that contain Ax to classify the 

records. In other words, rules that exclude Ax have to be discarded. However, since we select the 



splitting attribute by estimation, the result may not be globally optimal. Some valuable rules may be 

discarded because of the estimate error. Therefore, when splitting a node with an attribute Ax, besides 

the original branches related to each value of Ax, we insert an additional branch marked “unused” to 

reserve the rules that exclude splitting attribute Ax. Fig. 6 shows the branches and corresponding rule 

sets after splitting the root with attribute A1. 

 

{A1 = A, A2 = A}→T 
{A1 = A, A2 = B}→F 

{A1 = A}→T 

Rn01 

{A3 = A}→T 
{A2 = A}→T 
{A3 = B}→F 
{A2 = B}→T 

 

n0 
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A1 

Fig. 6. Result of splitting the root node using attribute A1 
 

We use
inEXA to denote the set of attributes that are excluded from ni. For example, { }104

AEXAn = . 

We use 
inR  to denote a subset of R, where rule rj belongs to 

inR  if and only if 

( ) ( )ji rconditionnante ⊆  and any attribute in
inEXA is not in condition(rj). We use ( )xn AR

i
 to denote a 

subset of
inR . A rule rj is in ( )xn AR

i
 if rj is in 

inR  and Ax is in condition(rj). For example, ( )304
ARn  

contains two rules: {A3=A}→T and{A3=B}→F.  

For each non-leaf node ni, we use two measurements to estimate the effect of using an attribute Ax 

to split ni. The first is OptCost(ni, Ax), which is the misclassification cost of classifying the records in

inD with the rules in ( )xn AR
i

. Since not all rules in ( )xn AR
i

 will be retained in the final decision tree, 



OptCost(ni, Ax) can be regarded as an optimistic estimate of using Ax in ni. The second is PesCost(ni, 

Ax), which is the sum of all misclassification costs of the child nodes generated by splitting ni with Ax. 

PesCost(ni, Ax) is obtained by supposing that no other attribute will be measured after Ax. Therefore 

PesCost(ni, Ax) can be regarded as a pessimistic estimate of using Ax in ni. 

The process of measuring OptCost(ni, Ax) is shown in Fig. 7. 

Find the 
rules  

 

 Classify  
 with  
 
 and rdefault  

Insert a  
default rule 
rdefault into 

 

Accumulate 
each mis-

classification
cost 

OptCost(ni, Ax) 

 

misclassification cost of  
each classification 

( )xn AR
i

inD

inD

( )xn AR
i

( )xn AR
i

Fig. 7. The process of measuring OptCost(ni, Ax) 
 

We first insert a default rule rdefault into the bottom of ( )xn AR
i

, where the condition of rdefault is the 

antecedent of ni, and the consequent of it is the class that minimizes the misclassification cost. Then, 

we classify the records in 
inD  with the rules in ( )xn AR

i
 and the default rule. For a record dk in 

inD , the 

first rule that covers the attribute values of dk classifies it. The classification result may cause a 

misclassification cost. The accumulation of all the misclassification costs is the value of OptCost(ni, 

Ax). 

An example is shown in Fig. 8. For measuring OptCost(n0, A1), we use the rules in 
0nR with A1 in 

their conditions and the default rule, T{} → , to classify the records belonging to
0nD . The value of 

OptCost(n0, A1) is the accumulation of all misclassification costs of the classifications, and the result is 



OptCost(n0, A1) = 20. 

( ) ledefault ruARn ∪10

{A1 = A}→T, support: 4, misclassification cost: 10, advcost: 2.5 

{A1 = B}→T, support: 4, misclassification cost: 20, advcost: 5 

{A1 = C}→F, support: 2, misclassification cost: 0, advcost: 0 

{A1 = A, A2 = A}→T, support: 3, misclassification cost: 0, advcost: 0 

{A1 = A, A2 = B}→F, support: 1, misclassification cost: 0, advcost: 0 

{A1 = B, A2 = A}→T, support: 3, misclassification cost: 20, advcost: 6.7

{A1 = B, A2 = B}→T, support: 1, misclassification cost: 0, advcost: 0 

{A1 = C, A2 = A}→F, support: 1, misclassification cost: 0, advcost: 0 

{A1 = C, A2 = B}→F, support: 1, misclassification cost: 0, advcost: 0 

{}→T, coverage: 10, misclassification cost: 50, advcost: 5 

d1: T, d3: T, d10: T 

d7: F, d8: F 
d2: F 

d4: T 

d5: F, d6: F, d9: T 

OptCost(n0, A1): 20

Matching records and their class

Fig. 8. The example of measuring OptCost(n0, A1) 
 

The value of PesCost(ni, Ax) is estimated by assuming that after splitting ni with Ax all the 

immediate children will be leaf nodes. Suppose that the label of each leaf node is determined by the 

class with the minimal misclassification cost. Then, the value of PesCost(ni, Ax) will be equal to the 

sum of all misclassification costs of the child nodes generated by splitting ni with Ax. However, if a 

node has too few data or no data, we use the minimal misclassification cost label of its parent as its 

label. 

Consider the example shown in Fig. 9, where three child nodes are generated by splitting n0 with 

A1. If no other attributes will be measured after A1, there are only three rules: { } TA1 →=A , 

{ } TB1 →=A , and { } FC1 →=A that can be used to classify the records in 
0nD . The value of 

PesCost(n0, A1) is the accumulation of all  misclassification costs of the classifications, and the result is 

PesCost(n0, A1) = 30. 
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Fig. 9. The example of measuring PesCost(n0, A1)  

For each non-leaf node ni, if there exists any attribute Ax where OptCost(ni, Ax) < NodeCost(ni), 

select an attribute Ay which has the minimum OptCost(ni, Ay) to further split node ni. If there is more 

than one attribute having the minimum OptCost, from them we select the attribute with the minimum 

PesCost. If OptCost(ni, Ax) ≥ NodeCost(ni) for all attributes Ax, assign ni as a leaf, and label ni with the 

class that minimizes NodeCost(ni). In our example, both OptCost(n0, A1) and OptCost(n0, A2) are 20, 

but PesCost(n0, A1) = 30, which is smaller than PesCost(n0, A2) = 50. Therefore, A1 is selected to be the 

splitting attribute of the node n0. 

Suppose attribute Ax has m possible values. When ni is split by Ax, there will be (m+1) child nodes 

emanated from ni, where m of them correspond to the values of Ax and the last one is connected to ni by 

an edge marked “unused.”  For the last node nu, which is connected with the “unused” edge, ante(nu) = 

ante(ni), { }xnn AEXAEXA
iu
∪= . For any other nodes nj, ( ) ( ) ( )( ){ }jixij nnvAnantenante ,,∪= , and 



ij nn EXAEXA = . In our example, there are three possible values of A1. After splitting n0 with A1, there 

are four child nodes produced from n0, as shown in Fig. 6. Among the four child nodes, ante(n01) = 

{(A1, A)}, and 
01nEXA  = {}, while ante(n04) = {}, and 

04nEXA  = {A1}. 

Let nh be the parent of ni. A node ni will stop splitting and become a leaf node if and only if:  

• No attribute is selected by the splitting criterion. 

• There exists only one rule r in ,
inR  where condition(r) = ante(ni). This may be caused by the 

fact that further splits at ni will result in violation of at least one resource constraint, or by the 

fact that there are not sufficent records in all branches of ni. In this case, we stop splitting at ni 

and label ni with the consequent of r. 

• There exists no rule in .
inR  This condition occurs because the number of records in some child 

nodes of nh exceeds mincov, but in ni it does not. In this case, ni will be labeled with the class 

that minimizes the misclassification cost of nh. 

• There exist multiple rules in ,
inR  and OptCost(nh, s(nh)) = PesCost(nh, s(nh)). The equality of 

OptCost(nh, s(nh)) and PesCost(nh, s(nh)) indicates that the misclassification cost cannot be 

reduced after splitting nh, the parent node of ni. Therefore, we should stop splitting at ni and 

label it with the class that minimizes the misclassification cost of ni. 

The output of phase 2 in our example is shown in Fig. 10. 
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A1 
n0 

n01 n02 n03 

A1=A 
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unused 

n04 

A2=A A2=B unused 

T 

A3=A A3=B unused 

n012 n013 n041 n042 n043 

A2 A3 F 

T F T T F T 

Fig. 10. The output of phase 2 
 

III.3  Phase 3: Adjustment for producing the final decision tree 

In phase 2, we build a tree from the classification rules extracted in phase 1. During the tree- 

induction process, we iteratively generate new branches from internal nodes. Although two 

measurements have been used to help evaluate whether an internal node should be further split or just 

stopped as a leaf node, it is difficult to make an accurate evaluation unless we have the final complete 

tree. Therefore, in phase 3, we will re-examine the entire tree carefully from bottom to top to determine 

whether there are any unnecessary branches. In other words, we hope to improve the tree by pruning 

unnecessary branches or nodes. The detailed procedure of phase 3 is shown in Fig. 11. 



 
Algorithm Adjustment  
Input: The decision tree Tp2 which is built in phase2 
Output: The final decision tree 

 
  for each internal node ninternal in Tp2 

     { checked(ninternal) = false; TempCost(ninternal) = NodeCost(ninternal);} 
  for each leaf node nleaf in Tp2 

     { checked(nleaf) = true; TempCost(nleaf) = NodeCost(nleaf); } 
 

  repeat until for all nodes ni, ckecked(ni) = true 
  { 

      find a node ni, where checked(ni) = false and all child nodes of ni are checked;  
 
      /* suppose ni has (m+1) child nodes, which are nq1, nq2, …, nqm, and nu, 
        where nu is linked to ni with an edge marked “unused”. */ 
      

     BranchCost(nq) = TempCost(nq1) + TempCost(nq2) + … + TempCost(nqm); 
     if( TempCost(ni) <= BranchCost(nq) && TempCost(ni) <= TempCost(nu) ) 

       { prune all branches emanated from ni, ni becomes a leaf node; 
         checked(ni) = true; } 
      if( BranchCost(nq) < TempCost(ni) && BranchCost(nq) <= TempCost(nu) ) 
       { prune node nu and all branches from nu;  
        TempCost(ni) = BranchCost(nq);  
        checked(ni) = true;} 

     if( TempCost(nu) < TempCost(ni) && TempCost(nu) < BrabchCost(nq) ) 
         replace ni with nu; 

  } 
 

Fig. 11. The algorithm of phase 3 
 

For each node ni in the decision tree generated in phase 2, we use checked(ni) to indicate whether ni 

is checked. For a checked node ni, TempCost(ni) is used to store the misclassification cost of the 

subtree with the root node ni. Initially, for all nodes ni, TempCost(ni) is set to be NodeCost(ni) and is 

updated as we produce the final tree. Furthermore, checked(ni) is set to be “false” for all internal nodes, 

and checked(ni) “true” for all leaf nodes.  

We adjust the tree from the bottom to the top by repeatedly processing all unchecked nodes, whose 

child nodes have been checked. Consider a node ni as shown in Fig. 12. Suppose there are (m+1) child 

nodes of ni, where nq1, nq2, …, and nqm correspond to the values of s(ni), and nu is linked to ni with an 

edge marked “unused.” Additionally, all the (m+1) child nodes of ni are checked. 



BranchCost(nq) = TempCost(nq1) + … + TempCost(nqm)

ni 

unused 

……. nq1 nq2 nqm nu 

Child 
of nu

Child 
of nu 

BranchCost(nu)= TempCost(nu) 

Fig. 12. A node being processed in phase 3 

NodeCost(ni) = TempCost(ni) 

 

We compare three costs: 

• NodeCost(ni): the misclassification cost of assigning ni as a leaf node, which is equal to 

TempCost(ni). 

• BranchCost(nq): the total misclassification cost of classifying the data in 
inD using the subtrees 

with the root nodes: nq1, nq2, …, and nqm.  The value of BranchCost(nq) is obtained by 

summing TempCost(nq1), TempCost(nq2), …, and TempCost(nqm). 

• BranchCost(nu), the misclassification cost resulting from classifying the data in 
inD using the 

subtree with the root node nu. That is, attribute s(ni) will not be used. Instead, classification 

will be performed using s(nu).  

There are three cases about the comparison result. These three cases correspond to the following 

three situations:  

Case 1: NodeCost(ni) ≤ BranchCost(nq) and NodeCost(ni) ≤ BranchCost(nu). In this case, further 

splitting cannot reduce the misclassification cost of the records in node ni. Therefore, we prune all 



branches generated from ni, and ni becomes a leaf node. 

Case 2: BranchCost(nq)<NodeCost(ni) and BranchCost(nq) ≤ BranchCost(nu). In this case, it is 

beneficial to use s(ni) to classify the data in 
inD . Therefore, we prune nu and its sub-branches. 

Case 3: BranchCost(nu)<BranchCost(nq) and BranchCost(nu)<NodeCost(ni). In this case, it is not 

beneficial to use s(ni) to classify the data in 
inD . Therefore, we replace ni with nu. 

Fig. 13 displays the adjustments in the three cases. For example, consider the node n01 in the figure 

10, whose splitting attribute is A2. There are three child nodes of n01. Two of them are n011 and n012, 

which related to “A2=A” and “A2=B,” respectively, and the last child node n013 is linked to n01 with an 

edge marked “unused.” After computation, we have NodeCost(n01) = 10, NodeCost(n011) + 

NodeCost(n012) = 0, and NodeCost(n013) = 10. Obviously, NodeCost(n011) + NodeCost(n012) is the 

smallest one. Therefore, we prune n013.  

In Cases 1 and 2, checked(ni) will be set to be true.  We only need to update TempCost(ni) in Case 2 

by setting it equal to BranchCost(nq).  In our example, the values of TempCost(n01) and checked(n01) 

become “0” and “true,” respectively. After this phase, the final tree of our example is shown in Fig. 2.  

Note that , in Case 3,  since the sub-tree with the root node ni is replaced by that with the root node nu, 

it is not necessary to update TempCost(ni).    
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Fig. 13. Adjustments of three cases 
 

IV. PERFORMANCE EVALUATION 

In this section, we perform experiments to evaluate the proposed algorithm, CAT. Twelve datasets 

obtained from the UCI Machine Learning repository [2][5] are used in the experiments. A description 

of these datasets is given in Table V. The numerical attributes in the datasets are discretized using the 

minimal entropy method in the data preparation stage [8].  Furthermore, we removed all records 

containing missing values  
TABLE V.

Datasets We Adapted in Experiments 
 

Dataset Number of 
attributes 

Number of 
examples Class distribution 

Acute 
Inflammations(D1) 6 120 no: 61 yes: 59 

Acute 
Inflammations(D2) 6 120 no:70 yes: 50 

Car 6 1728 unacc: 1210 
good: 69 

acc: 384 
v-good: 65 

Contraceptive 
Method Choice 9 1473 1: 629 

3: 511 
2: 333 
 

Credit Approval 15 690 +: 307 -: 383 
Heart Disease 13 303 0: 164 1: 139 

Nursery 8 12960 
not_recom: 4320 
very_recom: 328 
spec_prior: 4044 

recommend: 2 
priority: 4266 
 

Pima Indians 
Diabetes 8 768 Healthy: 500 

Diabetes: 268  

Thyroid Disease 20 3772 
Hypothroid: 93 
Hyperthyroid: 191  
Normal: 3488 

Tic-Tac-Toe 9 958 positive:626 Negative:332 
Voting 16 435 Democrat: 267 Republican: 168 

Zoo 16 101 1: 41 
5: 4 

2: 20 
6: 8 

3: 5 
7: 10 

4: 1 
 

 

 



We compare the CAT algorithm, labeled as M4, with four additional approaches, M0 through M3 

described in Table VI, in the experiments. Note that M0 is used as a baseline, which represents an 

approach without using a classification model.   
TABLE VI. 

Five Methods in the Experiment 
 

Methods Description 
M0 Classify an instance to the class, which minimizes the misclassification cost. 
M1 A top-down approach, which selects the splitting attribute with the maximum 

reduction in the misclassification cost. Resource constraints are not considered.  
M2 A top-down approach, which selects the splitting attribute with the smallest sum of 

the total misclassification cost and the total resource usage. 
M3 A top-down approach, which selects the splitting attribute with the largest ratio of 

the reduction in the total misclassification cost and the total resource usage. 
M4 CAT 

 

 

Most of the original datasets do not contain cost information. For our experiments, the 

misclassification costs are determined by the distribution of the class labels. Following the method in 

[11] and [26], we use 200 as the baseline for the per-case cost of misclassification and make 

adjustments so that the cost is higher for misclassifying rare classes. For example, in the Pima Indians 

Diabetes dataset, the ratio of the Healthy label to the Diabetes level is roughly 2 to 1. Therefore, we set 

the costs of misclassification for this dataset as MisCost (1, 0) = 200 and MisCost (0, 1) = 400. 

We ran a cross validation in each experiment. Datasets were randomly split into ten parts. Ten pairs 

of the training and test datasets were generated, where the test dataset involved one partition and the 

training dataset involved the other nine partitions. We built decision trees with the training datasets and 

evaluate the trees with the test datasets. The final result from each experiment is the average of the 

results obtained with the ten pairs of training and test datasets. 

In the remainder of this section, we evaluate the performance of the methods under a single 



resource constraint (Section IV.1), two resource constraints (Section IV.2), and multiple resource 

constraints (Section IV.3).   

IV.1  Performance evaluation under a single constrained resource 

We first evaluate the four methods under one resource constraint. In order to determine a possible 

upper bound on MaxResCon for a dataset, we first obtain a decision tree by M1 without any resource 

constraints and obtain the maximal resource consumption, denoted by MaxTotalCon, to arrive a leaf 

node.  To observe how the scarcity of resource impacts performance, we obtain the results by gradually 

reducing MaxResCon from MaxTotalCon to 90%×MaxTotalCon, 80%×MaxTotalCon, …, and 

20%×MaxTotalCon. Furthermore, we randomly set the resource consumption of each attribute between 

1 and 100, and the minimal coverage threshold mincov 5%. 

The results are presented in Table VII, where the columns list the levels of available resources, the 

rows show the datasets and the four approaches, and the cell show values that are the ratio of the 

misclassification cost of the corresponding approach and resource level to that of M0.  The results are 

analyzed by a three-factor ANOVA model, where the three-way interaction is not used, because no 

replications were performed under each treatment level. It was found that the three main effects, 

Dataset, Method, and Percentage, are statistically significant at the 5% level, and the two-way 

interactions are also significant, except that between Dataset and Method. The results of Tukey’s 

multiple comparisons indicate that CAT significantly outperforms the other three approaches, and that 

M2 is significantly better than M1 and M3.  These results are expected because our method benefits 



from selecting splitting attributes according to all possible sequences of attributes, whereas the 

traditional top-down approach considers only the result of splitting a present node.  

 
TABLE VII. 

EXPERIMENT RESULTS FOR EACH METHOD IN DIFFERENT DATASETS 
 

Dataset Method MaxResCon (form 100%×MaxTotalCon to 20%×MaxTotalCon) 
100% 90% 80% 70% 60% 50% 40% 30% 20% 

Acute Inflammations 
(D1) 

M1 0.1475 0.1639 0.1639 0.1639 0.1639 0.1639 0.1639 0.3443 0.4098 
M2 0.1639 0.1639 0.1639 0.1639 0.1639 0.1639 0.1639 0.3279 0.3279 
M3 0.1639 0.1639 0.1639 0.1639 0.1639 0.1639 0.1639 0.1639 0.3279 
M4 0.0000 0.0000 0.0000 0.0000 0.0000 0.1639 0.1639 0.1639 0.3279 

Acute Inflammations 
(D2) 

M1 0.0000 0.1429 0.1429 0.1429 0.1429 0.1429 1.0000 1.0000 1.0000 
M2 0.0000 0.1429 0.1429 0.1429 0.1429 0.1429 0.4200 0.7714 0.7714 
M3 0.0000 0.1429 0.1429 0.1429 0.1429 0.1429 0.7543 0.7714 0.7714 
M4 0.0000 0.0000 0.0000 0.0000 0.1429 0.1429 0.4200 0.7714 0.7714 

Car 

M1 0.4999 0.4999 0.4999 0.5768 0.5768 0.5768 0.5768 0.6656 0.6752 
M2 0.5321 0.5321 0.5321 0.5321 0.5321 0.5321 0.5321 0.5068 0.6752 
M3 0.6816 0.6816 0.6816 0.6816 0.6816 0.6816 0.6816 0.6816 0.8015 
M4 0.4999 0.4999 0.4999 0.5280 0.5280 0.5086 0.5086 0.5068 0.6752 

Contraceptive  
Method Choice 

M1 0.8394 0.8394 0.8394 0.8394 0.8340 0.8340 0.8517 0.8606 0.8695 
M2 0.8780 0.8780 0.8780 0.8780 0.8780 0.8780 0.8869 0.8869 0.8737 
M3 0.8699 0.8699 0.8699 0.8699 0.8699 0.8699 0.8737 0.8737 0.8737 
M4 0.7506 0.7641 0.7618 0.7552 0.7548 0.7263 0.7811 0.8039 0.8069 

Credit Approval 

M1 0.2600 0.2600 0.2600 0.2600 0.2600 1.0000 1.0000 1.0000 1.0000 
M2 0.4790 0.4790 0.5995 0.5995 0.6081 0.6342 0.6342 0.6752 0.6752 
M3 0.4005 0.4005 0.4005 0.4005 0.5916 0.7133 0.6860 0.7099 0.7099 
M4 0.2895 0.2782 0.2691 0.2600 0.2600 0.5540 0.5614 0.6752 0.6752 

Heart Disease 

M1 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.6090 0.6090 
M2 0.4718 0.4718 0.4718 0.4718 0.4718 0.4718 0.4718 0.4718 0.5090 
M3 0.4885 0.4885 0.4885 0.4885 0.4885 0.4885 0.4885 0.4885 0.5090 
M4 0.4910 0.4231 0.3615 0.3782 0.4474 0.4359 0.4641 0.4295 0.4872 

Nursery 

M1 0.2970 0.2970 0.2970 0.2970 0.2970 0.4686 0.4686 1.0000 1.0000 
M2 0.3248 0.3248 0.3248 0.3248 0.3248 0.3979 0.4247 0.7671 0.8290 
M3 0.6982 0.6982 0.6982 0.6982 0.6982 0.6982 0.6982 0.7671 0.8290 
M4 0.2970 0.2970 0.2970 0.2970 0.2970 0.3932 0.4247 0.6982 0.7860 

Pima Indians 
Diabetes 

M1 0.5720 0.5720 0.5720 0.5640 0.5460 0.5460 0.5460 0.5760 0.5760 
M2 0.5580 0.5580 0.5580 0.5380 0.5380 0.5500 0.5460 0.5860 0.6060 
M3 0.5660 0.5660 0.5660 0.5460 0.5460 0.5460 0.5460 0.5860 0.6060 
M4 0.5480 0.5480 0.5800 0.5620 0.5140 0.5640 0.5440 0.5300 0.5760 

Thyroid Disease 

M1 0.5078 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
M2 0.5078 0.6765 0.6765 0.6765 0.6765 0.6765 0.6765 0.9802 0.9903 
M3 0.8118 0.8118 0.8141 0.8118 0.8118 0.8118 0.8118 0.9802 0.9903 
M4 0.5078 0.6241 0.6241 0.6765 0.6765 0.6765 0.6765 0.9994 0.9877 

Tic-Tac-Toe 

M1 0.6725 0.6725 0.6725 0.6725 0.6565 0.6565 0.6677 1.0000 1.0000 
M2 0.8035 0.8035 0.8035 0.8035 0.8035 0.8035 0.8035 0.8083 0.8083 
M3 0.6645 0.6645 0.6645 0.6645 0.6645 0.6837 0.7013 0.7971 0.8115 
M4 0.5304 0.5112 0.5687 0.6358 0.6166 0.6374 0.6629 0.7812 0.7875 

Voting 

M1 0.0585 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
M2 0.2621 0.2621 0.2621 0.2621 0.2903 0.2903 0.2903 0.2903 0.2903 
M3 0.3891 0.3427 0.3569 0.3367 0.3992 0.3992 0.3931 0.3972 0.3629 
M4 0.0585 0.2540 0.3044 0.3024 0.3327 0.2722 0.2621 0.2903 0.2903 

Zoo 

M1 0.2283 0.2283 0.2283 0.2283 0.2862 0.4239 0.4239 0.4239 1.0000 
M2 0.3297 0.3297 0.3297 0.3297 0.3297 0.3297 0.3297 0.4239 0.1957 
M3 0.1848 0.1848 0.1848 0.1848 0.1848 0.1848 0.1848 0.1848 0.2065 
M4 0.0725 0.0725 0.1558 0.1558 0.1413 0.1667 0.1522 0.1920 0.1993 

  

IV.2  Performance evaluation under two resource constraints 

In the evaluation reported in this section, we apply two constraints to the classification task, one for 



the attribute costs, and the other for the completion time. The Heart Disease dataset is used in the 

evaluation. The dataset was made available by Robert Detrano of the Cleveland Clinic Foundation. The 

attribute costs and times given in Table VIII are obtained from the literature [17][20]. In addition, the 

misclassification costs are MisCost(1, 0) = 600 and MisCost(0, 1) = 1,000 [17].   
TABLE VIII. 

THE ATTRIBUTES IN THE HEART DISEASE DATASET 
 

Attribute/Test Test Fee (CN$) Test Time (Minutes) Description 
num - - diagnosis of a heart disease  

0: less than 50% artery narrowing;  
1: more than 50% artery narrowing 

age 1.00 1 in years 
sex 1.00 1 sex (1 = male; 0 = female) 
cp 1.00 1 chest pain type  

1: typical angina; 2: atypical angina;  
3: non-anginal pain; 4: asymptomatic 

trestbps 1.00 1 resting blood pressure (in mm Hg on admission to the hospital) 
chol 7.27 240 serum cholestoral in mg/dl 
fbs 5.20 240 fasting blood sugar > 120 mg/dl 

restecg 15.50 30 resting electrocardiographic results 
thalach 102.90 60 maximum heart rate  
exang 87.30 60 exercise induced angina (1 = yes; 0 = no) 

oldpeak 87.30 60 ST depression induced by exercise relative to rest 
slope 87.30 60 the slope of the peak exercise ST segment 

ca 100.90 60 number of major vessels (0-3) colored by flourosopy 
thal 102.90 60 3 = normal; 6 = fixed defect;  

7 = reversible defect 
  

As in Section IV.1, the four methods are compared under different limits for the two constraints.  

We first obtain the decision tree for M1 and evaluate the resource use, MaxTotalCon1 and 

MaxTotalCon2, respectively, for time and cost.  Three levels – 75%, 50%, and 25% of MaxTotalCon1 –

are used for the time constraint, whereas the limit for the cost constraint remains at MaxTotalCon2.  

The cost comparisons between selected methods and M0 are reported in Fig. 14. 



 

Fig. 14. The ratio of misclassification cost of each method for datasets Heart Disease under  
(a)MaxResCon1 = 75%×MaxTotalCon1, (b) MaxResCon1 = 50%×MaxTotalCon1, and (c)MaxResCon1 = 25%×MaxTotalCon1  

From the results shown in Fig.14, the proposed method, CAT, is clearly the overall best performer, 

especially under tight resource constraints.  This finding empirically demonstrates that CAT is very 

effective in reducing the misclassification cost under limited resources. Furthermore, the performance 

of M2 and M3 are generally not affected by resource constraints. These results suggest that a top-down 

approach is unable to adapt to the availability of resources, especially when resources are abundant.   

IV.3  Performance evaluation under multiple resource constraints 

We use all the datasets listed in Table V in this section. Since the cost and time information for 

most of these datasets are not available, we generate the values randomly in our evaluation. Five 

resource constraints are considered with the consumption rate of each resource by each attribute was 

set randomly between 1 and 100. For each constrained resource Resy, the resource constraint 

MaxResCony was set randomly among 75%×MaxTotalCony, 50%×MaxTotalCony, and 



25%×MaxTotalCony. 

The results are shown in Table IX, where the columns represent the number of constrained 

resources, the rows give the various alternatives, and the cell values show the ratio of the 

misclassification cost resulting from this method and the misclassification cost resulting from M0. 
TABLE IX

EXPERIMENT RESULTS OF DIFFERENT NUMBER OF CONSTRAINED RESOURCE 
 

DataSet Method Number of Constrained Resource DataSet Method Number of Constrained Resource 
1 2 3 4 5 1 2 3 4 5 

Acute  
Inflammations

(D1) 

M1 0.1639 0.1639 0.1639 1.0000 1.0000 

Nursery 

M1 0.4686 0.4686 1.0000 1.0000 1.0000 
M2 0.1639 0.1639 0.1639 0.8361 0.8361 M2 0.4797 0.7689 0.8404 0.8404 0.8404 
M3 0.1639 0.1639 0.1639 0.4754 0.8361 M3 0.5102 0.6932 0.8404 0.8404 0.7860 
M4 0.0000 0.1639 0.1639 0.4754 0.8197 M4 0.3633 0.4686 0.7860 0.7860 0.7860 

Acute  
Inflammations

(D2) 

M1 0.2000 1.0000 1.0000 1.0000 1.0000 
Pima  

Indians 
Diabetes 

M1 0.5720 0.5900 0.5900 0.5900 0.5900 
M2 0.2000 0.8000 0.8000 1.0000 1.0000 M2 0.5340 0.6900 0.7300 0.6900 0.8120 
M3 0.0000 0.8000 0.4000 1.0000 1.0000 M3 0.5340 0.6900 0.7280 0.5900 0.5900 
M4 0.0000 0.4200 0.4000 1.0000 1.0000 M4 0.5280 0.5900 0.5900 0.5900 0.5900 

Car 

M1 0.5983 0.6752 0.6752 0.6752 0.6752
Thyroid  
Disease 

M1 1.0000 1.0000 1.0000 1.0000 1.0000 
M2 0.5321 0.7013 0.7460 0.7820 0.7820 M2 0.6937 0.8769 0.6937 1.0000 1.0000 
M3 0.5399 0.7013 0.6752 0.7820 0.6752 M3 0.8769 0.8769 0.6937 1.0000 1.0000 
M4 0.5327 0.7074 0.6752 0.6752 0.6752 M4 0.6937 0.6937 0.6937 1.0000 1.0000 

Contraceptive 
Method  
Choice 

M1 0.8429 0.8429 0.8695 0.8695 0.8695 

Tic-Tac-Toe

M1 0.6725 0.6725 0.6725 0.6805 0.6805 
M2 0.8672 0.8610 0.8707 0.9004 0.8695 M2 0.6581 0.6693 0.6326 0.8227 0.6486 
M3 0.8683 0.8544 0.8436 0.8695 0.8695 M3 0.6757 0.6677 0.6470 0.6486 0.6597 
M4 0.7483 0.7471 0.7737 0.7795 0.8695 M4 0.6022 0.5879 0.6278 0.6645 0.6294 

Credit  
Approval 

M1 0.2600 0.2600 1.0000 1.0000 1.0000 

Voting 

M1 1.0000 1.0000 1.0000 1.0000 1.0000 
M2 0.3430 0.5529 0.7799 0.7799 0.5563 M2 0.2742 0.3548 0.3065 0.3065 1.0000 
M3 0.2600 0.2600 0.7309 0.5563 0.5563 M3 0.3548 0.3548 0.3065 0.3065 1.0000 
M4 0.2691 0.2600 0.5563 0.5563 0.5563 M4 0.2601 0.2984 0.3065 0.3065 1.0000 

Heart 
Disease 

M1 0.5500 0.5500 0.5449 0.5449 0.5974 

Zoo 

M1 0.2283 0.2283 0.2283 0.2283 0.4239 
M2 0.5346 0.6038 0.5590 0.5603 0.6538 M2 0.2935 0.2935 0.2862 0.2862 0.3188 
M3 0.5372 0.4577 0.5321 0.5551 0.6218 M3 0.2971 0.2935 0.2862 0.2862 0.3188 
M4 0.4577 0.4551 0.4551 0.4744 0.4962 M4 0.0870 0.1594 0.2174 0.1159 0.2609 

  

As shown in Table IX, in a majority of the cases, as the number of constrained resources increases, 

the number of attributes that can be used decreases and the misclassification cost increases. In some 

cases, the performances of the four methods are roughly the same. This phenomenon happens when the 

depth of the tree is short because only a small number of attributes can be used as the resource 

constraints become tight. As a result, the variation in selected attributes is small among the four 

methods. However, CAT, still achieved a better or at least comparable performance, compared with the 

other three methods.  The results from the statistical analysis using a three-factor ANOVA model show 



CAT significantly outperforms the other three methods in the average cost. However, M2 and M3 are 

not significantly different in their performances. 

From the results of the experiment presented in this section, we conclude that the proposed 

algorithm, CAT, outperforms the top-down approach and produces satisfactory results in all the 

situations under consideration. 

In order to study the time complexity of CAT, we use the Nursery dataset, which has 12,960 

records and 8 attributes, to show the effect of the number of records on its computation time.  We also 

use the Zoo dataset, which has 16 attributes and 101 records, to show the effect of the number of 

attributes. The results are reported in Figure 15, where the total computation time is plotted against the 

number of attributes or records.   

  
 

Fig. 15. The computation time of (a) different data size of Nursery dataset (b) different number of attribute of zoo dataset 

Time (second) 

No. of Records (1,000) 

Time (second) 

No. of Attributes 

(a) (b) 

 

The figure shows the total computation time increases linearly as the number of attributes or 

records increases, suggesting the proposed method performs satisfactorily.  It is evident that phase 1 

consumes a large portion of the computation time. Note that, in phase 1, the Apriori algorithm is 

modified to generate association rules, which satisfy the mincov threshold.  We follow the same 



approach to develop an Apriori-like approach to work simultaneously for resource constraints. This 

combination effectively reduces the computation time by systematically pruning un-desired rules with 

respect to mincov and resources in early stages.  The results suggest this approach works efficiently.  

V. CONCLUSION AND FUTURE STUDIES 

Cost-sensitive classification has been a popular research topic in recent years. In this paper, we 

study a problem of developing a cost-sensitive decision tree under multiple resource constraints. A new 

algorithm is developed to address the drawbacks of the traditional top-down approach to tree induction.  

The algorithm consists of two steps. In the first step, we extract association classification rules from the 

training dataset first and retain those that satisfy the resource constraints. In the second step, we use the 

association classification rules obtained in the first step to develop a cost-sensitive decision tree.  

Because only feasible classification rules are extracted and retained in step 1, it is not necessary to 

consider resource constraints in step 2. The results of an extensive numerical experiment show that the 

proposed algorithm produces satisfactory results under different tightness levels of resource constraints 

and outperforms the top-down approach.  

There are several possible extensions to this study. First, we allow only attributes as predictors in 

the proposed algorithm. An implicit assumption is that we would have to perform discretization to 

allow using numerical variables in the algorithm. An extension allowing direct use of numerical 

variables would broaden the applicability of the algorithm. Furthermore, we assume no missing values 



in developing the proposed algorithm. The internal node strategy, proposed by Ling, et.al [10] and 

adopted by Zhang, et al. [26], may be incorporated in the proposed algorithm to handle missing data. 

Zadrozny, Langford, and Abe [25] developed a novel method for generating cost-sensitive trees 

using existing non-cost based tree induction algorithms. They developed a conversion method by 

incorporating cost factors into existing classification algorithms or by subsampling the training data. 

They did not consider resource constraints.  However, their method may be extended to constrained 

problems.  Finally, as Verhein and Chawla [22] have demonstrated, many existing methods may not 

work well for imbalanced data.  They proposed an attribute selection criterion called the class 

correlation ratio and showed it was more effective than support and confidence in generating 

associative classifiers.  It would be an interesting research issue on whether the class correlation ratio 

or a similar measure could be used in the first phase of our algorithm when encountering an imbalanced 

dataset.  These extensions would represent a line of possible research issues in contrast to the popular 

top-down approach in tree induction.   
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