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Abstract

We consider the lost sales model with discrete demand that is filled only from inventory on-hand. The

inventory is reviewed every T periods and an order is placed to bring the inventory position back to a target

base-stock level R. The order is received after a lead time of L periods. Based on the outstanding orders in

the pipeline, we represent the state of the system as a Markov chain for a given base-stock level. We develop

structural properties of the best stationary base-stock policy. These properties include a stopping rule and

a method for finding strictly improving lower-bounds that facilitate the development of an optimization

algorithm. We also show that the structure of the transition probability matrix is recursive in R and L

and that the matrix is sparse with special structure. This special structure is used to facilitate computation

of the stationary distribution. In turn this distribution is used to compute the long-run average cost for a

given base-stock from which a search yields the best, minimum cost, base-stock value. Analytical results

complemented by numerical examples reveal that neither the best stationary base-stock nor its average cost

is monotone in L for a given T .

Keywords: Stochastic inventory system; Base-stock policy; lost sales; lead time

∗School of Business, East China University of Science and Technology, Shanghai, China
†College of Business, Winona State University, Winona, MN 55987, USA
‡Johns Hopkins Carey Business School, Baltimore, MD 21202, USA
§Krannert School of Management, Purdue University, West Lafayette, IN 47907, USA

1



1 Introduction

In a stochastic inventory system, there will be instances when there is no inventory on-hand. For such

instances, a demand fulfillment policy must be specified. One strategy is to accept all demand and fill

it from inventory that will arrive from a future delivery, so that demand is fully backordered. The other

polar strategy is to turn away all customers that arrive during such instances so that demand is lost. While

the backorder model is relatively well understood, the lost sales model with positive lead time, as noted

by Zipkin (2008b), is “notoriously difficult" to analyze even when consideration is restricted to stationary

base-stock policies. Nevertheless, by representing demand as a discrete random variable as in Bijvank and

Johansen (2012), we are able to exploit the underlying Markovian structure to obtain structural insights that

facilitate computation of base-stock policies and their long-run average costs. In particular, using analytical

and computational methods, we find non-monotonicity results that were not previously available.

We consider the following infinite horizon variant of the standard single-item lost sales model. In each

period t, t = 1, 2, . . . , discrete random demand drawn from an independent identical distribution, is realized.

Demand that exceeds inventory on-hand is lost. Every T periods the inventory position is reviewed and a

restock order is placed that brings the inventory position to the target base-stock level R, which may not be

independent of the state of the system; makingR independent of the steady-state results in a stationary base

stock model. This order is received after a lead time of L periods, where without loss of generality, we let

L = (m − 1)T + n, m ≥ 1 and 0 < n ≤ T , with integers m and n. When m = 1 and n < T , the lead

time is less than the review period, yielding the case of so called “fractional" lead times as in Kapalka et al.

(1999). When m > 1 and n < T , the lead time is greater than the review period. And, when n = T , the

lead time is a multiple of the review period.

While the case when lead time is a multiple of the review period is predominant in the literature, this

is not the case in increasingly more and more business settings. A classic example is that of a franchised

hardware store that may place a weekly order to its distributor to replenish its many stock-keeping units;

the distributor would typically fill high demand items from its inventory on-hand and schedule delivery for

sometime within the week, making the lead time fractional. For other items, after consolidating demand

from stores it serves, the distributor would place an order with the company’s central facility and would fill

orders for such items in a subsequent week with the regularly scheduled consolidated weekly shipment. In

such cases, the lead time would obviously be greater than the review period but not necessarily its multiple.

Similar delivery systems are used to manage spare parts at auto dealerships and slow moving items in

drugstores.
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An example of recent vintage is the way Pyxis R© machines are used to manage medical products on

hospital floors. Every morning items are restocked to its base-stock targets, so called PAR levels; in the

event that an item is out of stock and is needed immediately, an expedited delivery is executed to get that

unit immediately from hospital stores; in such an instance, this item is effectively ‘a lost sale’ since it is filled

from outside the system and so not counted in the inventory cycle at the Pyxis R© machine. Remarkably, with

the increasing penetration of internet retailers into same day and even two-hour delivery, fractional lead

times are becoming more and more prevalent in distribution systems, warranting the need to study their

impact on inventory control systems.

Literature Review

We begin with the seminal work by Karlin and Scarf (1958) whose analysis of the problem focused on

cases with T = 1. Since the state of the system at each review epoch depends on the inventory on-hand

and the ordered sequence of pipeline orders, the combinatorial issues appeared insurmountable. Neverthe-

less, for T = L = 1, Karlin and Scarf (1958) are able to find bounds on the cost of the optimal policy

for a finite-horizon variant of the problem. Moreover, they made considerably more progress on the less

intractable, and more practically appealing, stationary base-stock policy in which the target base-stock level

R is independent of the state of the system. Specifically, for the infinite horizon case with a stationary

base-stock policy, Karlin and Scarf (1958) find the closed-form stationary distribution of inventory on-hand

when T = L = 1. For the more general case with lead time L = m, they develop the functional equation

form of the joint distribution of pipeline inventory. However, because of its complexity, Karlin and Scarf

(1958) were only able to derive the closed-form solution for the exponential demand model.

Morton (1969, 1971) revisited the lost sales model with L = m ≥ T = 1, developed by Karlin and

Scarf (1958). In the first paper, he established bounds similar to those in Karlin and Scarf (1958) for the

case with lead time L = m. In the second paper, as an alternative to the base-stock model, the author

proposed a myopic policy and compared it numerically with the optimal one and showed that his myopic

policy performs well. Subsequently, Nahmias (1979) generalized the approximation technique of Morton

(1971) and applied it to more complex models including the lost sales model with fixed setup cost.

Downs et al. (2001) considered the finite horizon lost sales model and used a sample-path approach to

prove that the average conditional lost sales and leftovers are convex functions of a stationary base-stock

policy. Later, Janakiraman and Roundy (2004) generalized these results to the case of stochastic lead time

and infinite horizon; hence, under quite general conditions a simple search process is sufficient to find the

best base-stock when L = m ≥ T = 1.
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More recently, Zipkin (2008a,b) explored the lost sales model with L = m ≥ T = 1, and extended

the work of Karlin and Scarf (1958) and those of Morton (1969, 1971). Zipkin (2008a) transformed the

original formulation of the lost sales model to develop new bounds for the optimal policy. Subsequently,

Zipkin (2008b) showed that the optimal average cost is increasing in the lead time, and then numerically

compared several heuristics, including a dual-balancing policy introduced by Levi et al. (2008) whose cost

is guaranteed to be within 50% of the optimal cost; and a constant order rule that is related to the work by

Reiman (2004). As summarized in Zipkin (2008a), some heuristics perform better when the lead time is

longer while others perform better when the penalty cost is higher. In particular, Zipkin (2008b) reports that

the performance of the stationary base-stock model deteriorates as lead time increases but improves as the

penalty cost increases. In a more theoretical direction, however, support for the efficacy of the stationary

base-stock policy is provided by Huh et al. (2009) who showed that the cost of the stationary base-stock

policy converges to the cost of the optimal policy when the ratio of lost sales penalty to inventory holding

cost tends to infinity. Additional support for the efficacy of stationary base stock policies is provided by

Bijvank et al. (2014).

Despite much attention on elucidating the structure of the lost sales model, we had to wait until 2009

before the “curse of dimensionality" long associated with the periodic review lost-sales model was finally

demonstrated theoretically. Halman et al. (2009) proved that the periodic review lost sales problem, whose

optimal policy has a non-stationary base-stock structure is NP-complete and so deemed intractable. Xin and

Goldberg (2016) develop constant-order heuristic policies in which, as the lead time approaches infinity, the

relative error in cost asymptotically approaches zero. While their performance might be acceptable when

the lead time is very long, for short and intermediate values of lead time, as in our motivating examples,

these heuristics may perform poorly. An excellent summary of the existing contributions is provided in Xin

and Goldberg (2016).

Overview and Contributions

While the papers cited above have helped to improve our understanding of the lost sales model for the

cases when lead time is a multiple of the review period T = 1, limited progress has been made when

the review period is greater than 1, and even less progress when the lead time is arbitrary. To this end,

Bijvank and Johansen (2012) have studied the case of arbitrary lead time when the demand is modeled

by a compound Poisson process. They propose and test a value iteration based approximation procedure

for computing stationary base-stock policies for such systems. In contrast, like Karlin and Scarf (1958),

we focus on obtaining the distribution of the pipeline inventory and inventory on-hand. However, we use
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a discrete demand representation to explicitly derive the operating characteristics for any positive integer-

valued target base-stock level R, review period T and lead time L. Remarkably, we show that the structure

of the problem with arbitrary lead time L > T can be developed by recursively using the representation of

the fractional lead time case with L ≤ T . So, we begin our analysis with the fractional lead time case which

has not been well-studied despite the increasing prevalence of fast delivery modes including overnight and

same-day delivery services by couriers like Fedex and USPS.

In our analysis of the fractional lead time case, we use the fact that when the lead time L ≤ T , the

review period, no orders are outstanding at a review epoch so that the inventory position and inventory on-

hand are identical. Thus, the inventory on-hand at two consecutive review epochs is sufficient to represent

state variables in a one-dimensional Markov Chain to describe transitions in the base-stock system. We

preview our results in Section 2 by presenting a comprehensive analysis of a simple but incisive problem

in which, without loss of generality, the review period is normalized to 1 time unit and the lead time as a

fraction of it. As we will see in Section 2 for fractional lead time, and in later sections for arbitrary lead

time, the system may incur lost sales early in the review cycle in low inventory on-hand states; yet, end

the cycle with positive inventory on-hand. Obviously, this phenomenon cannot occur when lead time is a

multiple of the review cycle.

It turns out that this seemingly simple problem with fractional lead time has remarkably complex op-

timal policy structure, which saliently captures and explains virtually all the crucial findings in our work.

Interestingly, the best stationary base-stock (which is also the optimal ordering policy for this problem)

may decrease and increase in lead time suggesting that the tradeoff between lost sales penalty and inven-

tory holding costs can become muddled. Even more interestingly, the optimal cost may increase first, then

become constant, and then finally decrease in lead time. These structural results sharply contrast with the

monotonicity results derived in Zipkin (2008b) where lead time is a multiple of the review period, and con-

sequently, they highlight the theoretical importance and practical relevance of the study of fractional and

arbitrary lead time when unmet demand is lost.

Using the simple example as a launching pad, in Section 3 we formalize our representation not only of

the fractional lead time case but also of the general case with L = (m − 1)T + n and discrete demand.

We then turn attention to examining the structure of stationary base-stock policies. Even though the cost

function may not be convex or unimodal, adapting arguments as in Downs et al. (2001) and Janakiraman

and Roundy (2004), we are able to sufficiently structure the cost function to generate a simple stopping rule

that can be embedded in a sequential search algorithm for the best base-stock. A by-product of the algorithm
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is that at each iteration it generates a strictly improving lower bound, and a non-increasing (feasible) upper

bound providing the option to terminate early if a solution sufficiently close to optimal has been found.

Having completed work on structural properties of the cost function of base-stock policies, we turn

attention to the underlying Markovian structure. In Section 4, we show that the transitions of the state

process vectors from one order epoch to the next can be represented as a Markov chain whose states are

represented by m-dimensional vectors where m represents the maximum number of outstanding orders.

We also show that in the general case, the transition probability matrix of the Markov chain representing

outstanding orders has an elegant recursive structure in R and L. This special structure uses the variant in

which m = 1 so the lead time L ≤ T , the review period and facilitates the computation of the stationary

distribution of the inventory on-hand. Using the stationary distribution, we show that the best stationary

base-stock level and performance measures of interest such as long-run average cost can be computed. As

a result, the best base-stock policies can be calculated for the lost sales model with arbitrary lead times.

In Section 5 these computations are illustrated by a series of numerical examples. For the fractional lead

time case and bounded demand, we show how to generate all admissible policies for the lost sales models.

Then for a test-bed of problems, numerical computations reveal that the best stationary base-stock policy is

often the optimal policy, and performs well even when it is not the global optimum. Then, consistent with

the motivating example developed in Section 2, we demonstrate that the best base-stock and its long-run

average cost are not necessarily non-decreasing in L . To the best of our knowledge, such non-monotonicity

has not been reported in the literature on lost sales inventory systems.

Some concluding remarks are presented in Section 6. Proofs of the results, details on expected cost

functions, an illustrative example and some of the numerical results are presented in Appendices.

2 A Motivating Example

Before formally introducing the general model with discrete demand and an arbitrary lead time, to preview

and explain our results we use a simple base-stock model in which the review period T equals 1 and the

fractional lead time L is between 0 and 1. This is without loss of generality since both T and L can be

scaled to make the review period any positive value T . If at the start of the review period, the inventory

position which equals the inventory on-hand (since the lead time does not exceed T ), is below the target

base-stock R, an order is placed to bring the inventory position to R. In sub-section 2.3 we will examine

the implication on global optimality of making R state-dependent.

The process of demand during the review period is quite simple: with probability 1 − δ demand takes
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value 0; otherwise demand is exactly 1. When demand is 1, the timing of its realization is uniformly

distributed between 0 and 1. Such a demand process would arise if demand during the review period were

generated by a truncated Poisson process since in such a case when demand is 1, the timing of its realization

would be uniformly distributed between 0 and 1. The unit inventory holding cost is h per period and the

unit lost sales penalty cost is l. The unit procurement cost c is normalized to zero. This simple base-stock

model allows us to generate sharp insights.

We know immediately that the best base-stock R is either 0 or 1 or 2. When R = 0, all demand is lost,

and when R = 2, all demand is met since the system would have at least one unit on hand at the start of

every review period. Finally, when R = 1 the system dynamics are more complex. Consider the start of

the focal review period t. If the inventory position and inventory on-hand is 1, no order is placed, but the

demand, if it is realized, will be filled. Alternatively, if the inventory position and inventory on-hand is 0, an

order of size 1 is placed which will be received at time t+ L. If there is demand and it is realized between

time t and t+L, it will be lost; if it is realized after t+L, it will be filled from the order that arrives at time

t + L. These dynamics, as well as those for the general model, are elegantly analyzed using the theory of

Markov chains.

2.1 Analysis of Stationary Base-stock Cases

We begin the analysis with the degenerate case when the base-stock R = 0. Since all demand is lost in this

case, it is easily seen that TC(0) = δl. While this case is trivial, the analysis of the case when R = 1 leads

to some insight.

To proceed let Pij denote the one-period transition probability, where i and j represent the inventory

on-hand of period t and period t + 1, respectively. Then, recognizing that when i = 0, demand is only

filled if it does not arrive before time t + L, we can easily see that P00 = δ(1 − L); therefore, we must

have P01 = δL+ (1− δ). Similarly, when i = 1, demand will be filled if it occurs, so we can set P10 = δ

and P11 = (1 − δ). Therefore, it is easily verified that π0 = δ
δL+1 and π1 = 1−δ+δL

δL+1 are the stationary

probabilities that the inventory on-hand is 0 and 1, respectively. Given this stationary distribution, the

average cost per period can be represented as:

TC(1) =
h[(2− δ) + δ2L(1− L)]

2(δL+ 1)
+

δ2Ll

(δL+ 1)
. (1)

Because we are especially interested in how the optimal R varies in lead time L, it is useful to determine
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that
dTC(1)

dL
=

δ2h

(δL+ 1)2

[
l

h
− [2 + 2δL+ δ2L2 − 2δ]

2δ

]
. (2)

Using E(δ, L) = 2+2δL+δ2L2−2δ
2δ , we can easily see that when E(δ, 0) < l

h < E(δ, 1) holds, TC(1)

initially increases in L and then begins falling if E(δ, L) becomes big enough. Now that we have developed

some structural properties of TC(1), we can use them to compare the case R = 1 with the case R = 0. To

this end we can immediately calculate that

TC(0)− TC(1) =
δh

(δL+ 1)

[
l

h
− [(2− δ) + δ2L(1− L)]

2δ

]
. (3)

It is helpful to define A(δ, L) = [(2−δ)+δ2L(1−L)]
2δ and then notice that since A(δ, L) is quadratic in L, as

L increases either TC(1) never crosses (or equals) TC(0), or crosses TC(0) two times, first from below at

L1 then from above at L3. In the case when TC(1) crosses TC(0) two times, it follows incisively that if

we were restricted to choosing between R = 0 and 1, the lowest cost policy would be to set R = 1 when

L = 0. As L increases the cost would increase until a threshold(L1) where R would become 0, and the cost

TC(0) would remain constant until L reaches another threshold(L3) where R would become 1 again and

the cost TC(1) would continue to fall after L3. To complete the analysis, we need to consider the case of

R = 2 as well.

In contrast to the case when R = 0 under which we are guaranteed 0 sales, when the base-stock R = 2

we are guaranteed to meet all demand. Since the analysis of this case is similar to the case when R = 1

it is deferred to the Appendix A. Using developments similar to those that yielded (1) the average cost per

period can be easily represented as:

TC(2) = h [2− 0.5δ − δL] . (4)

Because ∂TC(2)
∂L = −δh < 0, TC(2) is linear and decreasing in L.

Next, we determine when R = 1 is preferred to R = 2. Specifically,

TC(1)− TC(2) =
δ2Lh

(δL+ 1)

[
l

h
− (1− δ)

δ
− (2− δ2L2)

2δ2L

]
. (5)

Analogous to A(δ, L), it is helpful to define B(δ, L) = (1−δ)
δ + (2−δ2L2)

2δ2L
, and determine that ∂B(δ,L)

∂L =

−1
δ2L2 − 1

2 < 0, so that given 0 ≤ δ ≤ 1, B(δ, L) monotonically decreases in L, and attains its global

minimum at L = 1. Furthermore, B(δ, 1) = (1−δ)
δ + (2−δ2)

2δ2
= (2+2δ−3δ2)

2δ2
, and limL→0+ B(δ, L) = +∞.
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Therefore, consistent with intuition, R = 2 cannot be optimal when L = 0 since instantaneous order

delivery assures that we can always start with one unit in inventory on-hand. Thus, we can conclude that as

L increase from 0 to 1 it follows that if we were restricted to choosing between R = 1 and 2, the lowest

cost policy would be to set R = 1 when L = 0. As L increases, the cost TC(1) first goes up and then down

as discussed in sub-section 2.1, but if TC(2) intersects TC(1) it would only be from above at some point

L4 when R would become 2. For higher values of L, the cost TC(2) would continue to fall. To complete

the characterization of the stationary base-stock policy, by comparing A(δ, L) and B(δ, L) we can provide

the following complete characterization of the optimal stationary policy, where R∗ is the cost minimizing

base-stock.

Proposition 1 Let A(δ, L) = [(2−δ)+δ2L(1−L)]
2δ and B(δ, L) = (1−δ)

δ + (2−δ2L2)
2δ2L

. Then, in the best

stationary base-stock solution (sensitivity to l
h):

(a) if l
h ≤ A(δ, L), then TC(0) ≤ TC(1) ≤ TC(2) and R∗ = 0;

(b) if A(δ, L) < l
h ≤ B(δ, L), then TC(1) ≤ TC(0), TC(1) ≤ TC(2) and R∗ = 1; and

(c) if l
h > B(δ, L), then TC(2) ≤ TC(1) ≤ TC(0) and R∗ = 2.

Proposition 1 gives a full characterization of the best stationary policy by comparing l
h against functions

of δ andL. Since l
h is equivalent to the familiar newsvendor fractile, it can be used to provide some intuition.

When the lost sales penalty cost is very low, balancing inventory cost with the cost of lost sales is fully tilted

in favor of minimizing inventory cost pushing us toward R = 0 which we may interpret as advocating low

inventory levels. In stark contrast, when the lost sales penalty cost is very high, balancing inventory cost

with the cost of lost sales is fully tilted in favor of minimizing lost sales penalty cost pushing us toward

R = 2 which we may interpret as advocating high inventory levels. In the intermediate range, we select

R = 1. Proposition 1 is quite intuitive in another sense: it is consistent with the conventional wisdom that

suggests that as the lost sales penalty cost increases, the decision maker should respond by raising inventory

levels to provide higher service levels. While Proposition 1 is consistent with conventional wisdom, our

results, as we have alluded to earlier, are not quite as intuitive when sensitivity to lead time L is considered.

2.2 Sensitivity to L

In this sub-section we focus on examining how R∗ and TC(R∗) vary as L increases. We know from

Proposition 1 that determining the best base-stock R∗ relies on comparing l
h with A(δ, L) and B(δ, L). So

let us begin by considering the boundary case when L = 0. From Proposition 1, we know that R∗ = 0 if
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l
h ≤ A(δ, 0). And, since A(δ, L) achieves its minimum at A(δ, 0) = A(δ, 1) ≤ B(δ, 1), R∗ = 0 for all

L. Moreover TC(0) = δl, so it is independent of lead time L. The analysis for the case of l
h > A(δ, 0)

is more complex. It turns out that, as shown in Appendix A, there are two numbers δlow and δmed that

partition the unit interval for δ into three mutually exclusive intervals. The first constant δlow is determined

by equating E(δ, 1) with B(δ, 1), where δlow =
√

3 − 1 is the only positive root of a cubic equation in δ.

The other constant δmed is determined by equating B(δ, 1) with A(δ, 0.5), where δmed ≈ 0.945688 is the

unique positive solution to another cubic equation in δ. Therefore, in what follows, the sensitivity analysis

of optimal R∗ and TC(R∗) over L is conducted over three intervals of δ : 0 < δ ≤ δlow, δlow < δ ≤ δmed

and δmed < δ ≤ 1. Graphs of A(δ, L), B(δ, L) and E(δ, L) against L are presented in Figure 1 for three

representative values of δ; namely, δ = 0.7, 0.85 and 0.97 since the best base-stock depends on where the

point (L, lh) falls on it.

(a) Case 1; δ=0.7

B ! 1 at L = 0 B ! 1 at L = 0 B ! 1 at L = 0

(b) Case 2; δ=0.85 (c) Case 3; δ=0.97

Figure 1: R∗ and subcases for low, medium and high value of δ

In each panel, as explained formally in Appendix A and shown in Figure 1, the policy structure can be

partitioned into five regions that depend on the value of l
h . When (L, lh) is in the region below A(δ, L),

R∗ = 0 and the minimal cost is constant in L. In contrast, when (L, lh) is in the region above B(δ, L),

R∗ = 2 and the minimal cost is decreasing in L. In the intermediate regions R∗ = 1; when (L, lh) is to the

left of E(δ, L), the minimal cost is increasing in L and when (L, lh) is to the right of E(δ, L), the minimal

cost is decreasing in L. While we can easily see that for a given L, consistent with Proposition 1, as l
h
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increases R∗ goes from 0 to 1 to 2, the sensitivity in L is more nuanced.

A rigorous examination of the three panels of Figure 1, as performed in Appendix A, reveals that com-

parative statics in L depend on the values of l
h to yield five regions drawn from seven policies. As l

h

increases, R∗ evolves in L as depicted in Table 1 (R∗ = 0, 1 or 2), where the arrows ‘↗’,‘↘’ and ‘→’

represent increasing, decreasing and constant costs, respectively; and x = 1, 2 and 3 repesent case 1, case 2

and case 3, respectively.

Table 1: Evolution of R*
subcase Low δ Med δ High δ

x.5 1↗, 2↘ 1↗, 2↘ 1↗, 2↘

x.4 1↗ 1↗, 1↘, 2↘ 1↗, 1↘, 2↘

x.3 1↗, 1↘ 1↗, 1↘ 1↗, 0→, 1↘, 2↘
x.2 1↗, 0→, 1↘ 1↗, 0→, 1↘ 1↗, 0→, 1↘
x.1 0→ 0→ 0→

The key insight that we wish to highlight, as presented for representative cases in Figure 1, is that neither

R∗ nor its cost is monotonically increasing in L. More specifically, consider Subcase 1.2 in Panel (a) of

Figure 1. Consistent with Proposition 1(b), R∗ = 1 when L is near 0; as L increases its cost initially

increases; for intermediate values of L, R∗ = 0 and this cost is constant; finally for higher values of L,

R∗ = 1 but TC(R∗) is decreasing in L. An even more complex case is that of Subcase 3.3 in which the

optimal R∗ is initially 1, with TC(R∗) increasing in L; then for somewhat higher values of L, R∗ becomes

0 and TC(R∗) is constant; and for a subsequent interval of L, R∗ is again 1 but TC(R∗) is decreasing in L;

finally, R∗ becomes 2 and TC(R∗) remains decreasing in L. It is worth noting that such complex pattern

has not been reported in the literature on base-stock inventory systems.

We have shown, using this motivating example, that when limited to stationary base-stock policies,

neither R∗ nor TC(R∗) is necessarily monotone in L. Using these results as building blocks we now

examine the implications for the globally optimal policy.

2.3 The Global Optimal Policy

While stationary base-stock policies have analytical tractability since the target base-stock is always a con-

stant R, the optimal policy need not have this structure. In general, the target base-stock R(x) may depend

on the value of x, the inventory on-hand at the start of the review cycle. While enumerating all candidate

state-dependent policies can be formidable, in this case, since demand during the review period is at most 1

and the lead time is at most 1 period, simple dominance can be used to show that it is not optimal to have

x exceed 2 so that R(x) also cannot exceed 2. Thus, other than the three stationary policies, simple enu-
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meration reveals that after taking transient states into account, there is only one admissible state-dependent

policy.

Specifically, in this state-dependent policy, R(0) = 2, R(1) = 1 and R(2) = 2. Then, using the

approach of the previous sub-sections, the transition probability matrix can be written as:




0 1 2

0 0 δ(1− L) δL+ (1− δ)

1 δ 1− δ 0

2 0 δ 1− δ



, (6)

It is easily verified that π̂0 = δ
2+δL , π̂1 = 1

2+δL , and π̂2 = 1−δ+δL
2+δL are the stationary probabilities that the

inventory on-hand is 0, 1, and 2, respectively. Using the subscript sdp to represent state-dependent policy,

given this stationary distribution, as shown in Appendix A, the average cost per period can be written as:

TCsdp =
δ2Ll

(2 + δL)
+

h

2(2 + δL)

{
6− 2δ + 4δ2 − 7δ2L+ 3δ2L2

}
.

Since R(x) is never equal to zero, it is sufficient to compare TCsdp with TC(1) and TC(2). After

rather involved calculations, we can conclude that TCsdp > min{TC(1), TC(2)} for any 0 ≤ L ≤ 1 and

0 ≤ δ ≤ 1. Since this is the only possible candidate state-dependent policy for our model, we can claim the

following:

Proposition 2 For our motivating example where: (i) the review period T equals 1 and the fractional lead

time L is between 0 and 1, and (ii) demand in a period is either 0 or 1, and when the demand is 1, its timing

of realization is uniformly distributed between 0 and 1,

1) A stationary base-stock policy is globally optimal; and

2) Neither the best base-stock nor the optimal cost is monotone in the lead time L.

Thus, we can conclude that for the fractional lead time case, it can happen that the stationary base-stock

policy is optimal and the optimal cost can first increase then decrease in L. Now that we have given some

preliminary theoretical evidence that stationary base-stock policies can be useful, we next show that their

Markovian representation yields sufficient structure when demand is drawn from a discrete distribution and

the lead time takes arbitrary integer values. We will use this structure in Section 5.1 to show that under some

conditions, the base-stock policies can be optimal and/or perform as effective heuristics for the underlying

lost sales model.
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3 Model Formulation with Arbitrary Lead Time

Having introduced the key ideas of our work, we now formulate the long-run average cost problem for

the infinite horizon inventory system with lost sales. The cost parameters are stationary and the stochastic

demand in each period follows an independent and identical discrete distribution. The discrete demand

assumption allows us to represent dynamics using stochastic matrices. The system inventory is reviewed

every T periods and an order is placed before the realization of the demand to bring the inventory position

back to a target base-stock level R. This order is received after a lead time of L periods. Note that the

order quantity is zero if no sales occur in the previous cycle. To proceed with the analysis, we will use the

following notation:

Demand, Time and Cost Information

Dt = demand in period t, a non-negative integer.

L = order lead time, a positive integer.

T = review cycle, a positive integer.

c = unit purchase cost, may be set to 0 without loss of generality.

h = unit holding cost.

l = unit lost sales penalty cost.

Performance-Related Variables

R = target base-stock level, a non-negative integer.

ILt = inventory on-hand at the beginning of period t; it includes the order received in period t.

IOt = order placed in period t.

St = sales in period t; min{ILt, Dt}.

Pwz = probability that the total demand of w consecutive periods equals z;

for w = 1, this is simply Pz and for w = 0, P 0
0 is identically equal to 1.

P̄wz = probability that the total demand of w consecutive periods is at least z.

ALR = transition probability matrix with base-stock R and lead time L.

LOt = expected leftovers in period t.

LSt = expected lost sales in period t.

PC(R) = expected order quantity in a review cycle.

Cost Functions

TCt = total expected inventory-related cost in period t.

TC(R) = expected average cost in a review cycle with base-stock R and given L and T .
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Using the above notation, as shown in Appendix B, we can write the total expected overage and underage

cost in period t as TCt = h · LOt + l · LSt. The objective is to choose the target base-stock level R that

minimizes the long-run average cost per period given by:

TC(R) =
c · PC(R) +

∑T
t=1 TCt

T
(7)

Note that the expressions of TCt vary for different values of T and L and are presented in Appendix B.

To analyze the above inventory problem, we will focus on characterizing the performance of the focal

review cycle that has the duration of T periods. Based on the outstanding orders in the pipeline, for a given

base-stock level, we represent the state of the system as a Markov chain. We begin with the case when the

lead time is fractional (i.e., L = n ≤ T ). Given the base-stock R, we first find the transition probabilities of

this Markov chain whose transition matrix,ALR, is of dimension (R+1)×(R+1) whose size is independent

of n and T . However, the values of the elements in this transition matrix do depend on n, T and R. Then

we consider the general case with L = (m− 1)T +n, m ≥ 1 and 0 < n ≤ T . Remarkably, for this general

case, the transition matrix, ALR, can be represented recursively in terms of the elementary matrices for the

case L = n ≤ T . We use this recursive relation together with the sparse structure of the matrix to compute

the cost function and find the best stationary base-stock level. While we demonstrate this in Section 5, in

the following sub-section and in Section 4, we analyze the model to establish key properties.

3.1 Sample Path Algorithm

The paper develops a search algorithm that computes TC(R) for increasing values of R and stops when it

can be ascertained that the best R found so far is also the optimal R or if R has reached an upper bound.

Since it is not known whether TC(R) is convex or unimodal in R, a simple stopping rule where you stop

once TC(R) starts increasing may terminate the search at a local minimum. However, a sample path

argument, adapted from Downs et al. (2001), can be used to develop a sufficient condition to ensure that an

optimal base-stock R has been identified when the search terminates.

To this end, we re-write the average cost function (7) as:

TC(R) = TCH(R) + TCL(R) (8)

where TCH represents the inventory ordering plus holding related costs and TCL represents the lost sale

related costs. A sample-path argument yields the following proposition.
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Proposition 3 (Based on Lemma 3.1 of Downs et al. (2001)):

For L = (m− 1)T + n, m ≥ 1, 0 < n ≤ T , assuming P{Dr = 0} > 0, we have

(a) MR+1
r −MR

r ∈ {0, 1}, where Mr refers to ILr, IOr, LOr, and Sr; and

(b) LSRr − LSR+1
r ∈ {0, 1}.

Proposition 3(a), in particular, implies that for any cycle of T periods, the expected leftover inventory is

non-decreasing in R and Proposition 3(b) implies that the expected lost sales is non-increasing in R. There-

fore, TCH(R) is non-decreasing in R and TCL(R) is non-increasing in R. A proof for the proposition is

provided in Appendix C. Although the result in the proposition is intuitive, the proof for it is quite involved.

We can now state the following corollary that serves as a simple stopping rule for finding the best

stationary base-stock policy for our model even though the cost functions in (8) are not necessarily convex

or unimodal unlike those in Downs et al. (2001) and Janakiraman and Roundy (2004).

Corollary 1 Suppose TC(R) has been calculated for R = 1, 2, ..., U, and let TC(RU ) be the minimal

TC(R) among these candidate U values of R. Then,

(a) TC(R) ≥ TCH(U) for R ≥ U ;

(b) If TC(RU ) ≤ TCH(U), then RU is the best stationary base-stock;

(c) If TC(RU ) > TCH(U), then TC(R∗) ≤ TC(RU ) and TC(RU )−TC(R∗)
TC(R∗) ≤ TC(RU )−TCH(U)

TCH(U) , where

R∗ is the best stationary base-stock.

So, as we incrementally increase the target base-stock from someR toR+1 and the algorithm terminates

at some U where TCH(U) ≥ TC(RU ), the best stationary base-stock is given by RU . Alternatively, if we

have pre-set an upper bound U on the candidate base-stock, or the algorithm terminates after U evaluations

due to computational limitations before the condition in stopping rule is satisfied, the algorithm returns RU

as the best base-stock found to date, and TCH(U) and TC(RU ) respectively as the highest lower bound

and the lowest upper bound on TC(R∗). In this case, the cost error rate of using RU as the best stationary

base-stock is bounded by TC(RU )−TCH(U)
TCH(U) .

4 Analysis of the Model

We begin by considering the cases when the lead time L = n ≤ T , the so called fractional lead time case.

It yields L = T as a special case. Then the structure of this problem is used as the building block for the

case L = (m − 1)T + n which yields, after setting n = T , the special case L = mT , in particular T = 1

yields the case L = m, considered by Zipkin (2008a,b) and others.
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4.1 The Case m = 1

We begin with the case when there is at most m = 1 order outstanding, so that L = n ≤ T . To conduct

the analysis it is sufficient to consider the focal review cycle from period t to period t + T − 1. At the

beginning of this cycle, an order IOt = i, i = 0, 1, ...., R, is placed to bring the inventory position to R so

that the inventory on-hand, ILt = R − IOt. Therefore, given R, the state of the system at review epochs

is fully specified by IOt. Since the lead time is n and m = 1, as in the motivating example, the only order

in pipeline inventory will arrive at the beginning of period t+ L (i.e., t+ n) of the focal cycle; thus, it will

not be available for satisfying demand in the first n periods so that only ILt = R − i is available to satisfy

demand in the first n periods of the focal cycle. And the unused inventory supplemented by the newly

received order is available to satisfy demand during the remaining T − n periods of the focal cycle. Let k

be the total sales during the focal review cycle. Then, at the next review epoch, IOt+T , the order placed

must be of size k since the inventory position is brought to base-stock R. Analogously to epoch t, at epoch

t+ T , IOt+T fully specifies the state of the system. Therefore, the state transition process at review epochs

is fully described as:

· · · → IOt → IOt+T → · · · → IOt+kT → IOt+kT+T → . . . (9)

Now that we have shown that the evolution of the Markov chain can be characterized by only the amount

on order at the review epochs, it remains to define the elements of the transition probability matrix (which,

in short, we will call the transition matrix). To this end, suppose that at time t an order of size i was placed

and the subsequent order of size k is placed at time t+ T . Since R− i units were on-hand at the beginning

of the review cycle and the remaining i units arrive after lead time n, sales k may take any of the R + 1

discrete values from 0 to R; however, if n = T , the pipeline inventory i does not become available, so sales

may not exceed R − i. Thus, the probability that a transition occurs from state i to state k is merely the

probability that sales during the focal review cycle are exactly k. As in Section 2, this probability, as shown

in Proposition 4 below, can be computed by splitting the review cycle into two complementary intervals,

one consisting of the first n periods and the other consisting of the remaining T − n periods.

In the following proposition whose trivial proof is omitted, we give the transition probabilities which

are all that are needed to populate the transition matrix.

Proposition 4 Let j be the inventory on-hand, i be the immediate (or outstanding) order and k be the next

order. Then the transition probabilities, denoted by Pj(i, k), of the Markov chain for lead time L = n ≤ T
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are as follows:

When i = 0,

(a) for k < j, Pj(i, k) = P Tk and for k = j, Pj(i, k) = P̄ Tj ; (10a)

And, when i > 0,

(b) for k < j, Pj(i, k) =
k∑

z=0

[
Pnz · P T−nk−z

]
; (10b)

(c) for j ≤ k < i+ j, Pj(i, k) =

j−1∑

z=0

[
Pnz · P T−nk−z

]
+ P̄nj · P T−nk−j ; (10c)

(d) for k = i+ j, Pj(i, k) =

j−1∑

z=0

[
Pnz · P̄ T−nk−z

]
+ P̄nj · P̄ T−ni . (10d)

Proposition 4(a) provides the transition probabilities for the case when ILt = R so that all inventory is

available to satisfy demand in the entire focal cycle of T periods. Propositions 4(b)-(d) provide the transition

probabilities for the case when ILt = R− i < R so that only a portion of the system inventory is available

to satisfy demand in the first n periods of the focal cycle, and any unused inventory as well as the order

received after n periods are available to satisfy demand during the remaining T − n periods of the focal

cycle. In the second case, depending on the amount of total sales, the transition probabilities are given by

equations (10b)-(10d).

While each element of AnR is quite complex, as in the motivating example of Section 2, some intuition

can be gleaned by considering the pairs Pnz P
T−n
k−z . Each of these pairs, because demand in each period is

independent, represents the probability that exactly z demands occur in the first n periods (lead time n) and

exactly k − z demands occur in the complementary interval of T − n periods. For example, if demand in

each period is drawn from a geometric distribution, then the term Pnz is the probability that demand from a

negative binomial distribution has the zth success after n trials.

An even more interesting case arises when the demand in each period is from a Poisson distribution with

parameter λ. Then, because time increments are independent, the product Pnz P
T−n
k−z can be written as the

product of the probability that there are exactly k demands from a Poisson distribution with intensity λT

and the probability that a random variable with a binomial distribution has exactly z successes in k trials

with success probability n
T , which is a generalization of the probability δL in Section 2.

Using the transition probabilities given in Proposition 4, we can easily write the transition matrix AnR

for R = 0, 1, 2, 3, . . . ; we refer the readers to Figure D1 in Appendix D. Note that while the values of its
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elements depend on n, in general each of these matrices AnR is dense, distinct and of dimension (R + 1)×

(R + 1) which is independent of n. An implication is that these matrices do not have a special structure

to speed up computation; however, an insightful exception arises when L = n = T , as seen in the next

sub-section.

4.1.1 The Case L = T

When L = n = T , the transition probabilities are obtained by simply letting n = T in Proposition

4. In this case, it is directly seen that Proposition 4 is very simple in the sense that the probabilities given

in equations (10b)-(10d) are identical to those in (10a). When this is the case, we can write the transition

matrix for base-stock R = 0, 1, 2, . . . , as

AT0 =




0

0 1


 ;AT1 =




0 1

0 P T0 P̄ T1

1 1 0




;AT2 =




0 1 2

0 P T0 P T1 P̄ T2

1 P T0 P̄ T1 0

2 1 0 0




; · · · (11)

Since each of these matrices is upper triangular, each can be trivially inverted in one pass, to find the

stationary distribution of the underlying Markov chain. Since L = T , is equivalent to L = T = 1, this

result is the discrete counterpart to the analogous case of continuous demand solved by Karlin and Scarf

(1958).

Before we formalize that the transition matrices for m = 1 arise repetitively and recursively in the

sparse transition matrices A(m−1)T+n
R , for the general case L = (m − 1)T + n, to flesh out intuition, we

next consider the case when m = 2.

4.2 The Case m = 2

In this case, L = T + n and at the beginning of the first period in each review cycle, there are at most m =

2 orders outstanding. Thus, the state transition process now becomes (IOt, IOt+T ) → (IOt+T , IOt+2T ).

Since the state process is now two-dimensional, the states can be ordered in a variety of ways. Our ap-

proach is to order these states in such a way that the structure of the underlying transition matrices can be

represented in terms of the transition matrices for the case L = n ≤ T . We begin with the case R = 0.

In this degenerate case, since R = 0, there are no orders outstanding so there is only the state (0,0)

which occurs with probability 1, so AT+n0 is equal to An0 , as depicted in Figure 2. Now consider the case
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R = 1; since the inventory on-hand can be 0 or 1, the state space takes the values (0,0), (1,0) and (0,1)

with the transition probabilities depicted in Figure 2. Unlike in the case when L = n, where starting states

appear in the same sequence as the ending states, here the ending states are in a different sequence. When

the system is in state (0,0) or (1,0), sales would be 0 or 1 so that at the start of the next cycle only the states

(0,0) or (0,1) may be reached. And, when the system is in state (0,1), at the start of the next cycle only the

state (1,0) can be reached. Also notice that since the second outstanding order is of size 0 for the first two

states, the dynamics only depend on the first outstanding order which is why the first square submatrix of

size (2 × 2) in AT+n1 is identical to An1 . Moreover, the states are the same as in An1 except that each state

has been appended by 0 reflecting the size of the latest outstanding order which is 0. The final state and

the second square submatrix is identical to AT+n0 , except to keep the inventory on-hand the same, the size

of the last order has been incremented by 1. This interpretation suggests that when R = 1, the number of

states is equal to the number of states in An1 plus the number of states in AT+n0 , that is, 2 + 1 = 3.

To flesh out intuition, consider the cases R = 2 and 3. When R = 2, the number of states in AT+n2 is

equal to the number of states in An2 plus the number of states in AT+n1 , that is, 3 + 3 = 6. And, the states

have been generated in a manner similar to that for the case R = 1. Analogously, when R = 3, the number

of states in AT+n3 is equal to the number of states in An3 plus the number of states in AT+n2 , that is, 4 +

6 = 10. Thus, we can conclude, as will be formalized later in this section, when L = T + n, there are

(R + 2) × (R + 1)/2 states and the transition matrix AT+nR is block diagonal with blocks AnR and AT+nR−1 .

The first R + 1 states in AT+nR have been augmented by adding a zero vector to the states in AnR while the

remaining states have been incremented by 1 for the second outstanding order in AT+nR−1 . In Figure 2, we

illustrate the above rule with R = 0, 1, 2 and 3.

Now that we have made an intuitive connection between the cases when m =1 and m = 2, we will

formalize in Proposition 5, that for any base-stock level R, we can write AT+nR in a recursive way as the

sparse block diagonal matrix

AT+nR =



AnR 0

0 AT+nR−1 .


 (12)

In the next sub-section, we show that the transition matrices for the case of general lead time L =

(m − 1)T + n can be expressed in a similar way. As in the case of L = T + n, the key is to arrange the

column and row vectors of the transition matrix in appropriate sequences.
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Figure 2: Transition matrices for the case L = T + n for different R

4.3 The Case of Arbitrary m, m ≥ 1

In this, the most general case there are at most m (m ≥ 1) orders outstanding, the inventory is reviewed

every T periods and an order placed at time t is received after a lead time of L = (m − 1)T + n periods.

Since the lead time exceeds (m−1)T , it is clear that at the beginning of the focal review period t+(m−1)T ,

at every review epoch, there are m outstanding orders including the orders placed at the beginning of period

t, t+T , t+2T, . . . , t+(m−2)T , and the order placed at the current epoch t+(m−1)T . Thus, we have an

outstanding order vector (IOt, IOt+T , . . . , IOt+(m−1)T ), where IOt will arrive at the beginning of period

t+L (i.e., t+ (m− 1)T + n) of the focal cycle which consists of T periods starting from t+ (m− 1)T to

t+mT − 1. Thus, for this Markovian system, we can define the following state transition process:

(IOt−(qm−1)T , . . . , IOt−(q−1)mT )→ (IOt−(qm−2)T , . . . , IOt−(q−1)mT+T )→ . . .

· · · → (IOt, IOt+T , . . . , IOt+(m−1)T )→ (IOt+T , IOt+2T , . . . , IOt+mT )→ . . .
(13)

for a positive integer q. Since R is the target base-stock level, the total outstanding order plus inventory

on-hand equals R at the beginning of period t+ (m− 1)T , so that

IOt + IOt+T + · · ·+ IOt+(m−1)T + ILt+(m−1)T = R (14)

Equation (14) implies that ILt+(m−1)T is fully identified if we have observed the outstanding order vector

(IOt, IOt+T , . . . , IOt+(m−1)T ). Consequently, with base-stock R, as in the earlier cases, we can write

the transition matrix from state (IOt, IOt+T , . . . , IOt+(m−1)T ) to the next state based on ILt+(m−1)T ,
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IOt and the realized demand in the two complementary intervals of periods n and T − n of the focal

review cycle. For this purpose, we use a constructive approach to recursively develop the structure of

the transition matrix and the state space of the underlying Markov chain for any integer R and lead time

L = (m− 1)T + n. The structure can be fully specified in terms of R, m and n. We need some additional

notation to streamline the presentation of this rather tedious development. For transition matrixA(m−1)T+n
R ,

we let NS(R,m) denote the number of states (starting or ending), L(R,m) the sequence of the starting

states, and M(R,m) the sequence of the ending states. Note that each state is a vector of m outstanding

orders of the form (IOt, IOt+T , . . . , IOt+(m−1)T ). The formal statement follows and an example has been

included in Appendix D.

Proposition 5 For L = (m− 1)T + n, m ≥ 1, 0 < n ≤ T , and base stock R, R ≥ 1:

(a) The transition matrix is a block diagonal matrix, and, is of the recursive form

A
(m−1)T+n
R =



A

(m−2)T+n
R 0

0 A
(m−1)T+n
R−1


 ; (15)

(b)The list of starting states L(R,m) is sequenced so that the first NS(R,m − 1) states are identical to

those in the L(R,m − 1) except that each is appended by im = 0; and, for the remaining NS(R − 1,m)

states are identical to those in L(R− 1,m) except that each im is increased by 1;

(c) The list of ending states M(R,m) is in the order given by changing the each state in L(R,m) from

i1i2 . . . im to i2i3 . . . imi1;

(d) The number of states in A(m−1)T+n
R is NS(R,m) = (R+m)!

R!m! ;

(e) The number of non-zero (positive) entires in A(m−1)T+n
R is NZ(R,m) = (R+m)!(2R+m+1)

R!(m+1)! ;

(f) The density of the transition matrix A(m−1)T+n
R equals R!m!(2R+m+1)

(R+m)!(m+1) .

The logic behind the matrix structure in Proposition 5(a) is the following: forL = (m−1)T+n, there are

m outstanding orders, namely, (IOt, IOt+T , . . . , IOt+(m−1)T ), where IOt will arrive at the beginning of

period t+L (i.e., t+(m−1)T+n) in the focal cycle. This means that it is not available for satisfying demand

in the first n periods, while it can be used to satisfy demand in the remaining T − n periods of the focal

cycle. Therefore, the role of IOt in this case is equivalent to IOt with lead time L = (m− 2)T + n. Thus,

if IOt+(m−1)T = 0, then the transition matrix A(m−1)T+n
R will be the same as A(m−2)T+n

R . Additionally,

if IOt+(m−1)T > 0, that is, IOt+(m−1)T ≥ 1, it is equivalent to adding one unit to IOt+(m−1)T first, and

then arranging the remaining R − 1 units of inventory to (IOt, IOt+T , . . . , IOt+(m−1)T ) accordingly, so

that the transition matrix in this case is equivalent to A(m−1)T+n
R−1 . The above intuitive arguments explain
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Propositions 5(a)-(b).

As an explanation of Proposition 5(c), note that since i1 arrives during the focal cycle, at the beginning

of the next cycle the oldest outstanding order is i2. Therefore, the new state is of the form i2i3 . . . imk,

where k is the sales in the focal cycle which, like i1, can take any integer value between 0 to R −∑m
l=2 il,

in particular we let k = i1 when generating the list of ending states M(R,m). The implication of this result

is that corresponding to each state in L(R,m), we can locate the position of that state in M(R,m) so that

the stationary distribution for each state of the Markov chain can be determined. This is explained with an

example using Figure D2 in Appendix D. Propositions 5(d)-(e) lead to Proposition 5(f) which shows that

the density of the transition matrix (i.e., the number of positive entries over the total number of entries in

the matrix) decreases as the base-stock R and the value of m increases.

It follows from Proposition 5 that although the state space grows exponentially inR andm, the recursive

and block diagonal structure of A(m−1)T+n
R makes its storage requirements frugal. This is because only

the R + 1 square matrices representing An0 , A
n
1 , . . . , A

n
R have to be computed once and stored. However,

since the starting states L(R,m) and ending states M(R,m) are not in the same sequence, computation

of the steady-state probabilities can be challenging. Nevertheless, as will be seen in the next section, these

structural properties are sufficient for us to calculate performance measures and to find best base-stocks for

problems with lead times longer than those solved previously.

5 Numerical Studies

Now that we have demonstrated that the base-stock model with lost sales and discrete demand can be

represented as a Markov chain whose sparse transition matrix can be generated recursively, we use these

structural properties to compute the stationary distribution. This steady-state distribution is used to compute

the expected cost function (7) using equations (B1)-(B10) from Appendix B. In Section 5.3, we use these

properties to consider large-scale problems and then, for some problems related to that in Section 5.2, we

re-visit the issue of the efficiency or optimality of using stationary base-stock policies. One important

observation comes out from our numerical results is that when L is not an integer multiple of T, neither the

best stationary base-stock policy nor the corresponding average cost is necessarily monotone in L.

22



5.1 Efficiency of Base-stock Policies for Fractional Lead times

Having established that the best stationary base-stock policy is globally optimal for the motivating example

of Section 2, we begin our numerical work by examining the performance of the best stationary base-stock

policy for more representative demand scenarios for the fractional lead time cases of lost sales model. Since

we know from Section 2.5 that the optimal cost function reaches its maximum when L is about T/2, we

find it adequate to use the case when T = 2 and L = 1. And we modify the demand process to mimic the

general structure that is presented in Sections 3 and 4. In the first set of scenarios, we model demand in each

period to be Bernoulli so that demand is either 1 with probability p that corresponds to δ in Section 2, or

0 otherwise. Hence demand realizations in each review cycle can be given by the four familiar doubletons

{0, 0}, {0, 1}, {1, 0} and {1, 1}. In the second set of scenarios, we allow demand in each period to take

values 0 or 1 or 2 where these probabilities are drawn from the Binomial distribution with N = 2 and

success probability p. Here, the demand realization can be described by 9 doubletons. For both sets of these

binomial demand scenarios, by carefully selecting p, we can make the demand distribution left- or right-

skewed or mimic a symmetric bell-shaped distribution creating a plausible range of representative cases.

An alternative approach would have been to use the truncated Poisson distribution, which is a little more

difficult to calibrate but can approximate the Binomial distribution.

Since N represents the maximum demand in a period in our process, we know that, in the worst case,

an order placed at the start of some period t is all that is available to fulfill demand for the next T + L

periods. Therefore, the maximum target inventory, in any inventory management policy, need not exceed

N(T + L) which in our scenarios is either 3 or 6. Since it might be best to not be in business which would

make R = 0, the best stationary base-stock policy is one of N(T + L) + 1 values. And if the choice of the

target value depends on x, the value of inventory on-hand at time t, then the targetR(x) would be one of the

N(T +L)+1−x values. Any target value greater thanN(T +L) can be eliminated because it would entail

unnecessary holding costs. Since x may take any integer value between 0 and N(T + L), it readily follows

that consideration for finding the optimal policy can be limited to fewer than (N(T + L) + 1)! policies.

Thus in the first set of scenarios, since N = 1, T = 2 and L = 1, there are 24 admissible policies and in

the second set of scenarios there are no more than 82,440 admissible policies. In practice, we were able to

eliminate many of these polices by using logical considerations.

For 6 values of p, for each of these admissible policies, applying Proposition 5 in an adapted form,

we generated the transition matrix. The underlying Markov chain was then solved to find the stationary

probability distribution. As in Zipkin (2008b) we set c = 0, h = 1 and l = 4, 9, 19 or 39 to calculate the
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average expected cost per review cycle for each of these scenarios from which the minimal-cost globally

optimal policy was found and the best stationary base-stock policy was compared against it.

Table 2: Optimality of Best base-stock policy with Bernoulli demand

Lost sales cost (l) p
Average Cost

Optimal Best Base-stock % Error
0.90 1.5000 1.5000 0%
0.75 2.1400 2.1400 0%

4 0.60 2.0421 2.1118 3.41%
0.45 2.0469 2.0469 0%
0.30 1.6975 1.6975 0%
0.15 1.6102 1.6102 0%
0.90 1.5000 1.5000 0%
0.75 2.2500 2.2500 0%

9 0.60 2.9059 2.9059 0%
0.45 2.6594 2.6594 0%
0.30 2.5901 2.5901 0%
0.15 1.8796 1.8796 0%
0.90 1.5000 1.5000 0%
0.75 2.2500 2.2500 0%

19 0.60 3.0000 3.0000 0%
0.45 3.4172 3.4172 0%
0.30 3.0241 3.0450 0.69%
0.15 2.4184 2.4184 0%
0.90 1.5000 1.5000 0%
0.75 2.2500 2.2500 0%

39 0.60 3.0000 3.0000 0%
0.45 3.7500 3.7500 0%
0.30 3.5404 3.5404 0%
0.15 3.3609 3.3886 0.82%

As can be seen from Tables 2 and 3, these steps yield 24 problem instances each for our 2 scenarios.

In the first demand scenario, Binomial(1,p), in 21 out of 24 cases, the best stationary base-stock policy is

globally optimal. The percent errors if the best base-stock were used when it is not optimal, are 3.41%,

0.69% and 0.82%. Given the relative coarseness of the demand process, it might not be too surprising or

unintuitive to find that the best base-stock performs very well.

Indeed, there is significant more variation under the second set of demand scenarios, Binomial(2, p), as

can be seen from Table 3. In 13 of these scenarios the best stationary base-stock policy was found to be

globally optimal. In cases, where the base-stock policy was not optimal, consistent with Huh et al. (2009),

the percentage error in cost declines as l/h increases. Thus, the base-stock policy is close to optimal for

high l/h. And, when the base-stock policy is not optimal, the percentage error in cost tends to be lower

when the average demand (as compared to the maximum demand in a period) is either high or low. And, the

percentage error tends to be higher when demand is relatively symmetric as for p =0.45 and p =0.6. It also

appears that when the base-stock policy is not optimal, the order when inventory on-hand is low tends to

be higher than in the corresponding optimal policy. The effect of over-ordering seems to result in increased
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Table 3: Optimality of Best-base stock policy with Binomial demand (N = 2)

Lost sales cost (l) p
Average Cost

Optimal Best Base-stock % Error
0.90 3.0000 3.0000 0%
0.75 3.2769 3.4464 5.17%

4 0.60 3.3241 3.4382 3.43%
0.45 3.0067 3.1652 5.27%
0.30 2.5712 2.6590 3.41%
0.15 1.8440 1.8440 0%
0.90 3.0000 3.0000 0%
0.75 4.1224 4.1224 0%

9 0.60 4.3635 4.4655 2.34%
0.45 4.1694 4.2926 2.95%
0.30 3.7381 3.8248 2.32%
0.15 2.8532 2.8532 0%
0.90 3.0000 3.0000 0%
0.75 4.5000 4.5000 0%

19 0.60 4.9087 4.9087 0%
0.45 4.9119 4.9531 0.84%
0.30 4.4806 4.5168 0.81%
0.15 3.4986 3.4986 0%
0.90 3.0000 3.0000 0%
0.75 4.5000 4.5000 0%

39 0.60 5.7347 5.7347 0%
0.45 5.7965 5.8350 0.66%
0.30 5.4321 5.4632 0.57%
0.15 4.4147 4.4147 0%

inventory holding cost without corresponding savings in the lost sales cost. As l/h increases, the optimal fill

rate increases and the system operates with high on-hand inventories, and as a result the frequency of such

errors goes down. Since the relative holding cost for high l/h values is lower, the increase in the holding

cost due to the error is also lower. When combined with Proposition 2, our results indicate that using the

best stationary base-stock when lead times are fractional, can be optimal in many problem instances. And,

it appears that its heuristic use is likely to be more effective when demand distributions are skewed, rather

than symmetric. Now that we have established the viability of using base-stock policies in some problem

instances, we next illustrate the application of our algorithm.

5.2 Sample Path Algorithm

Now that we have shown that stationary base-stock policies can be effective, at least in the fractional lead

time case, we next want to illustrate the sample path algorithm (see Section 3.1), which supports finding the

best policy in the most general setting. To this end, we use the cases of l = 19 with p = .15 and p = .5

that are presented in Tables 4 and 5, respectively. As in Section 5.1, the probabilities are drawn from the

Binomial distribution with N = 2 and success probability p. We initialize the algorithm with R = 0 so that
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RU is necessarily equal to 0. Since no inventory is present, in both cases only lost sales costs are incurred.

Thus, as can be seen in the first row of Tables 4 and 5, TCH(0) = 0 and TC(RU ) = TC(0) = TCL(0).

Then, for each case, we incrementally iterate by trying trial values of U , U = 1, 2, 3, 4, 5, 6, for the base-

stock R. When p = .15, the algorithm terminates when U = 3 and returns R∗ = 2 as the best stationary

base-stock value; this would also be the case if TC(R) were known to be unimodal. In contrast, when

p = .5, the algorithm takes additional iterations before terminating when U = 6 and returns R∗ = 4, as the

best stationary base-stock value.

Table 4: Sample Path Algorithm with Binomial Demand p = 0.15
U TC(U) TCL(U) TCH(U) RU TC(RU ) Process
0 5.7000 5.7000 0.0000 0 5.7000 Initialize
1 2.4358 1.9174 0.5183 1 2.4358 TCH(U) < TC(RU ), Go to Next U
2 1.7493 0.4351 1.3142 2 1.7495 TCH(U) < TC(RU ), Go to Next U
3 2.3157 0.0569 2.2588 2 1.7495 TCH(U) ≥ TC(RU ), STOP R∗ = RU

4 3.2545 0.0039 3.2506
5 4.2501 0.0001 4.2500
6 5.2500 0.0000 5.2500

Table 5: Sample Path Algorithm with Binomial Demand p = 0.5
U TC(U) TCL(U) TCH(U) RU TC(RU ) Process
0 19.0000 19.0000 0.0000 0 19.0000 Initialize
1 11.6316 11.5000 0.1316 1 11.6316 TCH(U) < TC(RU ), Go to Next U
2 7.0000 6.5330 0.4670 2 7.0000 TCH(U) < TC(RU ), Go to Next U
3 4.0326 3.0623 0.9703 3 4.0326 TCH(U) < TC(RU ), Go to Next U
4 2.6193 0.9667 1.6526 4 2.6193 TCH(U) < TC(RU ), Go to Next U
5 2.6618 0.1397 2.5221 4 2.6193 TCH(U) < TC(RU ), Go to Next U
6 3.5000 0.0000 3.5000 4 2.6193 TCH(U) ≥ TC(RU ), STOP R∗ = RU

Now that we have shown that even with the coarseness of the data in small problems, the algorithm can

terminate as soon as the first minimum is found, we use this algorithm to assist in the search for the best

stationary base-stock policies in the more general demand cases considered in this paper.

5.3 Numerical Results

As discussed above, although the transition matrix is generated in such a way that it appears block diagonal,

since the lists of starting and ending states are not in the same sequence except when lead times are less than

or equal to the review period, this is not sufficient to speed up computations. Nevertheless, we only store the

R + 1 square submatrices An0 , A
n
1 , . . . , A

n
R, which have the only non-zero entries in AmT+nR , we can save

substantially on storage. Even though the state space grows rapidly, we did not use sophisticated computing

strategies, like parallel processing to speed up computations. Given our goal of gleaning insight into the
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lost sales base-stock problem using exact methods, we found it sufficient to use an iterative scheme to solve

πA
(m−1)T+n
R = π, where π is the row vector of size NS(R,m) that represents the stationary distribution

of the Markov chain. Computations were run using MATLAB 2013a, on a MacBook Pro OS X 10.9 with

2.4 GHz dual-core Intel core i5 processor and 8 GB memory.

To make our computational results comparable with those of Zipkin (2008b), who has recently made

significant advances in exact computational methods by solving problems with T = 1 and L up to 4, we

developed our test bed of problems from his design. Like him, we modeled demand as either Poisson or

geometric with mean demand per period equal to 5 and set the purchase cost c = 0 and holding cost h = 1.

Since the results for the geometric demand case are qualitatively similar, we report here results only for the

Poisson demand case with T = 1 and 2, which are presented in Tables 6 and 7, respectively. The results for

the Poisson demand case with T = 3, 4, 5 and 6, are given in Appendix E. We also report results for the

geometric demand case in Appendix E.

Table 6: Numerical results for T = 1 with Poisson demand, up to L = 6
Lost sales L

cost(l) 1 2 3 4 5 6

4

Best base-stock R 12 16 20 25 29 33
Ave. Cost 4.163 4.639 4.975 5.198 5.372 5.512

No. of states(R∗) 13 153 1,771 23,751 278,256 3,262,623
Comp. time(sec) 0.07 0.13 0.36 3.69 143.50 9678.80

9

Best base-stock R 13 19 23 28 33 37
Ave. Cost 5.547 6.316 6.864 7.271 7.607 7.893

No. of states(R∗) 14 210 2,600 35,960 501,942 6,096,454
Comp. time(sec) 0.08 0.19 0.54 6.56 476.45 32257.06

19

Best base-stock R 15 21 26 31 36 41
Ave. Cost 6.728 7.842 8.604 9.232 9.753 10.194

No. of states(R∗) 16 253 3,654 52,360 749,398 10,737,573
Comp. time(sec) 0.10 0.24 0.76 11.19 1020.99 89532.64

39

Best base-stock R 16 22 28 33 39 44
Ave. Cost 7.863 9.190 10.218 11.062 11.776 12.374

No. of states(R∗) 17 276 4,495 66,045 1,086,008 15,890,700
Comp. time(sec) 0.12 0.26 0.93 15.22 2073.84 183065.78

As can be observed from Table 6, when the review period T = 1 and the order lead time L = 1, 2,

3 and 4, as in Zipkin (2008b), our average costs for best base-stocks closely match with those in Zipkin

(2008b). While Zipkin (2008b) reports only the average costs for the base-stocks, we report the best base-

stock policies as well. The results for L = 5 and 6 have not appeared previously. Also consistent with

Zipkin (2008b), the minimum average cost of the base-stock policy, like that of the optimal policy, increases

in L, corresponding to lead times which are integer multiples of the review period T . And, consistent with

Proposition 1 and intuition, costs and quantities rise with increasing l, the unit lost sales cost.

In contrast, a close examination of Table 7 and Tables E1 - E4 in Appendix E reveals that when L is not
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Table 7: Numerical results for T = 2 with Poisson demand, up to L = 8
Lost sales L

cost(l) 1 2 3 4 5 6 7 8

4

Best base-stock R 15 19 23 27 31 35 39 43
Ave. Cost 6.1536 6.2684 6.7297 6.6215 7.0506 6.8355 7.2560 6.9807

No. of states (R∗) 16 20 300 406 5,984 8,436 123,410 178,365
Comp. time(sec) 0.27 0.18 0.38 0.47 1.83 2.26 40.33 50.89

9

Best base-stock R 18 22 27 32 36 41 46 50
Ave. Cost 7.9292 8.3793 8.9166 9.0843 9.5487 9.5641 9.9807 9.9140

No. of states (R∗) 19 23 406 561 9,139 13,244 230,300 316,251
Comp. time(sec) 0.32 0.26 0.55 0.74 3.53 4.19 158.04 198.53

19

Best base-stock R 20 25 30 35 40 45 50 55
Ave. Cost 9.4786 10.2083 10.9095 11.3469 11.8841 12.1556 12.6045 12.7815

No. of states (R∗) 21 26 496 666 12,341 17,296 316,251 455,126
Comp. time(sec) 0.42 0.35 0.74 0.93 5.44 5.67 289.12 393.29

39

Best base-stock R 21 27 32 38 43 48 53 58
Ave. Cost 10.8788 11.8645 12.7689 13.4130 14.0699 14.5634 15.1155 15.4897

No. of states (R∗) 22 28 561 780 15,180 20,825 395,010 557,845
Comp. time(sec) 0.48 0.43 0.90 1.16 7.35 6.91 438.93 568.55

an integer multiple of T , as anticipated from the motivating example, the minimum average cost as well as

the optimal R with the base-stock policy for a larger value of L can be lower than that for a smaller value

of L. For example, in Tables 7 and E1 - E4, when lost sales cost l = 4, the minimum average cost goes up

and down as L increases, whereas in Table E4, when l = 4, the optimal R for L = 8 is smaller than that for

L = 6 and 7. Interestingly, Bijvank and Johansen (2012) who also consider the same problem but use an

approximate method, do not report observing such non-monotonicity in their work. Analogously, Kapalka

et al. (1999) who use an approximate procedure to find (s, S) policies for cases when L < T , also do not

report non-monotonic behavior of the optimal policy.

This seemingly unintuitive and surprising behavior is more easily seen in Figure 3 which shows perfor-

mance of a series of problems with T = 6 and l = 4. As can be seen as L increases, the minimum average

cost and corresponding best base-stock rise and fall in L. As discussed in Section 2, one possible explana-

tion is that since only inventory on-hand is available to fill demand early in the focal review cycle, there can

be instances when there are stockouts. In those cases, the incoming order that arrives after n periods into

the cycle comes too late but it may also become an underutilized asset since it is only available to serve a

portion of demand. It is as if there too is a tradeoff between cost of lost sales and inventory carrying cost. A

managerial implication of this result is that in some instances, a retailer may be better off with accepting a

longer lead time since such an action may retain the financing cost of pipeline inventory with the supplier.
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Figure 3: Optimal R and average costs for T = 6 with Poisson demand for different L

6 Extensions and Conclusion

Almost six decades have elapsed since Karlin and Scarf (1958) published their seminal work on base-stock

models with lost sales. While many efforts were made to find good approximate policies, only recently have

researchers made progress on elucidating the underlying problem structure. While some progress has been

made on understanding the structure, the focus of this stream of research has been on the case when L = m

and T = 1. Our study on lost sales models with arbitrary lead time is remarkable given that there are many

real world applications in which lead times are not integer multiples of the review period. These practical

problems span retail, health care and manufacturing. And, their prevalence is increasing with the advent of

innovations in fast delivery.

To explore the impact of arbitrary lead time, we have taken a different approach to this classic problem.

Like Bijvank and Johansen (2012), we use a discrete demand representation and, in our most comprehensive

setting, without loss of generality, we model lead time as discrete by representing it as L = (m− 1)T + n,

where m is the maximum number of orders outstanding. The key to our analysis is a full understanding of

the fractional lead time case, the special case when the lead time does not exceed the review period.

Using analytical results for the motivating example of Section 2 and supporting numerical work in Sec-

tion 5, for the fractional lead time case, we are able to: 1) demonstrate analytically and computationally

that the best stationary base-stock policy can be globally optimal and even when it is not, the best stationary

base-stock policy typically provides performance close to optimal; and, 2) explain intuitively and analyti-

cally why the minimum average cost and the optimal policy need not be increasing in the lead time L. These

findings run contrary to the conventional wisdom that shortening delivery lead times in stochastic inventory
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system results in lower operating costs so that it can be economical to pay more for faster delivery. Our re-

sults seem to indicate that there are instances where shorter lead times can increase both operating expense

and inventory making such a tactical choice un-economical.

After having demonstrated that stationary base-stock policies can be effective, we focus on studying

stationary base-stock policies when L = (m− 1)T + n. Using a sample-path analysis we are able to show

that the cost function can be decomposed into two parts: one that is increasing in R, the base-stock, and

the other that is decreasing in R. This provides sufficient structure to develop an algorithm with a simple

stopping-rule, which also provides upper and lower bounds that get tighter at each iteration.

To facilitate computation of the cost function used in a search algorithm for the best stationary base-

stock, we develop an exact Markovian representation of the underlying system with arbitrary lead time.

Using the fractional lead time case, we are able to represent the Markovian structure model with arbitrary

lead time in terms of a sparse matrix that uses this fractional lead time case as a building block. This allows

us to solve problems larger than those solved previously; for example those solved by Zipkin (2008b).

Furthermore our numerical experiments demonstrate that the non-monotonicity in L persists as the lead

time increases to become longer than the review period. For example, as can be seen from Figure 3, while

R∗ and TC(R∗) are not monotone in n > 0 for a given m with L = (m − 1)T + n, it appears that for a

fixed n, TC(R∗) may be monotone in m.

While establishing monotonicity for the best stationary base-stock remains elusive, for the correspond-

ing optimal cost, establishing monotonicity in m for a fixed n is straightforward. Adapting the argument in

the first paragraph of Section 5 of Zipkin (2008b), consider two systems that are otherwise identical except

one has lead time L = mT + n and the other has lead time L = (m − 1)T + n. Then, at each review

epoch t + T for the system with the shorter lead time, order the quantity that was ordered at epoch t for

the system with the longer lead time. Then, on every sample path the two systems would have the same

cost. If the optimal control was used for the system with L = mT + n, then it follows immediately that the

optimal policy for the system with L = (m − 1)T + n cannot cost more. The monotonicity in m follows

directly and generalizes the analogous result in Zipkin (2008b), since he only considers the case equivalent

to n = T = 1.

While we have been able to show that at least some structural properties are preserved when the lead

time is general, it remains to be determined if other theoretical results can be reproduced. For instance,

is the dual-balancing heuristic still effective or is the best stationary base-stock policy still asymptotically

optimal?
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Appendix A Technical Details for Section 2

Appendix A.1 The Structure of Optimal Policy

As discussed in Section 2, the structure of the optimal policy depends on the ratio l
h , and the values of δ and

L. In particular, we know that given δ, E(δ, L) monotonically increases in L, and B(δ, L) monotonically

decreases in L, while A(δ, L) increases and then decreases in L and attains its global maximum at L = 0.5.

Therefore, by arranging the three extreme values E(δ, 1),B(δ, 1) and A(δ, 0.5) in their proper order, the

spatial relationship between A(δ, L), B(δ, 1) and E(δ, L) can be discerned, thereby helping determine the

best base-stock. Given that A(δ, 0.5) = E(δ, 0.5) < E(δ, 1), there are exactly three admissible orders:

Case 1. B(δ, 1) ≥ E(δ, 1) > A(δ, 0.5) = E(δ, 0.5);

Case 2. E(δ, 1) > B(δ, 1) > A(δ, 0.5) = E(δ, 0.5);

Case 3. E(δ, 1) > A(δ, 0.5) = E(δ, 0.5) ≥ B(δ, 1).

We start with Case 1.

Case 1. B(δ, 1) ≥ E(δ, 1) > A(δ, 0.5) = E(δ, 0.5).

We proceed by defining

W (δ, L) = B(δ, L)− E(δ, L) =

{
(1− δ)
δ

+
(2− δ2L2)

2δ2L

}
− [2 + 2δL+ δ2L2 − 2δ]

2δ

Then,

∂W (δ, L)

∂δ
= − 1

δ2
− 2

δ3L
+

1

δ2
− L2

2

= − 2

δ3L
− L2

2
< 0.

Now let

W (δ, 1) =

{
(1− δ)
δ

+
(2− δ2)

2δ2

}
− [2 + 2δ + δ2 − 2δ]

2δ
= 0,

which simplifies to δ3 + 3δ2−2 = (δ+ 1)(δ−
√

3 + 1)(δ+
√

3 + 1) = 0. It is easy to verify that its unique

positive root is δlow =
√

3− 1.

Therefore, we conclude that: for 0 ≤ δ ≤
√

3 − 1 = δlow, B(δ, L) ≥ E(δ, L) holds for all L ∈ [0, 1],

and, that for
√

3− 1 < δ ≤ 1, there exists a unique threshold Lδ (Llow ≤ Lδ ≤ 1), such that W (δ, Lδ) = 0;

and for L < Lδ, B(δ, L) > E(δ, L), and for L > Lδ, B(δ, L) < E(δ, L). Now that we know for

0 ≤ δ ≤
√

3 − 1 = δlow, A(δ, 0) < A(δ, 0.5) = E(δ, 0.5) < E(δ, 1) < B(δ, 1) holds, we can fully
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characterize R∗ into 5 mutually exclusive policies:

Subcase 1.1: 0 < l
h ≤ A(δ, 0) = A(δ, 1)

In this subcase, we have TC(0) ≤ TC(1) ≤ TC(2) so that R∗ = 0 for all 0 ≤ L ≤ 1.

Subcase 1.2: A(δ, 0) < l
h < A(δ, 0.5)

As discussed in Section 2, in this subcase we know that as L increases from 0 to 1, l
h will intersect A(δ, L)

two times, first from above at L1 and then from below at L3, and in between, it intersectsE(δ, L) at L2. As a

result, optimal R∗ = 1 for L ∈ [0, L1] and L ∈ [L3, 1], and optimal R = 0 for L ∈ (L1, L3). Furthermore,

TC(1) increases in L in [0, L1], and then decreases in [L3, 1]; while in between TC(0) is constant in L.

Subcase 1.3: A(δ, 0.5) = E(δ, 0.5) < l
h < E(δ, 1)

In this subcase, as L increases from 0 to 1, l
h never intersects A(δ, L) or B(δ, L), namely, A(δ, L) ≤ l

h ≤

B(δ, L). However, lh intersectsE(δ, L) exactly once at L = L2, so that optimalR∗ = 1 and for L ∈ [0, L2],

TC(1) increases in L, and then for L ∈ (L2, 1], TC(1) decreases in L.

Subcase 1.4: E(δ, 1) ≤ l
h ≤ B(δ, 1)

In this subcase, as L increases from 0 to 1, lh does not intersectA(δ, L), B(δ, L) or E(δ, L), so thatR∗ = 1,

and TC(1) increases in L ∈ [0, 1].

Subcase 1.5: l
h > B(δ, 1)

In this subcase, as L increases from 0 to 1, l
h intersects B(δ, L) once at L = L4, and does not intersect

A(δ, L), so for L ∈ [0, L4], R∗ = 1, and TC(1) is increasing in L; then for L ∈ (L4, 1], R∗ = 2 and TC(2)

is decreasing in L. Now that we have fully characterized the optimal policy for Case 1, 0 ≤ δ ≤
√

3− 1 =

δlow, we move on to analyze Case 2.

Case 2. E(δ, 1) > B(δ, 1) > A(δ, 0.5) = E(δ, 0.5).

From the analysis of case 1 we have already established that for the first inequality to hold, δ must be greater

than δlow. To establish the second inequality we define

H1(δ) = B(δ, 1)−A(δ, 0.5)

=
(2 + 2δ − 3δ2)

2δ2
− 2− δ + 0.25δ2

2δ

=
2− 2δ2 − 0.25δ3

2δ2
.

It is obvious that the numerator of H1(δ) is decreasing in δ, hence H1(δ) has only one positive root. Nu-

merically solving H1(δ) = 0, we get δmed ≈ 0.945688.

And we can conclude that:
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for 0 ≤ δ ≤ δmed, B(δ, 1) ≥ A(δ, 0.5);

for δmed < δ ≤ 1, B(δ, 1) < A(δ, 0.5).

Thus, for δlow =
√

3 − 1 ≤ δ ≤ 0.945688 = δmed, E(δ, 1) > B(δ, 1) > A(δ, 0.5) = E(δ, 0.5) holds. As

for Case 1, we can fully characterize optimal R∗ into 5 mutually exclusive policies. Since subcases 2.1 and

2.2 are identical to 1.1 and 1.2, we omit their discussion.

Subcase 2.3: A(δ, 0.5) ≤ l
h < B(δ, 1)

This case is analogous to subcase 1.3 except that the upper bound is now B(δ, 1) since it is not greater than

E(δ, 1).

Subcase 2.4: B(δ, 1) ≤ l
h <

[2+2δLδ+δ
2L2

δ−2δ]
2δ = E(δ, Lδ)

In this subcase, as L increases from 0 to 1, l
h will first intersect E(δ, L) at L2, and then it will intersect

B(δ, L) at L4. Accordingly, the optimal policy is such that for L ∈ [0, L4], optimal R∗ = 1, and as in

subcases 1.3 and 2.3, TC(1) increases in L for L ∈ [0, L2]; then decreases in L for L ∈ (L2, L4]; finally,

for L ∈ (L4, 1], optimal R∗ = 2 and TC(2) decreases in L.

Subcase 2.5: l
h ≥

[2+2δLδ+δ
2L2

δ−2δ]
2δ = E(δ, Lδ)

Subcase 2.5 is identical to subcase 1.5 except the lower bound is now E(δ, Lδ) since it is greater than

B(δ, 1). By comparing Case 1 and Case 2 we see that two intervals have different bounds but only in sub-

case 2.4 is the optimal policy different from that in the corresponding subcase in Case 1. So the effect of

reduced variability has modest incremental effect compared to Case 1. We now turn to the remaining case

which has the lowest variability in demand.

Case 3. E(δ, 1) > A(δ, 0.5) = E(δ, 0.5) ≥ B(δ, 1).

From the analysis of Case 1, we know that for this remaining case, δmed = 0.945688 < δ ≤ 1, so that

A(δ, 0) < B(δ, 1) < A(δ, 0.5) = E(δ, 0.5) < E(δ, Lδ) < E(δ, 1). As for Case 1 and Case 2, we can

fully characterize optimal R∗ into 5 mutually exclusive policies. Since subcase 3.1 and 3.5 are identical to

subcases 2.1 and 2.5 respectively, we omit their discussion.

Subcase 3.2: A(δ, 0) < l
h < B(δ, 1)

This subcase is analogous to subcase 2.2 (and subcase 1.2) except that the upper bound now is B(δ, 1) since

it is less than A(δ, 0.5).

Subcase 3.3: B(δ, 1) < l
h < A(δ, 0.5)

In this subcase as L increases from 0 to 1, l
h first intersects A(δ, L) at L = L1; then as L increases, it will

intersect E(δ, L) at L = L2; then it will intersect A(δ, L) again at L = L3; finally, it will intersect B(δ, L)

at L4. Therefore, in this subcase, the optimal policy is such that for L ∈ [0, L1], R∗ = 1, and TC(1)
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increases in L; then for L ∈ (L1, L3], R∗ = 0, and it is obvious that TC(0) is constant as L increases;

then for L ∈ (L3, L4], R∗ = 1 but L > L2 implies that TC(1) decreases in L in this interval. Finally, for

L ∈ [L4, 1], R∗ = 2, and TC(2) decreases in L in this interval. Finally we consider:

Subcase 3.4: A(δ, 0.5) ≤ l
h < E(δ, Lδ)

While the optimal policy in this subcase is identical to that in subcase 2.4, the lower bound in this subcase

is A(δ, 0.5) since it is greater than B(δ, 1).

We close by noting that by comparing Case 2 and Case 3 we see that these two cases have different

bounds but only in subcase 3.3 is the policy different from that in the corresponding subcase in Case 2.

So the effect of even more reduced variability has modest incremental effect compared to Case 2. As we

move from Case 1 to Case 2, only subcase 2.4 is different than the corresponding subcase 1.4. Analogously,

when we move from Case 2 to Case 3, only subcase 3.3 is different than the corresponding subcase 2.3. All

together these seven policies show that the optimal R can increase in L, first increase then decrease in L or

remain the same. Similarly, the optimal cost can increase in L, first increase then decrease in L or remain

the same. Thus, this simple problem has remarkably complex optimal structure.

Appendix A.2 The State-dependent Policy

It is easily verified that π̂0 = δ
2+δL , π̂1 = 1

2+δL , and π̂2 = 1−δ+δL
2+δL are the stationary probabilities that the

inventory on-hand is 0, 1, and 2, respectively. Using the subscript sdp to represent state-dependent policy,

given this stationary distribution, the average cost per period can be written as:

TCsdp = π̂0δ

{
L[l + 2h(1− L)] + h

∫ 1

L
[(1− L) + (t− L)]dt

}
+ 2hπ̂0(1− δ)(1− L)

+π̂1δh

[∫ 1

0
tdt

]
+ π̂1h(1− δ) + π̂2δh

[
1 +

∫ 1

0
tdt

]
+ π̂2(1− δ) [2h]

=
δ2

(2 + δL)

{
L[l + 2h(1− L)] + h

∫ 1

L
[(1− L) + (t− L)]dt

}
+

δh

2(2 + δL)

+
3δh[1− δ + δL]

2(2 + δL)
+

3h(1− δ)
(2 + δL)

(A1)
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=
δ2Ll

(2 + δL)
+

δ2h

2(2 + δL)

{
7− 10L+ 3L2

}
+

δh

2(2 + δL)
+

3δh[1− δ + δL]

2(2 + δL)
+

3h(1− δ)
(2 + δL)

=
δ2Ll

(2 + δL)
+

δh

2(2 + δL)

{
δ[7− 10L+ 3L2] + 1 + 3[1− δ + δL]

}
+

3h(1− δ)
(2 + δL)

=
δ2Ll

(2 + δL)
+

δh

2(2 + δL)

{
4 + 4δ − 7δL+ 3δL2

}
+

3h(1− δ)
(2 + δL)

=
δ2Ll

(2 + δL)
+

h

2(2 + δL)

{
6− 2δ + 4δ2 − 7δ2L+ 3δ2L2

}
.

To compare TCsdp with TC(1) we compute,

TCsdp − TC(1) =
δ2Ll

(2 + δL)
+

h

2(2 + δL)

{
6− 2δ + 4δ2 − 7δ2L+ 3δ2L2

}

−h[(2− δ) + δ2L(1− L)]

2(δL+ 1)
− δ2lL

(δL+ 1)

=
−δ2lL

(δL+ 1)(2 + δL)
+
h(δL+ 1)

{
6− 2δ + 4δ2 − 7δ2L+ 3δ2L2

}

2(2 + δL)(1 + δL)

−h(δL+ 2)[(2− δ) + δ2L(1− L)]

2(2 + δL)(1 + δL)
(A2)

=
−δ2lL

(δL+ 1)(2 + δL)
+
h
{

2 + 4δL+ 4δ2 − 10δ2L+ 5δ2L2 + 4δ3L− 8δ3L2 + 4δ3L3
}

2(2 + δL)(1 + δL)

=
δ2Lh

(δL+ 1)(2 + Lδ)

[{
2 + 4δL+ 4δ2 − 10δ2L+ 5δ2L2 + 4δ3L− 8δ3L2 + 4δ3L3

}

2δ2L
− l

h

]
.

We can easily see that if

l

h
<

{
2 + 4δL+ 4δ2 − 10δ2L+ 5δ2L2 + 4δ3L− 8δ3L2 + 4δ3L3

}

2δ2L
,

then TC(1) < TCsdp .

Recall from (5) that

TC(1)− TC(2) =
δ2Lh

(δL+ 1)

[
l

h
− (1− δ)

δ
− (2− δ2L2)

2δ2L

]
,

which implies that if l
h <

(1−δ)
δ + (2−δ2L2)

2δ2L
, then TC(1) < TC(2) .
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Notice that

{
2 + 4δL+ 4δ2 − 10δ2L+ 5δ2L2 + 4δ3L− 8δ3L2 + 4δ3L3

}

2δ2L
−
[

(1− δ)
δ

+
(2− δ2L2)

2δ2L

]

=

{
2 + 4δL+ 4δ2 − 10δ2L+ 5δ2L2 + 4δ3L− 8δ3L2 + 4δ3L3

}

2δ2L
−
[

(2δL− 2δ2L+ 2− δ2L2)

2δ2L

]

=

{
2δL+ 4δ2 − 8δ2L+ 6δ2L2 + 4δ3L− 8δ3L2 + 4δ3L3

}

2δ2L

=

{
2δL+ 4δ2(1− L)2 + 4δ3L(1− L)2 + 2δ2L2

}

2δ2L
> 0

Therefore, we can conclude that if l
h <

(1−δ)
δ + (2−δ2L2)

2δ2L
, then TC(1) < TC(2), and TC(1) < TCsdp hold

simultaneously.

Moreover,

TCsdp − TC(2) =
δ2Ll

(2 + δL)
+

h

2(2 + δL)

{
6− 2δ + 4δ2 − 7δ2L+ 3δ2L2

}
− h(2− 0.5δ − δL)

=
δ2Ll

(2 + δL)
+

h

2(2 + δL)

{
6− 2δ + 4δ2 − 7δ2L+ 3δ2L2

}
− 2h(2− 0.5δ − δL)(2 + δL)

2(2 + δL)

=
δ2Ll

(2 + δL)
+

h

2(2 + δL)

{
6− 2δ + 4δ2 − 7δ2L+ 3δ2L2

}
− h

{
8− 2δ − δ2L− 2δ2L2

}

2(2 + δL)

=
δ2Ll

(2 + δL)
+
h[5δ2L2 − 6δ2L+ 4δ2 − 2]

2(2 + δL)
(A3)

=
δ2Ll

(2 + δL)
+

5δ2h(L− 0.6)2 + h(2.2δ2 − 2)

2(2 + δL)

=
5δ2h(L− 0.6)2

2(2 + δL)
+

δ2Lh

(2 + δL)

[
l

h
− (2− 2.2δ2)

2δ2L

]
.

We can easily see that if l
h > (2−2.2δ2)

2δ2L
, then TCsdp > TC(2) holds. Also notice that for any 0 ≤

L ≤ 1 and 0 ≤ δ ≤ 1, (2−2.2δ2)
2δ2L

< (1−δ)
δ + (2−δ2L2)

2δ2L
holds, which implies that if l

h ≤
(2−2.2δ2)

2δ2L
, then

l
h <

(1−δ)
δ + (2−δ2L2)

2δ2L
holds as well; hence it follows that TC(1) < TCsdp. Alternatively, l

h >
(2−2.2δ2)

2δ2L
,

so that TCsdp > TC(2) holds. Therefore, we can conclude that TCsdp > min{TC(1), TC(2)} for any

0 ≤ L ≤ 1 and 0 ≤ δ ≤ 1. Since this is the only possible candidate state-dependent policy for our model,

it completes the proof of proposition 2.

Appendix B Total Expected Cost TCt

In addition to the notation introduced in Section 3, we will need the following notation:

πRj = stationary probability that the inventory on-hand equals j at the beginning of a review cycle.
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Then, the expression of TCt , the total expected inventory-related cost in period t appearing in equation

(11) for different values of L are as given below:

a) The Case when m = 1, 0 < n < T

In this case, the total expected cost for the first period of the review cycle, i.e., period t, is given by

TCt = h · LOt + l · LSt =
R∑

j=0

πRj


h

j∑

z=0

Pz · (j − z) + l
+∞∑

z=j+1

Pz · (z − j)


 (B1)

for period t+ s (1 ≤ s ≤ L),

TCt+s = h · LOt+s + l · LSt+s

= h
R∑

j=0

πRj

[
j∑

z=0

P s+1
z · (j − z)

]
+ l

R∑

j=0

πRj




+∞∑

z=j+1

(
P s+1
z − P sz

)
· (z − j)


 ; (B2)

for period t+ L,

TCt+L = h · LOt+L + l · LSt+L

= h

R∑

j=1

πRj

[
j−1∑

z=0

PLz

R−z∑

k=0

Pk · (R− z − k) + P̄Lj

R−j∑

k=0

Pk · (R− j − k)

]

+l

R∑

j=0

πRj



j−1∑

z=0

PLz

+∞∑

k=R−z+1

Pk · (z + k −R) + P̄Lj

+∞∑

k=R−j+1

Pk · (k + j −R)


 ; (B3)

and, for period t+ s (L < s < T − 1),

TCt+s = h · LOt+s + l · LSt+s

= h

R∑

j=1

πRj

[
j−1∑

z=0

PLz

R−z∑

k=0

P s−L+1
k · (R− z − k) + P̄Lj

R−j∑

k=0

P s−L+1
k · (R− j − k)

]

+l

R∑

j=0

πRj

[
j−1∑

z=0

PLz

+∞∑

k=R−z+1

(
P s−L+1
k − P s−Lk

)
· (z + k −R)

]
(B4)

+l

R∑

j=0

πRj


P̄Lj

+∞∑

k=R−j+1

(
P s−L+1
k − P s−Lk

)
(j + k −R)


 .

b) The Case when m > 1, 0 < n < T

In this case, the total expected cost for the first period of the review cycle, i.e., period t, is given by

TCt = h · LOt + l · LSt =
R∑

j=0

πRj


h

j∑

z=0

Pz · (j − z) + l
+∞∑

z=j+1

Pz · (z − j)


 (B5)
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and, for period t+ s (1 ≤ s < n),

TCt+s = h · LOt+s + l · LSt+s

= h
R∑

j=0

πRj

[
j∑

z=0

P s+1
z · (j − z)

]
+ l

R∑

j=0

πRj




+∞∑

z=j+1

(
P s+1
z − P sz

)
· (z − j)


 ; (B6)

for period t+ n, the formulation is different because the first outstanding order arrives within the cycle. In

order to calculate the expected lost sales in period t + n, not only do we need to know the distribution of

inventory on-hand at the beginning of the cycle (i.e., period t), but also we need to know the joint distribution

of the first outstanding order and the rest of m outstanding orders, which we denote as π̃Ruv, u + v ≤ R,

where u denotes the first outstanding order, and v denotes the sum of the rest of m outstanding orders,

respectively. Therefore, we have πRj =
∑

u+v=R−j
π̃Ruv, so that

TCt+n = h · LOt+n + l · LSt+n

= h
R∑

u+v=0

π̃Ruv

[
R−u−v−1∑

z=0

Pnz

R−v−z∑

k=0

Pk(R− v − z − k) + P̄nR−u−v

u∑

k=0

Pk(u− k)

]
(B7)

+l

R∑

u+v=0

π̃Ruv

[
R−u−v−1∑

z=0

Pnz

+∞∑

k=R−v−z+1

Pk(v + z + k −R) + P̄nR−u−v

+∞∑

k=u+1

Pk · (k − u)

]
;

and, for period t+ s (n < s ≤ T − 1),

TCt+s = h · LOt+s + l · LSt+s

= h

R∑

u+v=0

π̃Ruv

[
R−u−v−1∑

z=0

Pnz

R−v−z∑

k=0

P s−n+1
k · (R− v − z − k) + P̄nR−u−v

u∑

k=0

P s−n+1
k · (u− k)

]

+l
R∑

u+v=0

π̃Ruv

[
R−u−v−1∑

z=0

Pnz

+∞∑

k=R−v−z+1

(
P s−n+1
k − P s−nk

)
· (v + z + k −R)

]
(B8)

+l

R∑

u+v=0

π̃Ruv

[
P̄nR−u−v

+∞∑

k=u+1

(
P s−n+1
k − P s−nk

)
(k − u)

]
.

c) The Case when L = mT, m ≥ 1

In this case, the total expected cost for the first period of the review cycle, i.e., period t, is given by

TCt = h · LOt + l · LSt =
R∑

j=0

πRj


h

j∑

z=0

Pz · (j − z) + l
+∞∑

z=j+1

Pz · (z − j)


 (B9)
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and, for period t+ s (1 ≤ s ≤ T − 1),

TCt+s = h · LOt+s + l · LSt+s

= h
R∑

j=0

πRj

[
j∑

z=0

P s+1
z · (j − z)

]
+ l

R∑

j=0

πRj




+∞∑

z=j+1

(
P s+1
z − P sz

)
· (z − j)


 . (B10)

Appendix C Proof of Proposition 3

Proposition 6 3 (Based on Lemma 3.1 of Downs et al. (2001)): For L = (m−1)T+n,m ≥ 1, 0 < n ≤ T ,

assuming that demand in each period r is discrete and P{Dr = 0} > 0, we have for any sample path:

(a) MR+1
r −MR

r ∈ {0, 1}, where Mr refers to ILr, IOr, LOr, and Sr; and

(b) LSRr − LSR+1
r ∈ {0, 1}.

Note : The assumption P{Dt = 0} > 0, is identical to Assumption 3 in Jankiraman and Roundy (2004)

and is needed to guarantee that as time r goes to infinity, the system inventory on-hand ILr will reach base

stock R with a positive probability. Otherwise, on-hand inventory ILr→+∞ = R becomes a reducible state

when the lost sales inventory system becomes stable after a long-run.

Proof.

We first prove Proposition 3 for m = 1; namely, L = n < T . We let t be the first period of the

problem horizon. Without loss of generality, we assume that at the beginning of period t, ILt = R, such

that IOt = 0. Subsequently, demand in period t realizes, and sales St = min{ILt, Dt} = min{R,Dt},

which is non-decreasing in R; specifically, when R goes up by one unit to R + 1, St either goes up by

one unit if Dt ≥ R + 1, or remains the same if Dt ≤ R, hence is non-decreasing in R. Notice that

LOt = ILt − St = R − St = (R − Dt)
+, it is also non-decreasing in R, namely, if we increase R by

one unit, LOt will either increase by one unit or remain unchanged. Later in period t+ 1, since no pipeline

order is received, ILt+1 = LOt; subsequently, St+1 = min{ILt+1, Dt+1} = min{ILt − St, Dt+1} =

min{LOt, Dt+1}, which is again non-decreasing in R since LOt is non-decreasing in R; specifically, if R

increases by one unit, then St+1 either increases by one unit or remains unchanged. It follows immediately

that LOt+1 = ILt+1 − St+1 = ILt − St − St+1 = (ILt − Dt − Dt+1)
+ is non-decreasing in R and

increases at most by one unit when R does. Similarly, in period t + 2, t + 3, . . . , t + T + L − 1, since no

pipeline inventory is delivered, as demands realize, the on-hand inventory level at the beginning of these
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periods is reduced till it reaches zero; specifically, for 1 ≤ j ≤ T + L− 1,

ILt+j = LOt+j−1 = ILt+j−1 − St+j−1 = ILt −
t+j−1∑

i=t

Si = max{R−
t+j−1∑

i=t

Di, 0}. (C1)

Therefore, it is easy to verify that as R increases by one unit, ILt+j , LOt+j , and St+j either increase by

one unit or do not change for all realization of {Dt, Dt+1, . . . , Dt+T+L−1}. Moreover, considering that
∑t+j−1

i=t Si = max{R,∑t+j−1
i=t Di} for 1 ≤ j ≤ T + L− 1,

∑t+j−1
i=t Si may increase by up to one unit at

most if R goes up by one unit. Also, notice that a replenishment order, IOt+T is placed at the beginning of

period t+T , and IOt+T = St+ · · ·+St+T−1 = min{ILt,
∑t+j−1

i=t Di} = min{R,∑t+T−1
i=t Di}, namely,

the total sales incurred from period t to period t + T − 1, and it is obvious that if R goes up by one unit,

IOt+T will either increase by one unit or remain unchanged. Since IOt+T is delivered at the beginning of

period t+ T + L,

ILt+T+L = LOt+T+L−1 + IOt+T = ILt −
t+T+L−1∑

i=t

Si +
t+T−1∑

i=t

Si = R−
t+T+L−1∑

i=t+T

Si, (C2)

which is also non-decreasing in R, and the increase of ILt+T+L is still upper-bounded by the increment of

R, or ILR+1
t+T+L − ILRt+T+L ∈ {0, 1}. In the following T periods, since no order is received from period

t+T+L+1 to period t+2T+L−1, it is easy to verify that ILt+j , LOt+j , St+j and are all non-decreasing

in R, but each increases more slowly than R increases. Again the next replenishment order is placed at the

beginning of period t+ 2T , and

IOt+2T = St+T + · · ·+ St+2T−1

= min

{
ILt+T ,

t+T+L−1∑

i=t+T

Di

}
+ min





(
ILt+T −

t+T+L−1∑

i=t+T

Di

)+

+ IOt+T ,
t+2T−1∑

i=t+T+L

Di



(C3)

= min

{
ILt+T ,

t+T+L−1∑

i=t+T

Di

}
+ min





(
ILt+T −

t+T+L−1∑

i=t+T

Di

)+

+R− ILt+T ,
t+2T−1∑

i=t+T+L

Di





From previous analysis, we know that both ILt+T and IOt+T are non-decreasing in R; hence if R goes

up by one unit toR+1, we either have ILR+1
t+T = ILRt+T +1 and IOR+1

t+T = IORt+T ; or ILR+1
t+T = ILRt+T and

IOR+1
t+T = IORt+T + 1, given that IOR+1

t+T + ILR+1
t+T = R+ 1. To complete the proof, consider the following

two cases.
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Case 1: ILt+T ≥
∑t+T+L−1

i=t+T Di. The expression for IOt+2T simplifies to

IOt+2T = min

{
R,

t+2T−1∑

i=t+T

Di

}

Case 2: ILt+T <
∑t+T+L−1

i=t+T Di. The expression for IOt+2T simplifies to

IOt+2T = min

{
R, ILt+T +

t+2T−1∑

i=t+T+L

Di

}

It is easy to see that in either case, IOR+1
t+2T − IORt+2T ∈ {0, 1}. Similarly, we can show that Proposition

3(a) holds for any period over the infinite horizon. The proof can also be completed using induction as in

Downs et al. (2001). Since LSi = Di − Si, Proposition 3(b) follows from SR+1
t − SRt ∈ {0, 1}.

For L = (m−1)T +n, m > 1, we will prove the proposition by induction. As in the case ofm = 1, we

still assume that at the beginning of period t, the first period of a review cycle, ILt = R, such that IOt = 0.

And the next order is placed at the beginning of period t + T , and is delivered at the beginning of period

t + mT + n. It is easy to verify that the Proposition holds for periods t to t + mT + n − 1. Also, within

these time periods, there are total m replenishment orders placed at the beginning of periods t+ T , t+ 2T ,

. . . , and t+mT .

With a stationary base stock policy, at the beginning of period t + mT , we must have ILt+mT +

∑m
i=1 IOt+iT = R. Since ILt+mT and IOt+iT (i = 1, 2, . . . ,m) are all non-decreasing in R, when R

goes up by one unit, only one of them can go up by one unit, and all other terms remain unchanged.

Hence, we get: (ILR+1
t+mT + IOR+1

t+T ) − (ILRt+mT + IORt+T ) ∈ {0, 1}. Then, at the beginning of period

t+ T + L = t+mT + n, ILt+mT+n = (ILt+mT −
∑t+mT+n−1

i=t+mT Di)
+ + IOt+T , it follows immediately

that ILR+1
t+mT+n− ILRt+mT+n ∈ {0, 1}. In following periods t+mT + n+ 1, . . . , t+ (m+ 1)T − 1, since

no pipeline inventory is delivered, we still have ILR+1
t+mT+j−ILRt+mT+j ∈ {0, 1}, for j = n+1, . . . , T −1.

Similarly, we can show that other parts of the Proposition hold for periods t+mT+n, . . . , t+(m+1)T−1.

Now assume the Proposition holds from period t to period t + kT , for k > m, then the proposition

also holds in period t + kT through t + kT + n − 1 since no outstanding order is delivered. Then at

the beginning of period t + kT + n, outstanding order IOt+(k−m+1)T is delivered, and ILt+kT+n =

(ILt+kT−
∑t+kT+n−1

i=t+kT Di)
++IOt+(k−m+1)T . WhenR goes up by 1, we either have ILR+1

t+kT = ILRt+kT+1

and IOR+1
t+(k−m+1)T = IORt+(k−m+1)T ; or ILR+1

t+kT = ILRt+kT and IOR+1
t+(k−m+1)T = IORt+(k−m+1)T + 1 or

ILR+1
t+kT = ILRt+kT and IOR+1

t+(k+m−1)T = IORt+(k+m−1)T . We get (ILR+1
t+kT +IOR+1

t+(R−m+1)T )−(ILRt+kT +

IORt+(R−m+1)T ) ∈ {0, 1}.
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To complete the proof for ILt+kT+n, we consider the following two cases.

Case 3: ILt+kT ≥
∑t+kT+n−1

i=t+kT Di. We get ILt+kT+n = ILt+kT −
∑t+kT+n−1

i=t+kT Di + IOt+(k−m+1)T .

Case 4: ILt+kT <
∑t+kT+n−1

i=t+kT Di. We get ILt+kT+n = IOt+(k−m+1)T .

It follows ILR+1
t+kT+n − ILRt+kT+n ∈ {0, 1} in both cases.

Next we prove that IOR+1
t+(k+1)T − IORt+(k+1)T ∈ {0, 1}. Recall that in a base stock policy IOt+(k+1)T

simply equals the total sales of previous review cycle, namely,

IOt+(k+1)T =

t+(k+1)T−1∑

i=t+kT

Si =
t+kT+n−1∑

i=t+kT

Si +

t+(k+1)T−1∑

i=t+kT+n

Si

= min

{
ILt+kT ,

t+kT+n−1∑

i=t+kT

Di

}
+ min



ILt+kT+n,

t+(k+1)T−1∑

i=t+kT+n

Di



 (C4)

= min

{
ILt+kT ,

t+kT+n−1∑

i=t+kT

Di

}

+ min



max

{
0, ILt+kT −

t+kT+n−1∑

i=t+kT

Di

}
+ IOt+(k−m+1)T ,

t+(k+1)T−1∑

i=t+KT+n

Di



 .

From our analysis above, we know when R goes up by 1, we either have ILR+1
t+kT = ILRt+kT + 1 and

IOR+1
t+(k−m+1)T = IORt+(k−m+1)T ; or ILR+1

t+kT = ILRt+kT and IOR+1
t+(k−m+1)T = IORt+(k−m+1)T + 1 or

ILR+1
t+kT = ILRt+kT and IOR+1

t+(k−m+1)T = IORt+(k−m+1)T . In all these three case, it is easy to verify that

when R goes up by 1, IOt+(k+1)T can either goes up by 1 or remain unchanged.

Similarly, we can show that other parts of Proposition 3 hold for any period over the infinite horizon. �
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