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1 Introduction

Distinguishing among different forms of nonstationarity has been a topic of long-standing

interest in time series econometrics. For instance, it is well known that a standard t-test for

the presence of a deterministic trend diverges with the sample size if the process contains a

unit root, i.e., a stochastic trend. Moreover, tests for structural change in the deterministic

trend are sensitive to whether the stochastic component is assumed to be stationary or not

(Harvey et al., 2009; Perron and Yabu, 2009). Perron (1989) showed that the presence of

infrequent shifts in the trend function biases unit root tests toward the unit root hypothesis

if these tests do not account for such shifts. Similarly, Diebold and Inoue (2001) provide

analytical as well as Monte Carlo evidence to illustrate that models with stochastic regime

switching can generate long memory behavior by inducing an upward bias in the estimate of

the long memory or fractional differencing parameter. Kejriwal and Perron (2010) demon-

strate that standard structural break detection procedures (such as information criteria or

sequential testing) applied to a regression with integrated variables tend to select the maxi-

mum permissible number of breaks if the regression is spurious.

An important related problem concerns inference regarding the conditional mean in the

presence of nonstationarity in variance. Structural changes in variance have been extensively

documented for macroeconomic and financial time series; see, inter alia, McConnell and

Perez Quiros (2000) and Sensier and van Dijk (2004) for empirical evidence on a variety

of macroeconomic variables, and Loretan and Phillips (1994) for evidence on stock market

returns and exchange rates. The non-robustness of standard unit root tests to nonstationary

volatility has been well established both theoretically and numerically by Cavaliere (2005)

and Cavaliere and Taylor (2007, 2008a, 2009) while Cavaliere and Taylor (2005) provide

similar evidence in the context of standard stationarity tests. The basic reason is that these

procedures are based on a so-called “global homoskedasticity”assumption which typically

fails when the time series is generated by innovations with nonstationary volatility (Cavaliere

and Taylor, 2009).

A relatively small literature has also addressed the problem of discriminating between

instability in the conditional mean and nonstationary volatility. Hansen (2000) shows that

standard structural change tests (e.g., Andrews, 1993) in the linear regression model do

not have the correct size in the presence of nonstationarity in variance and develops a fixed-

regressor bootstrap procedure to remedy the problem. Pitarakis (2004) documents the extent

of size distortions suffered by the stability tests of Andrews (1993) with substantial over-

1



sizing for versions that do not correct for heteroskedasticity and substantial under-sizing for

heteroskedasticity-consistent versions. Zhou and Perron (2008) provide simulation evidence

which shows that ignoring a deterministic shift in variance biases the supremum likelihood

ratio test for stability of the conditional mean towards rejection of the null hypothesis with

the extent of size distortions increasing in the size of the variance break. Perron and Zhou

(2008) develop likelihood ratio tests of the joint hypothesis that the coeffi cients and error

variance in a linear regression model with stationary regressors are stable. Xu (2015) demon-

strates that cumulative sum (CUSUM) tests for structural change in the mean have incorrect

size under variance nonstationarity. These studies convincingly establish that it is impor-

tant from an empirical standpoint to allow for the possibility of nonstationary volatility when

testing the stability of the conditional mean.

This paper is concerned with the problem of testing for structural changes in the per-

sistence of a univariate time series driven by nonstationary volatility. We are interested in

changes which involve switches between unit root [I(1)] and stationary [I(0)] behavior as

well as changes that preserve the I(0) nature of the time series across regimes. While a

plethora of tests for persistence change is available in the literature, most of these proce-

dures are based on the global homoskedasticity assumption; for instance, see Kim (2000),

Busetti and Taylor (2004), Harvey et al. (2006) for tests allowing a single break and Bai

and Perron (1998, BP henceforth), Leybourne et al. (2007), Kejriwal et al. (2013, KPZ

henceforth) for tests allowing multiple breaks and Kejriwal (2018) for procedures to deter-

mine the number of breaks. Diebold and Chen (1996) provide simulation evidence suggesting

that bootstrap versions of single-break tests developed in Andrews (1993) and Andrews and

Ploberger (1994) achieve better size control than their asymptotic counterparts, again assum-

ing error homoskedasticity.1 Cavaliere and Taylor (2008b, CT henceforth) develop bootstrap

tests robust to nonstationary volatility based on the ratio of partial sums of demeaned (or

detrended) residuals. Their procedure assumes (1) the process is I(0) under the null hy-

pothesis of stability; (2) a single break under the alternative that is associated with either a

I(1)-I(0) or I(0)-I(1) shift but not an I(0)-I(0) shift; (3) a stable trend function under both

the null and alternative hypotheses.

In this paper, we provide a comprehensive treatment of issues related to testing for

structural changes in persistence when the innovations are globally heteroskedastic, i.e., fail

the global homoskedasticity condition pervasive in this literature. Our approach is rather

1Their simulation design also assumes that the time series is I(0) under the null hypothesis and regime-
wise I(0) under the alternative hypothesis.
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general in that it allows: (1) an I(1) or I(0) null hypothesis; (2) multiple structural changes

where the number and timing of the changes are unknown; (3) persistence change alternatives

of the I(1)-I(0), I(0)-I(1) and I(0)-I(0) forms which the testing procedure does not require

prior knowledge of; (4) disentangling persistence shifts from shifts in the trend function. The

assumed volatility process is of a general form that can accommodate single and multiple

breaks, smooth transition variation as well as trending volatility. We develop sup-Wald tests

based on a wild bootstrap scheme that delivers procedures with accurate size and satisfactory

power properties. These procedures include tests for a specified number of changes as well

as tests that assume the number of breaks is unknown (up to a known upper bound). We

also propose a sequential approach for determining the number of persistence breaks based

on ordering the bootstrap p-values. The finite sample adequacy of the advocated procedures

including a comparison with existing tests is evaluated through an extensive set of Monte

Carlo experiments.

It is important to emphasize that unlike Xu (2008) who proposes a recursive wild boot-

strap scheme for conducting inference in an autoregressive model with stationary roots, the

I(0) bootstrap samples in our approach are generated only from the estimated residuals un-

der the null hypothesis and not recursively using the parameter estimates. This is because

the full sample estimate of the persistence parameter (the sum of the autoregressive coeffi -

cients) is biased towards unity when the series has at least one asymptotically non-negligible

I(1) segment. As a result, recursively generated bootstrap samples using such estimates is

not only invalid when the null hypothesis is I(1) (Basawa et al., 1991) but also leads to

poor power properties when the alternative involves at least one I(1) segment (Gulesserian

and Kejriwal, 2014). Monte Carlo simulations confirm the presence of these features in fi-

nite samples. Our approach is similar to Hansen’s (2000) fixed-regressor bootstrap scheme

although the latter does not consider the possibility of a unit root null hypothesis.

The rest of the paper is organized as follows. Section 2 lays out the modeling framework

and the associated assumptions. Section 3 details the procedures for testing persistence

change. The large sample effects of nonstationary volatility on persistence change tests

constructed assuming homoskedastic innovations are studied in Section 4. The proposed

bootstrap tests are presented in Section 5. Section 6 discusses extensions of the procedures

to deal with deterministic trends as well as disentangling shifts in persistence from shifts

in the trend function. Section 7 provides Monte Carlo evidence to assess the finite sample

performance of the advocated procedures, Section 8 applies the proposed approach to test for

persistence change in OECD inflation rates and Section 9 concludes. All proofs are collected
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in Appendix A. Additional Monte Carlo results are provided in Appendix B.

As a matter of notation, we will use C = C[0, 1] to denote the space of continuous functions

on [0, 1] and D the space of right continuous with left limit processes on [0, 1], ‘
p→’to denote

convergence in probability, ‘w→’to denote weak convergence in the space D endowed with the
Skorohod metric, and ‘w→p’to denote weak convergence in probability under the bootstrap

measure (Giné and Zinn, 1990). Further, B1(.) and B2(.) denote standard independent

Brownian motions on [0, 1] and B(.) = [B1(.), B2(.)]′. Further, for any stochastic process

Z(.) defined over [0, 1], denote Z(i)(.) represent Z(.) demeaned over [λi−1, λi], i.e., Z(i)(r) =

Z(r) − (λi − λi−1)−1
∫ λi
λi−1

Z, r ∈ [λi−1, λi]. Finally, for brevity of presentation, all integrals

of the form
∫ b
a
f(r)dr are expressed as

∫ b
a
f .

2 The Persistence Change Model

Consider a univariate time series yt generated by the AR(p) model

yt = µi + ut

ut = uT 0i−1 + ht

ht = αiht−1 +
∑p−1

j=1 πij∆ht−j + et

hT 0i−1 = ... = hT 0i−1−p+1 = 0


t = T 0

i−1 + 1, T 0
i−1 + 2, ..., T 0

i ; i = 1, ...,m+ 1 (1)

with the convention that T 0
0 = 0 and T 0

m+1 = T , where T is the sample size. The process is

therefore subject to m breaks or m+1 regimes with break dates (T 0
1 , ..., T

0
m). Both the break

dates and the number of breaks are assumed to be unknown. The same data generating

process was considered by Leybourne et al. (2007) and Kejriwal (2018) and is designed to

ensure that the successive I(1) and I(0) regimes join up at the breakpoints thereby avoiding

the problem of spurious jumps to zero in ut. While we assume a common lag length p across

regimes, regime-specific lag lengths can be accommodated by interpreting p as the maximum

lag length across the (m+ 1) regimes.

Our analysis is based on the following assumptions on the process generating {yt}:

Assumption A1: T 0
i = [Tλ0

i ], where 0 < λ0
1 < ... < λ0

m < 1.

Assumption A2: All roots of the polynomial πi(L) = 1−πi1L−πi2L2− ...−πi,p−1L
p−1 lie

outside the unit circle.
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Assumption A3: The error term et in (1) satisfies

et = σtεt (2)

where {εt} is an i.i.d. sequence with zero mean and unit variance and {σt} is a strictly
positive non-stochastic sequence. We assume suptE(ε4+β

t ) <∞ for some β > 0.

Assumption A4: For some strictly positive deterministic sequence {aT}, we assume the
sequence {σt} satisfies

a−1
T σ[Ts] = g(s), s ∈ [0, 1]

where g(.) ∈ D is a strictly positive, non-stochastic function with a finite number of points
of discontinuity and satisfies a uniform first-order Lipschitz condition except at the points

of discontinuity.

Assumption A1 facilitates the development of the asymptotic theory by requiring the

breakpoints to be asymptotically distinct. Each segment is assumed to increase proportion-

ately with the sample size. This requirement is standard in the structural change literature

(see, e.g., Bai and Perron, 1998; 2003a). Assumption A2 corresponds to the requirement of

at most one unit root in each regime while all remaining roots are stationary. Assumption

A3 specifies that the stochastic process for {et} is determined by the time-varying volatilities
{σt} and the i.i.d. innovation sequence {εt} with a requirement on the existence of moments
for the innovations (see, e.g., Xu, 2008). We follow Cavaliere and Taylor (2008a) in assuming

that the innovations are i.i.d. although our results continue to hold under the weaker condi-

tion that for Ft = σ-field{es, s ≤ t}, {εt,Ft} is a martingale difference sequence satisfying
(i) E(ε2

t ) = 1 for all t; (ii) T−1
∑T

t=1 ε
2
t

p→ 1; and (iii) suptE(ε4+β
t ) <∞ for some β > 0.

The key assumption that embodies global heteroskedasticity is Assumption A4. It allows

the time series {yt} to be driven by a general class of nonstationary heteroskedastic errors
that includes a wide variety of specifications for volatility considered in the literature. For

instance, single or multiple volatility breaks, linearly trending volatility, piece-wise linear

trends in variance and smooth transition shifts can all be shown to satisfy Assumption A4

with aT = 1 and a particular choice of g(.). Further, models of explosive deterministic

volatility are allowed through appropriate choice of the scaling factor aT (specifically, by

letting aT grow with the sample size). Cavaliere and Taylor (2008, 2009) provide a detailed

discussion of the specific choices of aT and g(.) associated with each of the aforementioned

volatility models.
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Remark 1 As in CT, the function g(.) is assumed to be non-stochastic to enable simplifica-

tion of the theoretical analysis. In particular, Assumption A4 rules out nonstationary autore-

gressive stochastic volatility (SV) models (Hansen,1995), SV models with jumps (Georgiev,

2008), “nonstationary nonlinear heteroskedastic”models with stochastically trending volatil-

ity (Park, 2002) and near-integrated GARCH models (Nelson,1990). This assumption can

be potentially weakened to allow cases where the sequences {σt} and {εt} are stochastically
independent. In such cases, our results can be interpreted as holding conditional on a given

realization of g(.), where g(.) has sample paths satisfying Assumption A4.

In order to accommodate I(0) preserving persistence changes as in the framework of Bai

and Perron (1998), we also consider the following data generating process for yt:

yt = µi + ut

ut = αiut−1 +
∑p−1

j=1 πij∆ut−j + et

u0 = ... = u−p+1 = 0

 t = T 0
i−1 + 1, T 0

i−1 + 2, ..., T 0
i ; i = 1, ...,m+ 1

(3)

The conditions stated in Assumptions A1-A4 are assumed to hold for (3) as well. Since

the direction of persistence change is typically unknown in practice, it is important from a

practical perspective for the testing framework to allow alternatives that involve switches

between I(1) and I(0) regimes as captured by (1) as well as alternatives that do not involve

a change in the order of integration across regimes as in (3).

3 Testing Procedures

The testing procedures recommended in this paper are based on bootstrap versions of the

asymptotic procedures developed by BP and KPZ assuming conditional homoskedasticity

which corresponds to setting σt = σ in (2). Section 3.1 reviews the test statistics designed

to detect a specified number of breaks while Section 3.2 outlines the procedures when the

number of breaks is not specified. The proposed bootstrap versions of these tests will be

described in Section 5.
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3.1 Tests for a Specified Number of Breaks

We first consider the statistics designed to test the null hypothesis H(1)
0 : αi = 1 for all i in

(1). The estimating regression takes the form

∆yt = ci + (αi − 1)yt−1 +
p−1∑
j=1

πj∆yt−j + e∗t (4)

with ci = (1 − αi)[uT 0i−1 + µi] and e
∗
t is the regression error. Under H

(1)
0 , ci = 0 for all i.

The true lag order p is assumed unknown but can be estimated using standard information

criteria such as the AIC or BIC. Further, the coeffi cients of the lagged differences in (4) are

not allowed to change since, as argued in KPZ, the goal of the testing approach is to direct

power against structural changes in the persistence parameter αi and not changes in the

short-run dynamics.2

Under the alternative, the following two models are considered depending on whether

the initial regime contains a unit root or not:

Model 1a: αi = 1 in odd regimes and |αi| < 1 in even regimes.

Model 1b: αi = 1 in even regimes and |αi| < 1 in odd regimes.

Consider first the Wald test that applies when the alternative involves a fixed value

m = k of changes. Denote a candidate vector of break fractions by λ = (λ1, ..., λk) and the

alternative hypotheses corresponding to models 1a and 1b as H(1)
a,k and H

(1)
b,k , respectively.

The test against H(1)
a,k is defined as

F1a(λ, k) = (T − k)(SSR
(1)
0 − SSR

(1)
1a,k)/[kSSR

(1)
1a,k] if k is even

F1a(λ, k) = (T − k − 1)(SSR
(1)
0 − SSR

(1)
1a,k)/[(k + 1)SSR

(1)
1a,k] if k is odd (5)

while that against H(1)
b,k is defined as

F1b(λ, k) = (T − k − 2)(SSR
(1)
0 − SSR

(1)
1b,k)/[(k + 2)SSR

(1)
1b,k] if k is even

F1b(λ, k) = (T − k − 1)(SSR
(1)
0 − SSR

(1)
1b,k)/[(k + 1)SSR

(1)
1b,k] if k is odd (6)

In (5) and (6), SSR
(1)
0 denotes the sum of squared residuals under H(1)

0 while SSR(1)
1a,k and

2Simulation evidence presented in KPZ illustrates that the test statistics do not have much power against
pure changes in short-run dynamics but are powerful when there is a change in both persistence and these
dynamics.
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SSR
(1)
1b,k denote, respectively, the sum of squared residuals obtained from estimating (4) under

the restrictions imposed by Model 1a and Model 1b. For some arbitrary small positive

number ε, we define the set Λk
ε = {λ : |λi+1 − λi| ≥ ε, λ 1 ≥ ε, λ k ≤ 1 − ε}. The sup-Wald

tests are then defined as

F1a(k) = sup
λ∈Λkε

F1a(λ, k), F1b(k) = sup
λ∈Λkε

F1b(λ, k).

When the direction of persistence change is unknown, the relevant test statistic is given by

W1(k) = max[F1a(k), F1b(k)]

While the foregoing tests are based on the I(1) null hypothesis, the stable I(0) null can be

tested by employing the BP procedure. This amounts to testing H(0)
0 : ci = c, αi = α, for all

i with |α| < 1 in (4). The relevant alternative hypothesis within the BP framework is H(0)
1,k :

α1 6= α2 6= ... 6= αk+1, |αi| < 1 for all i. The time series is thus regimewise-I(0) under H(0)
1,k .

The BP test for a fixed number m = k changes is given by

G1(λ, k) = [T − 2(k + 1)](SSR
(0)
0 − SSR

(0)
1,k)/[kSSR

(0)
1,k] (7)

In (7), SSR
(0)
0 denotes the sum of squared residuals under H(0)

0 while SSR(0)
1,k denotes the

sum of squared residuals obtained from unrestricted OLS estimation of (4). The BP test is

then defined as G1(k) = supλ∈Λkε
G1(λ, k).

Under conditional homoskedasticity, the limiting distributions of F1a(k), F1b(k) andW1(k)

are pivotal under H(1)
0 while that of G1(k) is pivotal under H(0)

0 , given the trimming choice ε.

Asymptotic critical values are tabulated by KPZ and BP for different choices of ε. Further,

the tests F1a(k) and F1b(k) are consistent under H(1)
a,k and H

(1)
b,k , respectively whileW1(k) and

G1(k) are consistent under each of H(1)
a,k , H

(1)
b,k and H

(0)
1,k .

As shown in Kejriwal (2018), G1(k) does not have correct asymptotic size underH(1)
0 even

in the homoskedastic case. On the other hand, the KPZ tests [F1a(k), F1a(k),W1(k)] diverge

to positive infinity under H(0)
0 . In order to control asymptotic size when the process is either

I(1) or I(0) under the null hypothesis, KPZ propose simultaneous application of their test

and the BP test. Let H0 = H
(1)
0 ∪ H

(0)
0 . For a given significance level η, the KPZ statistic

for testing H0 is given by

H(k, η) = min

[
W1(k),

cvw,k(η)

cvg,k(η)
G1(k)

]
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where, at level η, cvw,k(η) and cvg,k(η) are the critical values of the statistics W1(k) and

G1(k), respectively. Under conditional homoskedasticity, the decision rule of rejecting H0

when H(k, η) > cvw,k(η) has asymptotic size at most η under H0 and unit asymptotic power

against each ofH(1)
a,k , H

(1)
b,k andH

(0)
1,k . The computation ofG1(.) andW1(.) can be accomplished

using the dynamic programming algorithms proposed in Bai and Perron (1998, 2003) and

Perron and Qu (2006), respectively.

3.2 Tests when the Number of Breaks is Unknown

When the number of breaks is unknown up to an upper bound A, KPZ propose the following

test statistic directed to detect processes which alternate between I(1) and I(0) regimes:

Wmax1 = max
1≤k≤A

W1(k)

Similarly, for detecting I(0)-preserving changes, BP propose the statistic

UDmax1 = max
1≤k≤A

G1(k)

To achieve correct size under H0, KPZ also suggest the statistic

Hmax1(η) = min

[
Wmax1,

cvw,max(η)

cvg,max(η)
UDmax1

]
where, at level η, cvw,max(η) and cvg,max(η) are the critical values of Wmax1 and UDmax1

respectively. The decision rule is to reject H0 if H max1(η) > cvw,max(η). The tests Wmax1,

UDmax1 and Hmax1(η) are all consistent under each of H(1)
a,m, H

(1)
b,m and H

(0)
1,m, where m ≤

A is the true number of structural changes.

4 The Large Sample Effects of Nonstationary Volatility

This section studies the large sample behavior of the KPZ and BP tests when the time series

is subject to nonstationary volatility as specified in Assumptions A3 and A4. In particular,

we show that the null limiting distributions of the tests are not pivotal and depend on

the sample path of the volatility process g(.). Therefore these tests do not have correct

asymptotic size unless g(.) is a constant. Since the KPZ tests are correctly sized under

the I(1) null hypothesis H(1)
0 when conditional homoskedasticity holds, we study their large

sample behavior under H(1)
0 when the time series satisfies Assumptions A1-A4. Similarly,

the effects of nonstationary volatility on the BP tests are investigated under H(0)
0 . Under
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H
(0)
0 , the KPZ tests diverge to positive infinity while under H(1)

0 , the BP tests have incorrect

asymptotic size even when conditional homoskedasticity holds. It can be shown that these

properties continue to hold under Assumptions A1-A4. Monte Carlo evidence indicates that

the extent of size distortions in finite samples can be considerable (see Table B-1 in Appendix

B).

For r ∈ [0, 1], let g̃(r) =
(∫ r

0
g(s)2

)1/2
, Bg,1(r) = g̃(1)−1

∫ r
0
g(s)dB1(s), Bg,2(r) =

g̃(1)−1
∫ r

0
g(s)2dB2(s). We first state the result for the KPZ tests under H(1)

0 :

Theorem 1 Suppose Assumptions A1-A4 hold. Then, under H(1)
0 , if k is even, we have

F1a(λ, k)
w→ 1

k

k/2∑
i=1


[{
B
(2i)
g,1 (λ2i)

}2
−
{
B
(2i)
g,1 (λ2i−1)

}2
−g̃(1)−2{g̃(λ2i)2−g̃(λ2i−1)2}

]2
4
∫ λ2i
λ2i−1

[
B
(2i)
g,1 (r)

]2
dr

+ 1
λ2i−λ2i−1 {Bg,1(λ2i)−Bg,1(λ2i−1)}2



F1b(λ, k)
w→ 1

(k + 2)

k/2∑
i=0


[{
B
(2i+1)
g,1 (λ2i+1)

}2
−
{
B
(2i+1)
g,1 (λ2i)

}2
−g̃(1)−2{g̃(λ2i+1)2−g̃(λ2i)2}

]2
4
∫ λ2i+1
λ2i

[
B
(2i+1)
g,1 (r)

]2
dr

+ 1
λ2i+1−λ2i {Bg,1(λ2i+1)−Bg,1(λ2i)}2


If k is odd,

F1a(λ, k)
w→ 1

(k + 1)

(k+1)/2∑
i=1


[{
B
(2i)
g,1 (λ2i)

}2
−
{
B
(2i)
g,1 (λ2i−1)

}2
−g̃(1)−2{g̃(λ2i)2−g̃(λ2i−1)2}

]2
4
∫ λ2i
λ2i−1

[
B
(2i)
g,1 (r)

]2
dr

+ 1
λ2i−λ2i−1 {Bg,1(λ2i)−Bg,1(λ2i−1)}2



F1b(λ, k)
w→ 1

(k + 1)

(k−1)/2∑
i=0


[{
B
(2i+1)
g,1 (λ2i+1)

}2
−
{
B
(2i+1)
g,1 (λ2i)

}2
−g̃(1)−2{g̃(λ2i+1)2−g̃(λ2i)2}

]2
4
∫ λ2i+1
λ2i

[
B
(2i+1)
g,1 (r)

]2
dr

+ 1
λ2i+1−λ2i {Bg,1(λ2i+1)−Bg,1(λ2i)}2


Corollary 1 Denote the limits of F1a(λ, k) and F1b(λ, k) by F 0

1a(λ, k) and F 0
1b(λ, k), respec-

tively. Then, by the continuous mapping theorem, we have F1a(k)
w→ supλ∈Λkε

F 0
1a(λ, k), F1b(k)

w→ supλ∈Λkε
F 0

1b(λ, k), W1(k)
w→ max[F 0

1a(k), F 0
1b(k)], Wmax1 = max1≤k≤AW1(k)

w→ max1≤k≤A

{max[F 0
1a(k), F 0

1b(k)]}.

Remark 2 The process Bg,1(s) is Gaussian with zero mean and variance ν(s) = g̃(s)2/g̃(1)2

so that Bg,1(.) is a variance-transformed Brownian motion with directing process ν. See

Davidson (1994, Section 29.4) and Cavaliere (2005) for discussion of transformed Brownian

motion.
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Remark 3 The limiting distributions stated in Theorem 1 are not pivotal and depend on the
sample path of the volatility process g(.). The pivotal limit results in KPZ can be recovered

only if g(.) = σ in which case Bg,1(.) reduces to the standard Brownian motion B1(.). The

practical implication of this result is that the KPZ tests in general have incorrect asymptotic

size in the presence of nonstationary volatility.

Next, we state the large sample result for the BP tests under H(0)
0 :

Theorem 2 Suppose Assumptions A1-A4 hold. Then, under H(0)
0 , we have

G1(λ, k)
w→ 1

k

k∑
i=1

[
{λiBg,1(λi+1)− λi+1Bg,1(λi)}2

λiλi+1(λi+1 − λi)
+
{g̃(λi)

2Bg,2(λi+1)− g̃(λi+1)2Bg,2(λi)}2

g̃(λi)2g̃(λi+1)2 {g̃(λi+1)2 − g̃(λi)2}

]
≡ G0

1(λ, k)

G1(k)
w→ sup

λ∈Λkε

G0
1(λ, k)

UDmax1
w→ max

1≤k≤A

{
sup
λ∈Λkε

G0
1(λ, k)

}

Remark 4 The limit distributions of the BP tests under the stable I(0) null hypothesis are

not pivotal under nonstationary volatility and depend on the volatility process g(.). Only

when g(.) = σ can we recover the pivotal limit distribution obtained by BP (stated in their

Proposition 6). Therefore, using the critical values tabulated in BP will lead to incorrectly

sized tests in general when nonstationary volatility is present. The non-robustness of the

Andrews (1993) and Andrews and Ploberger (1994) tests for a single break to shifts in the

marginal distribution of the regressors was earlier demonstrated by Hansen (2000).

Remark 5 The absence of large sample invariance of the KPZ and BP tests to unconditional
heteroskedasticity continues to hold for the heteroskedasticity-robust versions of these tests

even though the limits differ from those obtained in Theorems 1 and 2 [See Remark 12 in

Georgiev et al. (2018)]. Monte Carlo simulations (unreported) did not reveal any particular

improvements of the robust versions over their non-robust counterparts in the presence of

unconditional heteroskedasticity so our analysis focuses on the latter set of tests which are

simpler to implement in practice.
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5 The Wild Bootstrap

The large sample analysis in the preceding section shows that the testing procedures of

KPZ and BP are not robust to the presence of nonstationary volatility. In order to solve

the identified inference problem, this section proposes wild bootstrap versions of these tests

and establishes their asymptotic validity under Assumption A1-A4 thereby permitting their

application to a general class of heteroskedastic data generating processes. Unlike the stan-

dard residual bootstrap, the wild bootstrap procedure (Liu, 1988) can mimic the pattern

of heteroskedasticity in the errors and therefore replicate the first order limit distributions

of the test statistics derived in Section 4. We further show that the bootstrap KPZ and

BP test statistics remain consistent under the relevant alternatives so that the procedures

can be reliably employed in practice to detect instability in persistence. Since the direction

of persistence change is typically unknown, our subsequent analysis will only consider the

W1(.), Wmax1, G1(.), UDmax1 tests which are also the statistics we recommend for use in

practice. Section 5.1 presents the bootstrap algorithm, Section 5.2 establishes the asymptotic

validity of the procedure under the null hypothesis of no structural change in persistence,

Section 5.3 demonstrates the consistency of the proposed tests, and Section 5.4 proposes and

justifies a sequential procedure for estimating the number of breaks.

5.1 The Bootstrap Algorithm

Since the null hypothesis H0 accommodates both I(1) and I(0) processes, the algorithm is

based on generating two kinds of bootstrap samples, one of which is I(1) while the other is

I(0), conditional on the data {yt}Tt=1. The I(1) bootstrap samples will be used to approximate

the finite sample distribution of the KPZ statistics while the I(0) bootstrap samples will

be used to approximate the distribution of the BP statistics. Note that our approach is

in contrast to CT’s bootstrap scheme in which the bootstrap samples are generated only

under the I(0) null given that they do not consider the I(1) case. Further, for reasons

discussed below, our proposed bootstrap scheme is not recursive as that employed in Xu

(2008) for the stationary autoregressive model. Denote by {vt; t = 1, ..., T} a sequence of
i.i.d. random variables with zero mean and unit variance that are independent of {yt}Tt=1.

We now enumerate the steps involved in generating the two types of bootstrap samples. We

start with the I(1) case.

(A) I(1) Bootstrap Samples

12



1. Estimate the regression

∆yt =

lT∑
j=1

πj∆yt−j + e∗t ; t = lT + 2, ..., T (8)

where lT is chosen by BIC based on (8). The estimates are denoted (l̆T , π̆1, ..., π̆ l̆T ).

Obtain the residuals {ĕt} as

ĕt = ∆yt −
l̆T∑
j=1

π̆j∆yt−j; t = l̆T + 2, ..., T

2. Obtain the bootstrap residuals {e(1)
t } as

e
(1)
t = ĕtvt, t = l̆T + 2, ..., T

3. Generate the bootstrap sample {y(1)
t } as

y
(1)
t = y

(1)
t−1 + e

(1)
t ; t = l̆T + 2, ..., T

y
(1)
t = yt; t = 1, ..., l̆T + 1 (9)

4. Construct the bootstrap versions of the W1(.) and Wmax1 statistics using {y(1)
t }Tt=1

based on a specification that does not include any lagged first differences of y(1)
t .

5. Repeat steps (2)-(4) B times to approximate the bootstrap distribution of the statistics

in step (4).

(B) I(0) Bootstrap Samples

1. Estimate the regression

yt = c+ αyt−1 +

lT∑
j=1

πj∆yt−j + e∗t ; t = lT + 2, ..., T (10)

where lT is chosen by BIC based on (10). The estimates are denoted (c̃, α̃, l̃T , π̃1, ..., π̃ l̃T ).

Obtain the residuals {ẽt} as

ẽt = yt − c̃− α̃yt−1 −
l̃T∑
j=1

π̃j∆yt−j; t = l̃T + 2, ..., T

13



2. Obtain the bootstrap residuals {e(0)
t } as

e
(0)
t = ẽtvt, t = l̃T + 2, ..., T

3. Generate the bootstrap sample {y(0)
t } as

y
(0)
t = e

(0)
t , t = l̃T + 2, ..., T

y
(0)
t = 0, t = 1, ..., l̃T + 1 (11)

4. Construct the bootstrap versions of the G1(.) and UDmax1 statistics using {y(0)
t }Tt=1

based on a specification that does not include any lagged first differences of y(0)
t .

5. Repeat steps (2)-(4) B times to approximate the bootstrap distribution of the statistics

in step (4).

For the I(1) scheme (A), we do not introduce short-run dynamics in the bootstrap DGP

(9) through the inclusion of lagged first differences, i.e., we do not “recolor”the innovations

using the estimates {π̆j} in the terminology of Cavaliere and Taylor (2009). The reason is
that the estimated lag polynomial may fail to satisfy Assumption A2 so that recoloring the

innovations leaves open the possibility that the bootstrap sample is generated from a data

generating process with explosive roots or more than one unit root. Indeed, Cavaliere and

Taylor (2009) note this possibility in their Monte Carlo simulations when testing the null

hypothesis of a unit root.3 Our proposed scheme (A) rules out explosive or multiple unit

roots in the bootstrap DGP by generating the bootstrap sample {y(1)
t } as partial sums of the

bootstrap residuals which are serially independent, conditional on the data. Such a partially

recursive scheme was also employed by Cavaliere and Taylor (2008a) in devising bootstrap

unit root tests.

The I(0) bootstrap scheme (B) is non-recursive since we do not “add back” the con-

ditional mean component based on the parameter estimates. Rather, our bootstrap data

{y(0)
t } have constant (zero) mean and are serially independent, conditional on the data. Us-

ing a recursive scheme leads to tests with lower power relative to the non-recursive scheme

when the original data contain an I(1) segment. The reason is that the estimated full sample

persistence parameter converges to unity at rate T so that the recursive bootstrap samples

are effectively drawn from an autoregressive process with a root close to unity. This feature

3We observed this feature in our Monte Carlo experiments as well.
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contributes to an increase in the bootstrap critical values (relative to the non-recursive boot-

strap) which in turn has an adverse effect on power. The issue was illustrated by Gulesserian

and Kejriwal (2014) in the context of stationarity testing based on the sieve bootstrap in the

homoskedastic case. Monte Carlo simulations in the present context suggest notable power

gains from using the non-recursive form of the wild bootstrap for alternatives that involve

switches between I(1) and I(0) regimes (see Section 7).

Remark 6 Step 4 in both (A) and (B) constructs the bootstrap statistics from an AR(1)

specification instead of one that includes the lags of the first differences. The reason is that

the bootstrap residuals {e(1)
t } in scheme (A) and the bootstrap residuals {y

(0)
t } in scheme (B)

are serially independent, conditional on the data. It is therefore not necessary to control

for serial correlation through the lagged differences in the bootstrap regression. Indeed, our

Monte Carlo simulations (unreported) confirmed that using an AR(1) bootstrap specification

resulted in improved finite sample properties (size and power) of the testing procedures.

Denote the bootstrap analogues of W1(k), Wmax1, G1(k) and UDmax1 statistics by

W ∗
1 (k), Wmax∗1, G

∗
1(k) and UDmax∗1 respectively. The associated p-values are denoted

p∗k,W1
, p∗Wmax, p

∗
k,G1

and p∗UDmax, respectively.
4 For instance, p1,W1 = 1 − D∗1,1(W1(1)), where

D∗1,1(.) denotes the cumulative distribution function of W ∗
1 (1) and W1(1) denotes the value

of the statistic computed using the original data {yt}Tt=1.
5 Similarly, for a given significance

level η, denote the bootstrap critical values of W1(k), Wmax1, G1(k) and UDmax1 by

cv∗w,k(η), cv∗w,max(η), cv∗g,k(η) and cv∗g,max(η), respectively. Finally, define our proposed statis-

ticsH∗(k, η) = min
[
W1(k),

cv∗w,k(η)

cv∗g,k(η)
G1(k)

]
andHmax∗1(η ) = min

[
Wmax1,

cv∗w,max(η)

cv∗g,max(η)
UDmax1

]
.

Henceforth, we will refer to H∗(., .) and Hmax∗1(.) as the “hybrid”tests.

5.2 Asymptotic Size

The following two theorems establish that the wild bootstrap can successfully replicate the

first order asymptotic distribution of the test statistics. Let U [0, 1] denote a uniform distri-

bution over [0, 1].

Theorem 3 Under the conditions of Theorem 1, (i)W ∗
1 (k)

w→p max[F 0
1a(k), F 0

1b(k)], Wmax∗1
w→p max1≤k≤A {max[F 0

1a(k), F 0
1b(k)]} ; (ii) p∗k,W1

w→ U [0, 1], p∗Wmax
w→ U [0, 1].

4The dependence of the p-values on the sample size T is suppressed for economy of notation.
5The bootstrap distribution is unknown in practice and is approximated by B Monte Carlo replications.

As shown in Hansen (1996), the approximate p-value converges to the true p-value as B →∞.
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Theorem 4 Under the conditions of Theorem 2, (i) G∗1(k)
w→p supλ∈Λkε

G0
1(λ, k), UDmax∗1

w→p max1≤k≤A
{

supλ∈Λkε
G0

1(λ, k)
}

; (ii) p∗k,G1
w→ U [0, 1], p∗UDmax

w→ U [0, 1].

A consequence of Theorems 1 and 2 is the following corollary which states that, for a

given significance level η, the statistics H∗1 (k, η) and Hmax∗1(η) have asymptotic size at most

η.

Corollary 2 Suppose Assumptions A1-A4 hold. Then, under H0, limT→∞ P (H∗(k, η) >

cv∗w,k(η)) ≤ η and P (Hmax∗1(η) > cv∗w,max(η)) ≤ η.

5.3 Consistency

The following result states the consistency of the test statistics when the time series is subject

to k = m structural changes in persistence:

Theorem 5 Suppose Assumptions A1-A4 hold and λ0 ∈ Λm
ε . Then, under each ofH

(1)
a,m, H

(1)
b,m

and H(0)
1,m, we have p

∗
m,W1

p→ 0, p∗Wmax

p→ 0, p∗m,G1
p→ 0, p∗UDmax

p→ 0.

5.4 Estimating the Number of Breaks

Based on Corollary 2 and Theorem 5, a bootstrap procedure can be devised to estimate the

number of breaks based on a sequential test of the null hypothesis of l breaks against the

alternative of l+ 1 breaks. Kejriwal (2018) proposes a sequential approach based on asymp-

totic critical values assuming conditional homoskedasticity. Dealing with heteroskedasticity

entails not only the use of bootstrap critical values but also renders invalid employing the

full sample critical values when testing stability in each of the (l + 1) segments. The latter

feature is due to the fact that unlike the homoskedastic case, the time-varying nature of the

volatility process leads to different limit distributions of the test statistics across the differ-

ent segments. We propose a new bootstrap sequential procedure that remains valid in the

heteroskedastic case and involves a non-trivial modification of the corresponding procedure

that assumes homoskedasticity.

We first develop a sequential test of the null hypothesis of l(≥ 1) breaks against the

alternative of (l + 1) breaks. To this end, we partition the sample into (l + 1) segments

using the l estimated break dates (T̂1, ..., T̂l) obtained by minimizing the unrestricted sum of

squared residuals, i.e., the intercept, slope ( the persistence parameter) and the coeffi cients

of the lagged first differences are all allowed to be regime-specific. The one break KPZ and

BP statistics are then computed using data from each of the estimated (l+1) regimes. These
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statistics are denoted W (i)
1 (1) and G(i)

1 (1), respectively, for i = 1, ..., l + 1. The parameter

estimates in each of the (l + 1) estimated regimes are used to generate the regime-specific

I(1) and I(0) bootstrap samples based on schemes A and B respectively, as detailed in

Section 5.1. These samples are used to compute the bootstrap p-values of the statistics

W
(i)
1 (1) and G(i)

1 (1), denoted by p∗,(i)1,W1
and p∗,(i)1,G1

, respectively (i = 1, ..., l + 1). For a given

significance level η, we reject the null of l breaks in favor of (l + 1) breaks if

min
1≤i≤l+1

{p∗i } < ηl+1 (12)

where p∗i = max{p∗,(i)1,W1
, p
∗,(i)
1,G1
} and ηl+1 = 1 − (1 − η)1/(l+1). As shown in Appendix A, the

decision rule (12) has asymptotic size at most η under the null hypothesis of l breaks.

The various steps associated with the implementation of the sequential procedure can

now be enumerated as follows:

1. Test the null of no break (H0) against the alternative of at least one break. For a given

significance level η, we reject H0 if p∗max = max{ p∗Wmax, p
∗
UDmax} < η and conclude in

favor of at least one break; otherwise the procedure stops and the number of breaks is

estimated to be zero.

2. Upon a rejection in step 1, use the decision rule (12) with l = 1 to determine if there

is more than one break. This process is repeated by increasing l sequentially until the

test fails to reject the null hypothesis of no additional structural breaks.

3. The estimate m̂ is obtained as the total number of rejections obtained from steps 1

and 2.

The following result ensures that the probability of selecting the true number of breaks

employing the above sequential approach is at least (1− η) in large samples:

Theorem 6 Under the conditions of Theorem 5, limT→∞ P (m̂ = m) ≥ 1− η.

6 Extensions

This section discusses extensions to the bootstrap procedures advocated in the preceding

section to deal with the following issues: (1) the presence of deterministic trends; (2) dis-

tinguishing between a process driven by pure trend shifts from one that is accompanied by

shifts in persistence. We consider each of these issues in turn.
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6.1 Deterministic Trends

In order to deal with the potential presence of deterministic trends, we consider an extension

of (1) that includes the possibility of m breaks in the deterministic trend:

yt = µ0 + β0t+
∑m

j=1 µjDUjt +
∑m

j=1 βjDTjt + ut

ut = uT 0i−1 + ht

ht = αiht−1 +
∑p−1

j=1 πij∆ht−j + et

hT 0i−1 = ... = hT 0i−1−p+1 = 0


t = T 0

i−1 + 1, T 0
i−1 + 2, ..., T 0

i ;

i = 1, ...,m+ 1

(13)

where DUjt = I(t > T 0
j ), DTjt = I(t > T 0

j )(t − T 0
j ); j = 1, ...,m. The data generating

process (13) can be expressed as

yt = ci + bit+ αiyt−1 +

p−1∑
j=1

πij∆yt−j + et (14)

with

ci = (1− αi)
{
µ0 +

i−1∑
j=1

(µj − βjT 0
j ) + uT 0i−1

}
+

(
αi −

p−1∑
j=1

πij

){
β0 +

i−1∑
j=1

βj

}

bi = (1− αi)(β0 +
i−1∑
j=1

βj) (15)

The estimating regression therefore takes the form

∆yt = ci + bit+ (αi − 1)yt−1 +

p−1∑
j=1

πj∆yt−j + e∗t

with e∗t denoting the regression error. KPZ propose tests of the null hypothesis H̃
(1)
0 : ci =

c, αi = 1 for all i in (14). Note that under H̃(1)
0 , bi = 0 for all i so that the process follows a

stable unit root process with possible drift. As in the non-trending case, KPZ consider two

models under the alternative hypothesis depending on whether the initial regime is trend or

difference stationary. In accordance with the notation in Section 3, the test statistics in the

trending case are denoted by F2a(λ, k), F2b(λ, k), W2(k) and Wmax2. KPZ show that the

limit distributions of the statistics under H̃(1)
0 are pivotal under error homoskedasticity but

different from those in the non-trending case.

We now turn to testing the null of a stable trend stationary process, i.e., H̃(0)
0 : ci =
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c, bi = b, αi = α for all i where |α| < 1 in the model

yt = ci + bit+ αiyt−1 + +

p−1∑
j=1

πij∆yt−j + et (16)

with ci = (1− αi)
{
µ0 +

∑i−1
j=1(µj − βjT 0

j )
}

+ αi

{
β0 +

∑i−1
j=1 βj

}
and bi defined as in (15).

The estimating regression takes the form

∆yt = ci + bit+ (αi − 1)yt−1 + +

p−1∑
j=1

πj∆yt−j + e∗t (17)

The test statistic for a fixed number m = k changes is based on

G2(λ, k) = [T − 3(k + 1)](S̃SR
(0)

0 − SSR
(0)
2,k)/[kSSR

(0)
2,k] (18)

In (18), S̃SR
(0)

0 denotes the sum of squared residuals under H̃(0)
0 , i.e., that obtained from

OLS estimation of (17) subject to the restrictions ci = c, bi = b, αi = α for all i. The quantity

SSR
(0)
2,k denotes the sum of squared residuals obtained from unrestricted OLS estimation of

(17). The test statistic is then defined as G2(k) = supλ∈Λkε
G2(λ, k). When the number of

breaks is unknown, the relevant test statistic is UDmax2 = max1≤k≤AG2(k). The limit

distributions of G2(.) and UDmax2 under error homoskedasticity are derived in Kejriwal

(2018).

Under Assumptions A1-A4, the above test statistics are not asymptotically pivotal and

depend on the sample path of {σt} as demonstrated in Section 3 for the non-trending case.
We propose the following bootstrap algorithm that enables asymptotically valid inference in

the trending case. As in Section 5, we generate both I(1) and I(0) bootstrap samples to

ensure that the procedure has correct asymptotic size under H̃0, where H̃0 = H̃
(1)
0 ∪ H̃

(0)
0 .

(A′) I(1) Bootstrap Samples

1. Estimate the regression

∆yt = c+

lT∑
j=1

πj∆yt−j + e∗t ; t = lT + 2, ..., T (19)

where lT is chosen by BIC based on (19). The estimates are denoted (c̆, l̆T , π̆1, ..., π̆ l̆T ).
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Obtain the residuals {ĕt} as

ĕt = ∆yt − c̆−
l̆T∑
j=1

π̆j∆yt−j; t = l̆T + 2, ..., T

2. Obtain the bootstrap residuals {e(1)
t } as

e
(1)
t = ĕtvt; t = l̆T + 2, ..., T

3. Generate the bootstrap sample {y(1)
t } as

y
(1)
t = y

(1)
t−1 + e

(1)
t ; t = l̆T + 2, ..., T

y
(1)
t = yt; t = 1, ..., l̆T + 1 (20)

4. Construct the bootstrap versions of the W2(.) and Wmax2 statistics using {y(1)
t }Tt=1

based on a specification that does not include any lagged first differences of y(1)
t .

5. Repeat steps (2)-(4) B times to approximate the bootstrap distribution of the statistics

in step (4).

(B′) I(0) Bootstrap Samples

1. Estimate the regression

yt = c+ bt+ αyt−1 +

lT∑
j=1

πj∆yt−j + e∗t ; t = lT + 2, ..., T (21)

where lT is chosen by BIC based on (21). The estimates are denoted (c̃, b̃, α̃, l̃T , π̃1, ..., π̃ l̃T ).

Obtain the residuals {ẽt} as

ẽt = yt − c̃− b̃t− α̃yt−1 −
l̃T∑
j=1

π̃j∆yt−j; t = l̃T + 2, ..., T

2. Obtain the bootstrap residuals {e(0)
t } as

e
(0)
t = ẽtvt; t = l̃T + 2, ..., T
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3. Generate the bootstrap sample {y(0)
t } as

y
(0)
t = e

(0)
t ; t = l̃T + 2, ..., T

y
(0)
t = 0; t = 1, ..., l̃T + 1 (22)

4. Construct the bootstrap versions of the G2(.) and UDmax2 statistics using {y(0)
t }Tt=1

based on a specification that does not include any lagged first differences of y(0)
t .

5. Repeat steps (2)-(4) B times to approximate the bootstrap distribution of the statistics

in step (4).

The difference between the schemes (A) and (A′) is that the residuals imposing the

I(1) null hypothesis in step 1 of the latter are obtained using a regression that includes a

constant to account for the possible drift in the process. Similarly, the residuals in scheme

(B′) are based on a regression that includes a deterministic trend. Note, however, that the

bootstrap samples in both (A′) and (B′) are generated in a manner similar to those for (A)

and (B), respectively. In particular, it is not necessary to include the estimated drift in step

3 of (A′) when constructing {y(1)
t } or the estimated deterministic trend in step 3 of (B′)

when constructing {y(0)
t } given that the test statistics W2(.) and G2(.) are invariant to their

presence in the data generating process.

The bootstrap analogues of W2(k), Wmax2, G2(k) and UDmax2 and the associated

p-values are obtained as described in Section 5.1. The sequential procedure outlined in

Section 5.4 is accordingly modified so that the bootstrap critical values are now obtained

from schemes (A′) and (B′). The following result states the large sample validity of the

proposed procedure in the potential presence of deterministic trends:

Theorem 7 Suppose Assumptions A1-A4 hold. Under bootstrap schemes (A′) and (B′), (i)
Corollary 2 holds with H0 replaced by H̃0, (ii) Theorems 5 and 6 hold.

6.2 Disentangling Trend and Persistence Shifts

An important feature of the test statistics developed in Sections 5.1 and 6.1 is that they are

tests of the null hypothesis that the trend function parameters and the persistence parameter

are jointly stable. Consequently, the tests have power against processes that are driven by

pure trend shifts with no accompanying change in persistence. To distinguish between trend

and persistence shifts, we can adapt the three-step approach recommended in Kejriwal (2018)

for the homoskedastic case to the present context.
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Consider first the non-trending case. The first step entails determining the number of

breaks (m̃) using the sequential procedure described in Section 5.4 and the associated break-

point estimates (T̂1, T̂2, ..., T̂m̂) obtained from the unrestricted model that allows all parame-

ters including the coeffi cients of the lagged first differences to change across regimes. Second,

using the estimated breakpoints, the Wald statistic for testing the null hypothesis of stable

I(0) persistence is constructed [i.e., constancy of αi over all i in (4)] while allowing all other

parameters to vary across the (m̂ + 1) regimes. To account for nonstationary volatility,

the Wald statistic should be computed using a heteroskedasticity-robust estimator of the

variance-covariance matrix.6 Third, the null hypothesis of stable I(0) persistence is rejected

if the computed Wald statistic is significant at the specified level where the critical value is

obtained from the χ2(m̂) distribution. Otherwise, the null is not rejected and we conclude

in favor of a model with pure level shifts.

The analysis in the trending case is complicated by the fact that the process can be either

I(1) (with a possibly time-varying drift) or I(0) (around a broken deterministic trend).

As in Section 6.1, we can develop tests separately for the I(1) and I(0) null hypotheses

and choose as the critical region the intersection of the critical regions of the two tests.

The three-step approach can be implemented as follows. In the first step, the estimate

of the number of breaks (say m̆) is obtained applying the modified sequential procedure

suggested in Section 6.1. The associated breakpoints are now computed from the unrestricted

specification (16). Second, we compute the Wald statistic (against using heteroskedasticity

robust standard errors) for testing the null hypothesis of constant persistence allowing the

trend function parameters and the coeffi cients of the lagged differences to change at the

estimated breakpoints. In the I(0) case, the statistic has a limiting χ2(m) distribution so

that standard critical values (with m̆ degrees of freedom) can be used.7 In the I(1) case, the

statistic has a non-pivotal limit even in the homoskedastic case depending in particular on

the vector of break fractions λ0 (Kejriwal, 2018). To achieve asymptotically valid inference,

we can apply a second wild bootstrap scheme based on residuals estimated under the version

of the model (19) that allows the level to change across regimes at the estimated breakpoints.

The I(1) bootstrap samples can then be obtained from a data generating process that now

6Phillips and Xu (2006) show that for an AR(p) model, the Eicker-White standard errors are asymptoti-
cally valid in the presence of nonstationary volatility. Alternatively, a wild bootstrap test could be employed
where the bootstrap samples are drawn using a non-recursive scheme similar to scheme (B) but one that
accommodates the estimated level shifts in the bootstrap DGP.

7Alternatively, a wild bootstrap test based on a scheme similar to (B′) could be used where the bootstrap
DGP is constructed allowing the trend function to change at the estimated breakpoints using the regime-
specific trend function estimates.
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includes the estimated regime-specific drift in (20) [in contrast to scheme (A′)]. The bootstrap

distribution of the Wald statistic can then be approximated using Monte Carlo simulation

from which the relevant critical values can be obtained. Finally, the null hypothesis of stable

[I(1) or I(0)] persistence is rejected if the I(0) and I(1) Wald statistics are both significant

at the specified level using their respective critical values.

7 Monte Carlo Evidence

This section presents Monte Carlo evidence to assess the finite sample performance of the

recommended procedures as well as provide a comparison with existing approaches. We con-

sider a variety of data generating processes (DGPs) characterized by nonstationary volatility

where the specifications for the volatility process are borrowed from the Monte Carlo design

of CT to enable comparison with their tests. The three volatility specifications are as follows:

1. Model 1 [Single Volatility Break]: σt = σ∗0 + (σ∗1 − σ∗0)I(t ≥ 0.5T )

2. Model 2 [Trending Volatility]: σt = σ∗0 + (σ∗1 − σ∗0)
(
t−1
T−1

)
3. Model 3 [Near-Integrated Stochastic Volatility]: σt = σ∗0 exp(0.5υbt/

√
T ), bt = (1 −

c/T )bt−1 + kt, kt ∼ i.i.d. N(0, 1), b0 = 0.

Following CT, we set σ∗0 = 1 in all cases, δ := σ∗0/σ
∗
1 ∈ {1, 1/3, 3} for Models 1 and 2,

υ = 5 and c ∈ {0, 10} for Model 3. Next, a sequence {zt}Tt=1 is generated by the ARMA(1,1)

process

zt = ρzt−1 + et − θet−1, z0 = 0

et = σtεt

εt ∼ i.i.d. N(0, 1)

The level of trimming is set at ε = 15% and 1000 Monte Carlo replications are used in

all experiments. The sample size T ∈ {200, 400} in all experiments except those in section
7.4 where T ∈ {400, 600}. We report results for the non-trending case only given that the
results for the trending case are qualitatively similar.

The lag length in the KPZ and BP procedures was selected using BIC with the maximum

allowable number of lags set to five.8 We report the performance of the tests H∗(k, η); k =

8We also experimented with larger values but found that they yielded comparable size but lower power,
especially for the multiple break and sequential tests. The BIC was computed under the null model for each
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1, 2 and Hmax∗1(η) = max{H∗(1, η), H∗(2, η)}. For brevity, we suppress the dependence on
η henceforth. As a benchmark for comparison, we include CT’s single break bootstrap tests of

the I(0) null hypothesis based on the ratio of partial sums of residuals. In their notation, they

recommend the tests K1,K′1 and K4 = max(K1,K′1), where K1 and K′1 are designed to detect
the I(0)-I(1) and I(1)-I(0) alternatives, respectively. We do not reproduce the expressions

for the tests here and refer the reader to their original article for details. The wild bootstrap

for the hybrid tests are implemented using a two point distribution (vt ∈ {−1, 1} with equal
probability for each value) while the standard normal distribution is used for the CT tests.

While the choice of distribution was found to have little impact on the CT tests (as also

noted by the authors), our simulations showed notably improved finite sample properties of

the hybrid tests when using the two-point distribution relative to the normal.

7.1 Finite Sample Size

In the no persistence change case, the time series {yt} is generated as

• DGP-0:

yt = αyt−1 + zt

y0 = 0 (23)

Table 1 presents the empirical size of 5% bootstrap tests. As expected, the CT tests

have rejection probabilities close to 5% under H(0)
0 , i.e., α < 1. Under H(1)

0 , however, these

tests are severely oversized for all three volatility models (including the homoskedastic case)

and serial correlation configurations. The proposed tests, however, are robust to whether

the process is I(1) or I(0). The H∗ tests are more accurately sized when α ∈ {.5, 1} but
less so when α = .7. This is because the tests are a hybrid of the KPZ and BP tests which

individually have size close to 5% when α = 1 and α = .5, respectively. When α = .7, the

BP tests are mildly over-sized while the KPZ tests diverge at rate T which explains the size

distortions of the hybrid tests. Similar reasoning explains the slightly higher sizes observed

for the hybrid tests when the sample size increases, especially when α = .7 and the errors

are MA(1).

test. No qualitative differences were observed if lag selection was implemented instead under the alternative
model.
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7.2 Finite Sample Power

To examine finite sample power, we consider DGPs with one and two breaks. To economize

on space, the results are reported for the case ρ = θ = 0 and briefly summarized for the

other cases. The DGPs in the one break case are specified as follows:

For t ≤ [Tλ0
1] For t ≥ [Tλ0

1] + 1

DGP-1 yt= αyt−1+zt yt= yt−1+zt

DGP-2 yt= yt−1+zt yt−y[Tλ01]= α(yt−1−y[Tλ01]) + zt

DGP-3 yt= α1yt−1+zt yt= α2yt−1+zt

For DGP-1 and DGP-2, we let α ∈ {.5, .7} while for DGP-3, we take α1, α2 ∈ {.2, .9} and
define α = α2 − α1. The breakpoint is set at λ

0
1 = .5. The findings are presented in Table

2. We report size-adjusted power so that all tests have empirical size at most 5% under

H0.9 Several features of the results are worth noting. First, the hybrid tests are generally

more powerful than the CT tests. The exception occurs in the case of an I(1) regime with

(relatively) high volatility (e.g., DGP-1 with δ = 1/3 and DGP-2 with δ = 3). This pattern

arises since such a process is dominated by the I(1) component so that the sampling behavior

of the tests mimics that obtained with a stable I(1) process. In Appendix B (Table B-2), we

show that power improves considerably if the I(0) regime is longer and/or the volatility shift

is less prominent. Second, the CT tests only have trivial power against I(0)-preserving breaks

(DGP-3) which is expected given that they are designed to detect changes between I(1) and

I(0) regimes. In contrast, the hybrid tests have substantial power in this case implying that

using the KPZ tests to control size in the I(1) case causes little power loss relative to using

the BP tests in isolation. Third, the hybrid tests are generally more powerful when the time

series is driven by deterministic volatility (Models 1 and 2) rather than stochastic volatility

(Model 3). With serially correlated errors, the results (Tables B-3 and B-4 in Appendix B)

are qualitatively similar except that power is lower for all the tests relative to ρ = θ = 0.

9Size adjustment is important for power comparison given that the CT tests are considerably over-sized
in the I(1) case.
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With two breaks, the DGPs are specified as follows:

For t ≤ [Tλ0
1] For [Tλ0

1] + 1 ≤ t ≤ [Tλ0
2] For t ≥ [Tλ0

2] + 1

DGP-4 yt= yt−1+zt yt−y[Tλ01]= α(yt−1−y[Tλ01]) + zt yt= yt−1+zt

DGP-5 yt= αyt−1+zt yt= yt−1+zt yt−y[Tλ02]= α(yt−1−y[Tλ02]) + zt

DGP-6 yt= α1yt−1+zt yt= α2yt−1+zt yt= α1yt−1+zt

Define α = α2 − α1 for DGP-6. The true breakpoint vector is set at (λ0
1, λ

0
2) = (.3, .8).

The pattern of results, reported in Table 3, is broadly similar to the one break case with the

power advantages of the hybrid tests more apparent, especially for DGP-4 and DGP-6. This

is unsurprising given that the CT tests are directed against the alternative of a single break.

An interesting feature of the hybrid tests is that when the first regime has lower persistence

relative to the second, H∗(1) has higher power than H∗(2) even though the former is based

on a misspecified model. However, Hmax∗1 has adequate power in most cases, often close to

that of the more powerful test among H∗(1) and H∗(2). This feature highlights the practical

advantage of using Hmax∗1 to detect the presence of at least one break in applications.

7.3 Comparison with Recursive Bootstrap

In order to highlight the advantages of employing the proposed bootstrap schemes A and

B, we now provide a comparison with the fully recursive bootstrap schemes. The recursive

counterpart of scheme A entails replacing step 3 in scheme A with the recursion

y
(1)
t = y

(1)
t−1 +

l̆T∑
j=1

π̆j∆y
(1)
t−j + u

(1)
t ; t = l̆T + 2, ..., T

y
(1)
t = yt; t = 1, ..., l̆T + 1 (24)

while the recursive counterpart of scheme B involves replacing step 3 in scheme B with the

recursion

y
(0)
t = c̃+ α̃y

(0)
t−1 +

l̃T∑
j=1

π̃j∆y
(0)
t−j + u

(0)
t ; t = l̆T + 2, ..., T

y
(0)
t = 0; t = 1, ..., l̃T + 1 (25)

Since the bootstrap data obtained from (24) and (25) are serially correlated, conditional on

the original data, the bootstrap statistics will now need to be adjusted by including lagged
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first differences in the estimated regression as in the construction of the statistics based on

the original data {yt}. The lag length is again chosen using the BIC. Table 4 reports the
empirical size and size-adjusted power (only in the single break case, for brevity) of the

recursive bootstrap tests (denoted with a superscript “r”) for ρ = θ = 0. The procedure has

accurate size in general with a tendency to under-reject in some cases. A power comparison

with Table 2 reveals that the recursive bootstrap tests are generally less powerful than the

hybrid tests for DGP-1 and DGP-2 which contain an I(1) segment, in accordance with

the discussion in Section 5.1. For DGP-3, the two approaches yield comparable power. The

power gains are even more transparent if one were to a priori rule out the I(1) null hypothesis

and hence apply the BP tests in isolation (see Tables B-7 and B-8 in Appendix B). Overall,

these findings favor the use of the proposed scheme over the recursive scheme in terms of its

relative ability in detecting persistence change.

7.4 Number of Breaks

The sequential testing algorithm developed in Section 5.4 is assessed by its effectiveness in

estimating the true number of breaks when the data are generated by DGP 0-6. We apply the

algorithm with A = 2 and η = .10.10 The results are presented in Table 5, where Pc denoting

the probability of “correct”selection and Po denoting the probability of “over-estimation”.

The procedure is generally reliable when the time series is stable (DGP-0) or is subject to

a single break (DGP 1-3) consistent with the findings in Tables 1 and 2. Its performance,

however, deteriorates in the two breaks case where the likelihood of underestimation can be

non-negligible, especially when the first regime has mild persistence. For instance, in DGP-

5 with an abrupt increase in volatility (model 1 with δ = 1/3), the breakpoint estimate

used to partition the sample into two segments (following evidence of at least one break

in the first step) is typically close to the second true breakpoint, so that the first segment

effectively includes a break from I(0) to I(1) while the second segment is effectively I(0).

Whether a second break is selected then depends on the power of the single break test in the

first segment, which is shown to be relatively low (see Table 2). Similarly, with decreasing

volatility, the breakpoint is estimated near the first true date so that selecting an additional

break depends on the power of the single break test in the I(1)-I(0) case. In additional

simulations reported in Appendix B (Table B-9), we observed a notable improvement in

10We also experimented with η = .05 but found that that the underestimation probabilities were consid-
erable in many cases and that η = .10 appeared to provide the best compromise in terms of the size-power
tradeoff.
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performance as the magnitude of the volatility shift decreases and/or the volatility shift is

such that it occurs near the second persistence break in the increasing volatility case and

near the first break otherwise. Further refinement of the algorithm to increase its reliability

in detecting multiple breaks is a potentially interesting topic for future research.

8 Empirical Application: OECD Inflation Rates

The persistence of inflation plays a key role in the formulation and evaluation of quantitative

macroeconomic models. Evidence in favor of high and unchanged persistence from reduced

form specifications across different monetary policy regimes has generally been construed as

suggesting that inflation persistence is a feature that any reasonable model for the economy

should be able to replicate. The Lucas Critique, on the other hand, suggests that the para-

meters of macroeconometric models depend implicitly on agents’expectations of the policy

process and are unlikely to remain stable as policymakers change their behavior, if agents

are forward looking. An empirical finding of high and stable persistence in such a context

can potentially be interpreted either in terms of the presence of a strong backward looking

component in the dynamics of inflation induced through, say indexation or rule-of-thumb be-

havior on the part of the price setters, or in terms of historical policy shifts being of relatively

modest magnitude. In contrast, Erceg and Levin (2003) suggest that inflation persistence

is not an inherent characteristic of the economy but rather varies with the credibility and

transparency of the monetary regime. Similarly, Orphanides and Williams (2004) show that

the absence of a long-run inflation objective for the monetary authority leads to substantially

higher inflation persistence relative to an environment where the inflation objective is clearly

understood by price-setters.

While early empirical studies (e.g., Cogley and Sargent, 2001; Stock, 2001) examined

the stability of inflation persistence within a framework that assumes constant uncondi-

tional volatility, subsequent investigations recognized the importance of accounting for time-

varying volatility and its potential impact on our understanding of the nature of persistence.

Cogley and Sargent (2005) estimate Bayesian VARs with drifting coeffi cients and stochastic

volatility and conclude in favor of a decline in U.S. inflation persistence associated with a

change in monetary policy while Primiceri (2005) employs similar but more general meth-

ods to stress the importance of exogenous non-policy factors in explaining the evolution of

inflation. Cogley, Primiceri and Sargent (2010) decompose inflation into a trend component

and an inflation gap component arguing that while inflation has remained persistent due to

movements in trend inflation associated with shifts in the Federal Reserve’s target, inflation
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gap persistence increased during the Great Inflation and declined after the Volcker disin-

flation. More recently, Bataa et al. (2013) examine the evidence for G-7 countries within

a VAR framework utilizing the multivariate break detection procedure of Qu and Perron

(2007) while Bataa et al. (2014) employ the univariate Bai and Perron approach to identify

breaks in mean, dynamics and the volatility of inflation. Both studies assume that inflation

is a I(0) process under the null hypothesis of stability and regime-wise I(0) in the presence

of breaks, thereby ruling out the possibility of I(1) regimes. Kejriwal (2018) investigates

the persistence of OECD inflation rates allowing for unit roots but assumes conditional ho-

moskedasticity. The present paper contributes to this literature by employing the proposed

bootstrap approach to disentangle breaks in mean, persistence and volatility.

Our empirical investigation is based on monthly CPI inflation data for nineteen OECD

countries used in Noriega et al. (2013) and Belaire-Franch (2017). The data span the period

1960:1-2008:6 so that T = 582, except for Germany and Korea where the starting point is

1960:2. The inflation rates are seasonally unadjusted and computed as it = 1200(lnPt −
lnPt−1), where Pt denotes the CPI at time t.11 The results are reported in Table 6. To

conserve space, we present only a subset of the results here, with the full set reported in

Table B-10. The analysis proceeds in six steps which we describe below.

First, we apply the sequential algorithm detailed in Section 5.4 with A = 5, ε = .15

and η = .10 to estimate the number of breaks m̂ [column (2)]. Second, conditional on
m̂, the breakpoint estimates are obtained by minimizing the unrestricted sum of squared

residuals [column (3)]. Third, to distinguish persistence shifts from pure mean shifts, we

conduct Wald tests (at the 10% level) of the null hypothesis that the process is subject to

m̂ mean shifts against the alternative hypothesis of m̂ mean as well as persistence shifts (see

Section 6.2). This outcome is reported in column (4) where “Yes” indicates non-rejection

of the pure mean shifts hypothesis and “No”indicates otherwise. Here, a heteroskedasticity

robust standard error estimate is used to construct the statistics although a wild bootstrap

approach could also be used.12

Fourth, based on the selected model, the largest (across regimes) estimated sum of

autoregressive parameters (“largest AR sum”) is computed [column (5)] along with equal-

tailed 90% confidence intervals [column (6)] based on the procedure advocated by Andrews

and Guggenberger (2014, AG henceforth) that allows uniformly valid inference over the

11We prefer to use seasonally unadjusted rates since commonly used adjustment procedures such as Census
X-11 or X-12 can have adverse effects on the power of structural change tests by smoothing the time series
of interest (see Ghysels and Perron, 1996).
12Employing the wild bootstrap procedure in the present context yielded results identical to those reported.
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stationary and non-stationary regions of the parameter space as well as heteroskedasticity.13

The BIC is used to select the number of lags within each regime with a maximum allowable

lag length of 12. Fifth, a comparison with the CT procedure is included to highlight the
differences among the two approaches in terms of model selection [columns (7) and (8)].

Sixth, unit root tests allowing for nonstationary volatility (Cavaliere and Taylor, 2009) are
conducted as a robustness check on the model selection results [column (9)].

We now turn to a discussion of the empirical results. Evidence of at least one break

(m̂ > 0) is obtained for seven countries, of which two (Austria, Korea) favor an I(0) process

with a single mean shift. The AG interval estimates are consistent with the presence of

at least one I(1) segment in fourteen countries of which three are subject to at least one

persistence break. Interestingly, in four out of the five countries with persistence breaks, the

first break corresponds to an increase in persistence that occurs between the early and mid

Seventies, a period often described as one of “the Great Inflation”and commonly believed to

be associated with both a high level and high degree of persistence. In contrast, for France

and Germany which experience two persistence breaks, the second break is associated with

a persistence decline occurring in the Eighties and Nineties (see Table B-10).

Next, we provide a comparison between our results and those from the CT procedure.

For the latter, we first apply the test K4 (at the 10% level with 15% trimming) designed

to detect a single persistence change [I(1)-I(0) or I(0)-I(1)]. Upon a rejection, the p-values

of the tests K1 and K′1 are computed and the direction of persistence change is determined
by the smaller of the two p-values. If both p-values are zero, the evidence is not conclusive,

i.e., the procedure cannot distinguish between the two alternatives (see Section 7 of CT).

Comparing the outcomes in columns (7) and (8) shows that the procedures agree only for

Luxembourg and Netherlands while they point to different models for all other countries.

The CT approach is inconclusive in seven cases. Further, in all of the eleven cases where

the proposed approach decides in favor of a pure I(1) process, the CT procedure suggests a

break in persistence. This pattern is consistent with the size distortions incurred by the latter

approach when the process is I(1), as documented by the simulation evidence presented in

Section 7. In the two cases where we select a pure mean shift process, the CT approach again

points to a persistence break which can be potentially explained by the non-robustness of

the approach to such processes.

Column (9) supplements our analysis with unit root tests applied to the regime with

13A caveat is that the procedure allows conditional heteroskedasticity while assuming constant uncondi-
tional heteroskedasticity.
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the largest autoregressive sum estimate based on the selected model in column (7). To this

end, we report the p-value of wild bootstrap ADF test proposed by Cavaliere and Taylor

(2009) which is robust to nonstationary volatility.14 The lag length in the ADF regression

was selected using the Modified Akaike Information Criterion (MAIC) with the maximum

lag set at [12(T/100)1/4]. The test findings match the model selection outcomes in column

(7) for fourteen out of the nineteen countries, indicating a fair degree of consistency between

the two approaches.

To justify the importance of allowing for nonstationary volatility in the current context,

Figure 1 plots the volatility estimates obtained by fitting a nonparametric regression to the

squared residuals obtained by estimating the model selected in column (7), as suggested by

Xu and Phillips (2008). A Gaussian kernel is employed with the bandwidth chosen by cross

validation.15 The estimates indicate considerable variation over time although the nature

of the variation is different across countries. While a smooth trend suggests itself for some

countries (e.g., France and Norway), more irregular movements are observed for others (e.g,

Belgium, UK, USA). A similar overall picture is obtained if one plots the estimated variance

profile as suggested by Cavaliere and Taylor (2007) indicating the nonstationary behavior of

the sample volatility paths is a key feature of the inflation data that, if ignored,.might lead

to potentially misleading inferential results.

Finally, to evaluate the impact of nonstationary volatility on persistence change, it is

useful to compare our results with the asymptotic sequential procedure of Kejriwal (2018)

which assumes homoskedasticity. Using the same dataset, Kejriwal (2018) concludes in favor

of a persistence change model for six additional countries (Canada, Finland, Greece, Japan,

UK, USA) all of which are found to be pure I(1) processes according to our analysis that

accounts for nonstationary volatility. Interestingly, Kejriwal’s analysis for USA suggests a

shift from a high persistence I(0) regime to a low persistence I(0) regime, consistent with

the views expressed in Sims (2001) and Stock (2001) that the case for unstable persistence

is weakened once allowance is made for shifts in the variance of the innovations.
14These authors also propose a wild bootstrap version of the Phillips and Perron (1988) test based on a

semiparametric correction for serial correlation. Our choice is motivated by the better size control of the
ADF test in finite samples (see Cavaliere and Taylor, 2009).
15Following Xu and Phillips (2008), we search over the bandwidths hi = ciT

−0.4, i = 1, ..., 4, where
{c1, c2, c3, c4} = {.25, .4, .6, .75}.
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9 Conclusion

This paper proposes wild bootstrap sup-Wald tests for detecting persistence change in a

univariate time series driven by nonstationary volatility. We develop tests both against a

specified number of structural changes as well as procedures that do not assume knowledge

of the number of breaks. The set of alternative hypotheses considered include processes that

are characterized by switches between I(1) and I(0) regimes and those that preserve the

I(0) nature of the time series in each regime. An alternative strategy to the bootstrap that

can be employed to account for unstable volatility is an adaptive least squares approach

based on a non-parametric estimate of the variance function. This approach has been taken

by Xu and Phillips (2008) to obtain effi cient estimators relative to ordinary least squares in

an autoregressive model and by Beare (2017) to develop unit root tests robust to unstable

volatility that have pivotal limiting distributions. The adaptive method can also be poten-

tially applied in the context of persistence change testing to obtain asymptotically pivotal

test statistics. A comparison of the bootstrap and adaptive approaches in finite samples

would be of interest in order to evaluate their relative merits. We leave the exploration of

these issues as possible avenues for future research.
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Table 5: Break selection probabilities, [ρ = θ = 0, η = .10]

T m DGP α/(α1, α2) Model 1: δ Model 2: δ Model 3: c

δ/c 1 1/3 3 1/3 3 0 10

400

0 0 1 Pc .91 .91 .91 .92 .90 .90 .91
Po .09 .09 .09 .08 .10 .10 .10

0.5 Pc .86 .91 .90 .88 .89 .91 .90
Po .14 .09 .10 .12 .11 .10 .10

λ0
1 = 0.5

1 1 0.5 Pc .90 .07 .91 .82 .89 .39 .68
Po .10 .04 .09 .14 .11 .15 .14

2 0.5 Pc .88 .87 .21 .88 .79 .47 .73
Po .12 .12 .12 .12 .20 .14 .15

3 (0.2, 0.9) Pc .89 .42 .87 .88 .89 .46 .80
Po .11 .08 .13 .12 .11 .13 .13

(0.9, 0.2) Pc .88 .82 .62 .88 .85 .48 .81
Po .12 .18 .14 .12 .15 .13 .12

λ0
1 = 0.3, λ0

2 = 0.8
2 4 0.5 Pc .86 .70 .46 .85 .70 .27 .59

Po .10 .17 .16 .11 .13 .11 .14
5 0.5 Pc .83 .07 .08 .39 .28 .18 .36

Po .15 .08 .06 .12 .18 .09 .10
6 (0.2, 0.9) Pc .89 .08 .11 .84 .73 .24 .57

Po .12 .07 .09 .12 .16 .09 .11
(0.9, 0.2) Pc .90 .72 .62 .89 .84 .32 .75

Po .09 .23 .20 .10 .12 .12 .11

600

0 0 1 Pc .89 .88 .89 .89 .89 .88 .89
Po .11 .12 .11 .11 .11 .12 .11

0.5 Pc .87 .89 .88 .88 .88 .91 .89
Po .13 .11 .12 .12 .12 .09 .11

λ0
1 = 0.5

1 1 0.5 Pc .88 .11 .89 .87 .89 .49 .80
Po .12 .05 .11 .13 .11 .17 .11

2 0.5 Pc .89 .88 .37 .89 .86 .51 .79
Po .11 .12 .21 .11 .14 .17 .15

3 (0.2, 0.9) Pc .85 .71 .84 .85 .85 .56 .86
Po .15 .17 .17 .15 .15 .12 .11

(0.9, 0.2) Pc .83 .82 .75 .86 .82 .55 .85
Po .17 .18 .22 .14 .18 .14 .12

λ0
1 = 0.3, λ0

2 = 0.8
2 4 0.5 Pc .86 .76 .64 .86 .78 .34 .69

Po .11 .20 .15 .12 .12 .14 .16
5 0.5 Pc .87 .05 .08 .76 .53 .27 .51

Po .13 .07 .08 .13 .22 .10 .13
6 (0.2, 0.9) Pc .86 .33 .30 .85 .84 .33 .69

Po .14 .12 .13 .15 .16 .11 .13
(0.9, 0.2) Pc .90 .83 .78 .91 .89 .38 .81

Po .10 .17 .18 .09 .11 .14 .13
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Notes to Tables

1. Table 1 reports the empirical size of bootstrap tests with nominal size 5%. The
tests K1,K′1,K4 are the tests recommended by Cavaliere and Taylor (2008, CT) and
H∗1 , H

∗
2 , H

∗
max are our proposed tests.

2. Table 2 reports the size-adjusted power of 5% bootstrap tests in the single break case
with breakpoint λ01 = .5 and serially uncorrelated errors (ρ = θ = 0).

3. Table 3 reports the size-adjusted power of 5% bootstrap tests in the two breaks case
with breakpoint vector (λ01, λ

0
2) = (.3, .8) and serially uncorrelated errors (ρ = θ = 0).

4. Table 4 reports size and size-adjusted power of 5% bootstrap recursive tests in the
single break case with breakpoint λ01 = .5 and serially uncorrelated errors (ρ = θ = 0).

5. Table 5 reports the probabilities of selecting the true number of breaks from the se-
quential procedure with serially uncorrelated errors (ρ = θ = 0) and level η = .10.

6. Table 6 reports the empirical results based on monthly OECD inflation rates data over
1960:1-2008:6. Column (1) reports the country name; column (2) reports the estimate
m̂ obtained from applying the sequential algorithm in Section 5.4 with η = .10 and
A = 5; column (3) reports the estimated break dates obtained by minimizing the
unrestricted sum of squared residuals with m̂ breaks; column (4) reports the outcome
of the test for the null hypothesis of pure mean shifts; column (5) reports the OLS
estimate of the largest sum of AR coeffi cients across the estimated regimes; column (6)
reports Andrews and Guggenberger’s (2014) 90% confidence band for the largest sum
of AR coeffi cients; column (7) reports the model selected by the sequential algorithm;
column (8) reports the model selected by the CT procedure; column (9) reports the
p-value of the wild bootstrap ADF test of Cavaliere and Taylor (2009).
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Appendix A: Proofs

For a (d × 1) vector v, ‖v‖ =
(∑d

i=1 v
2
i

)1/2

denotes the standard Euclidean norm while

for a random variable v, ‖v‖q = (E(|v|q)1/q denotes the Lq(q ≥ 1) norm. For a matrix

B, ‖B‖ denotes the Frobenius norm, i.e., ‖B‖ =
√
tr(B′B) and MB = I − PB, PB =

B(B′B)−1B′. Let P ∗ denote the bootstrap probability measure and E∗ the expectation with
respect to P ∗. Define the following quantities: (i) V (r) = diag(g2(r)Ip, g(r)); (ii) DT =
diag(a−2

T T−1, a−1
T T−1/2); (iii) For i = 1, ..., k + 1, Zi = (zTi−1+1, ..., zTi)

′ where zt = (yt−1, 1)′

for t = Ti−1 + 1, ..., Ti, Z = (z1, ..., zT )′, Y−1 = (y0, ..., yT−1), ι(T×1) = (1, ..., 1)′; (iv) z̄i =

(Ti − Ti−1)−1
∑Ti

t=Ti−1+1 zt and z̄i,−1 = (Ti − Ti−1)−1
∑Ti

t=Ti−1+1 zt−1, z̄ = T−1
∑T

t=1 zt, z̄−1 =

T−1
∑T

t=1 zt−1.

We first state two lemmas that will be useful in developing the proofs of the results.

Lemma A.1 [Xu, 2008] Suppose {yt} is generated by the AR(p) model

yt = µ+

p∑
j=1

θj(yt−j − µ) + et

where all roots of θ(L) = 1−
∑p

j=1 θjL
j are outside the unit circle and {et} satisfies Assump-

tions A3-A5. Let ỹt−j = yt−j − µ, y−p,t = (ỹt−1, ..., ỹt−p)
′ and xt = (y′−p,t, 1)′. Also, define

the [(p+ 1)× (p+ 1)] matrix ΥT = diag(T 1/2, ..., T 1/2, T 1/2a−1
T ). Then

(a) y−p,t =
∑∞

j=1 bjet−j with bj = (ψj−1, ..., ψj−p) if j ≥ 1, ψj = 0 if j < 0, where
θ(L)−1 =

∑∞
j=0 ψjL

j, ψ0 = 1,
∑∞

j=0 j
∣∣ψj∣∣ <∞.

(b) a−2
T Υ−1

T

(∑T
t=1 xtx

′
t

)
Υ−1
T

p→ Q where Q =

 Ω
∫
g2 0(p×1)

0(1×p) 1

 and Ω =
∑∞

j=1 bjb
′
j.

(c) a−2
T Υ−1

T

∑T
t=1 xtet

w→
∫
V dBp+1, where Bp+1 = (B′p, B1)′ with Bp is a p-vector Brownian

motion with covariance matrix Ω and B1 is a standard Brownian motion independent of Bp.

Lemma A.2 Suppose {yt} is generated by the AR(p) model with α = 1:

yt = αyt−1 + +

p−1∑
j=1

πj∆yt−j + et

where {πj} satisfies Assumption A2 and {et} satisfies Assumptions A3-A5. Let e = (e1, ..., eT )′,

vt = ∆yt, wt = (∆yt−1, ...,∆yt−p+1)′, W = (w1, ..., wT )′, Wj = (wTj−1+1, ..., wTj)
′[j =

1, ..., k + 1] and Π = (π1, ..., πp−1)′. Then

(a) a−1
T T−1/2

∑[Tr]
t=1 et

w→
∫ r

0
gdB1 ≡ g̃(1)Bg,1(r).

(b) a−1
T T−1/2

∑[Tr]
t=1 vt

w→ d(1)
∫ r

0
gdB1 ≡ d(1)g̃(1)Bg,1(r), if d(1) 6= 0, where vt =

∑∞
j=0 djet−j with

A-1



∑∞
j=0 j |dj| <∞.

(c) a−2
T T−1

∑[Tr]
t=1 yt−1et

w→ (1/2)d(1)[g̃(1)2B2
g,1(r)− g̃(r)2].

(d)
∥∥(a−2

T T−1W ′W )−1
∥∥ = Op(1).

(e) ‖DTZ
′
2iW2i‖ = Op(1).

(f)
∥∥a−2

T T−1/2W ′e
∥∥ = Op(1).

(g)

∥∥∥∥[a−2
T T−1W ′W − a−2

T T−1
∑k/2

i=1 W
∗′
2iZ2i(Z

′
2iZ2i)

−1Z ′2iW
∗
2i

]−1
∥∥∥∥ = Op(1).

Proof of Lemma A.2: (a) The result follows from Lemma 1 in Cavaliere and Taylor (2009).

(b) By Assumption A2, ∆yt = vt =
∑∞

j=0 djet−j with
∑∞

j=0 j |dj| < ∞. Then, with the
additional restriction d(1) 6= 0, the sequence {vt} satisfies Assumption 1’in Cavaliere and
Taylor (2009) and hence by their Theorem 3, a−1

T T−1/2
∑[Tr]

t=1 vt ⇒ d(1)
∫ r

0
gdB1.

(c) Note that from the Beveridge-Nelson decomposition, we have T−1
∑[Tr]

t=1 yt−1et =

d(1)T−1
∑[Tr]

t=1{
∑t−2

j=1 ej}et + op(1). Next, using the fact that

T−1

[Tr]∑
t=1

{
t−2∑
j=1

ej}et = (1/2)

T−1/2

[Tr]∑
t=1

et

2

− T−1

[Tr]∑
t=1

e2
t

+ op(1)

the result follows from (a) since a−2
T T−1

∑[Tr]
t=1 e

2
t
w→
∫ r

0
g(s)2 ≡ g̃(r)2.

(d) The entries in the matrix a−2
T T−1W ′W are of the form

T−1

T∑
t=1

∆yt−j∆yt−j′ , j, j′ ∈ {1, ..., p− 1}

When α = 1, {∆yt} is an AR(p− 1) process with all roots outside the unit circle. Then by
Lemma A.1(b), T−1

∑T
t=1 ∆yt−j∆yt−j′ = Op(1) and the result follows.

(e) We have a−1
T T−1/2y[Tr] = Op(1) uniformly in r ∈ [0, 1]. Hence, for a fixed j ∈ {1, ..., p−

1}, a−1
T T−1/2

∑T2i
t=T2i−1+1 ∆yt−j = a−1

T T−1/2yT2i−j − a−1
T T−1/2yT2i−1+1−j = Op(1) − Op(1) =

Op(1). Further, a−2
T T−1

∑T2i
t=T2i−1+1 yt−1∆yt−j =

∑T2i
t=T2i−1+1(a−1

T T−1/2yt−1) (a−1
T T−1/2∆yt−j) =

Op(1). Hence, all entries in the matrix DTZ
′
2iW

∗
2i are Op(1) and the result follows.

(f) The result follows by applying Lemma A.1(c) to the sequence {∆yt}.

(g) First, observe that a−2
T T−1W ′W = Op(1) by Lemma A.1(b). Next, a−2

T T−1
∑k/2

i=1

[W ′
2iZ2iDT ] [(a2

TDTZ
′
2iZ2iDT )−1] [DTZ

′
2iW2i] = T−1

∑k/2
i=1Op(1).Op(1).Op(1) = Op(T

−1) =

A-2



op(1) by (e) and Lemma A.1(b). N

Proof of Theorem 1: We prove the result for Model 1a and k even. The proofs for
the other tests are very similar and omitted for brevity. Let Ẽ∗i and Ê

∗
i be the vector of

residuals in the i-th regime under H(1)
0 and H(1)

a,k, respectively, for i = 1, ..., k + 1. Denote
γ̂2i = (α̂2i − 1, ĉ2i)

′, i = 1, ..., k/2, where α̂2i and ĉ2i are the OLS estimates obtained from
regime 2i. Then we have

Ẽ∗i = ∆Yi −WiΠ̆,

Ê∗2i = ∆Y2i −W2iΠ̂− Z2iγ̂2i,

Ê∗2i+1 = ∆Y2i+1 −W2i+1Π̂,

for i = 1, ..., k + 1

for i = 1, ..., k/2

for i = 0, ..., k/2

(A.1)

where Π̆−Π = (W ′W )−1W ′e underH(1)
0 . Further, Π̂ and γ̂2i satisfy the first order conditions

Z ′2iÊ
∗
2i = 0, for i = 1, ..., k/2 (A.2)

k/2∑
i=1

W2iÊ
∗
2i +

k/2∑
i=0

W2i+1Ê
∗
2i+1 = 0 (A.3)

Under H(1)
0 , from (A.3), we have Π̂ − Π = (W ′W )−1(W ′e −

∑k/2
i=1 W

′
2iZ2iγ̂2i). Next, from

(A.2),

a−2
T D−1

T γ̂2i = (a2
TDTZ

′
2iZ2iDT )−1

[
DTZ

′
2iW2i(Π− Π̂) +DTZ

′
2iE2i

]
(A.4)

for i = 1, ..., k/2, where E2i = (eT2i−1+1, ..., eT2i)
′. Solving for (Π̂− Π) we get

Π̂− Π = [W ′W −
k/2∑
i=1

{
W ′

2iZ2i(Z
′
2iZ2i)

−1Z ′2iW2i

}
]−1[W ′e−

k/2∑
i=1

{
W ′

2iZ2i(Z
′
2iZ2i)

−1Z ′2iE2i

}
]

(A.5)
so that using Lemma A.2,

|Π̂− Π|| ≤
∥∥∥∥∥[W ′W −

k/2∑
i=1

{
W ′

2iZ2i(Z
′
2iZ2i)

−1Z ′2iW2i

}
]−1

∥∥∥∥∥×[
‖W ′e‖+

k/2∑
i=1

{
‖W ′

2iZ2iDT‖
∥∥(DTZ

′
2iZ2iDT )−1

∥∥ ‖DTZ
′
2iE2i‖

}]

= [Op(a
−2
T T−1)][Op(a

2
TT

1/2) +
k/2∑
i=1

Op(1).Op(a
2
T ).Op(1)] = Op(T

−1/2)

Also,

||(DTZ
′
2iZ2iDT )−1DTZ

′
2iW2i(Π− Π̂)|| ≤ ||(DTZ

′
2iZ2iDT )−1||||DTZ

′
2iW2i||||(Π− Π̂)||

= Op(a
2
T ).Op(1)Op(T

−1/2) = Op(a
2
TT
−1/2) (A.6)
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Using (A.6) in (A.4), we have

a−2
T D−1

T γ̂2i = (a−2
T DTZ

′
2iZ2iDT )−1DTZ

′
2iE2i + op(1) (A.7)

Next, Π̂− Π̆ = −(W ′W )−1
∑k/2

i=1 {W ′
2iZ2iγ̂2i} so that

||Π̂− Π̆|| ≤
∥∥(W ′W )−1

∥∥ k/2∑
i=1

‖W ′
2iZ2iDT‖

∥∥D−1
T γ̂2i

∥∥
= Op(a

−2
T T−1).

k/2∑
i=1

Op(1).Op(a
2
T ) = Op(T

−1) (A.8)

We can write, from (A.1), for i = 1, ..., k/2, Ẽ∗2i = Ê∗2i + Z2iγ̂2i + W2i(Π̂ − Π̆) and for
i = 0, ..., k/2, Ẽ∗2i+1 = Ê∗2i+1 + W2i+1(Π̂− Π̆). Thus the numerator of the F statistic can be
written as

SSR
(1)
0 − SSR

(1)
1a,k =

k/2∑
i=1

{Ẽ∗′2iẼ∗2i − Ê∗′2iÊ∗2i}+
k/2∑
i=0

{Ẽ∗′2i+1Ẽ
∗
2i+1 − Ê∗′2i+1Ê

∗
2i+1} (A.9)

=
k/2∑
i=1

(D−1
T γ̂2i)

′(DTZ
′
2iZ2iDT )D−1

T γ̂2i + (Π̂− Π̆)′
k/2∑
i=1

(W ′
2iZ2iDT )(D−1

T γ̂2i)

where

||(Π̂− Π̆)′
k/2∑
i=1

(W ′
2iZ2iDT )(D−1

T γ̂2i)|| ≤ ||Π̂− Π̆||
k/2∑
i=1

‖(W ′
2iZ2iDT )‖

∥∥(D−1
T γ̂2i)

∥∥
= Op(T

−1).
k/2∑
i=1

Op(1).Op(a
2
T ) = Op(a

2
TT
−1)

Then, using (A.7) in (A.9), we have

a−2
T (SSR

(1)
0 − SSR

(1)
1a,k) =

k/2∑
i=1

{
E ′2iZ2iDT (a2

TDTZ
′
2iZ2iDT )−1DTZ

′
2iE2i

}
+ op(1)

=
k/2∑
i=1

[
{a−2

T T−1
∑T2i

t=T2i−1+1(yt−1 − ȳ2i,−1)et}2

a−2
T T−2

∑T2i
t=T2i−1+1(yt−1 − ȳ2i,−1)2

(A.10)

+
T

T2i − T2i−1

{a−1
T T−1/2

T2i∑
t=T2i−1+1

et}2]

Using Lemma A.2(a),(c) in (A.10), we have

a−2
T (SSR

(1)
0 −SSR

(1)
1a,k)

w→ g̃(1)2 1

4k

k/2∑
i=1


[{
B
(2i)
g,1 (λ2i)

}2
−
{
B
(2i)
g,1 (λ2i−1)

}2
−g̃(1)−2{g̃(λ2i)2−g̃(λ2i−1)2}

]2
∫ λ2i
λ2i−1

[
B
(2i)
g,1 (r)

]2
dr

+ 1
λ2i−λ2i−1 {Bg,1(λ2i)−Bg,1(λ2i−1)}2


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Finally, noting that T−1SSR
(1)
1a,k

p→
∫ 1

0
g2 ≡ g̃(1)2, the result follows.N

Proof of Theorem 2: We can write

SSR
(0)
0 − SSR

(0)
1,k = DR(1, k + 1)−

k+1∑
i=1

DU(i, i)

where DU(i, j) [DU(i, j), resp.] is the sum of squared residuals from the unrestricted [re-
stricted, resp.) using data from segments i to j (inclusively). Let Y(−1)1,i, Z1,i,W1,i, and
E1,i denote the vectors or matrices containing elements of Y−1, Z,W, and e, respectively, be-
longing to the partition from segment 1 to segment i (inclusively), for i = 1, ..., k+1. Further,
define Si = Z ′1,iE1,i, Hi = Z ′1,iZ1,i, Ki = Z ′1,iW1,i, Li = W ′

1,iW1,i, and Mj = W ′
1,iE1,i for

i = 1, ..., k+1. Finally, let AT = (W ′MZW )−1W ′MZe and ĀT = (W ′MZ̄W )−1W ′MZ̄e where
Z̄ = diag(Z1, ..., Zk+1). Then, from equations (39) and (41) [pg. 73-74] in Bai and Perron
(1998),

SSR
(0)
0 − SSR

(0)
1,k =

k∑
i=1

FT,i +DR(1, 1)−DU(1, 1)

where

FT,i =
[
−S ′i+1H

−1
i+1Si+1 + S ′iH

−1
i Si + (Si+1 − Si)[Hi+1 −Hi]

−1(Si+1 − Si)
]

+
[
2S ′i+1H

−1
i+1Ki+1AT − 2S ′iH

−1
i KiAT − 2(Si+1 − Si)′[Hi+1 −Hi]

−1(Ki+1 −Ki)ĀT
]

+
[
2(Mi+1 −Mi)

′(ĀT − AT ) + (ĀT − AT )′(Li+1 − Li)(ĀT − AT )
]

= T1 + T2 + T3 (A.11)

We now analyze each of the terms T1-T3 in (A.11).
T1:

T1 = −S ′i+1H
−1
i+1Si+1 + S ′iH

−1
i Si + (Si+1 − Si)′[Hi+1 −Hi]

−1(Si+1 − Si)

= −λ−1
i+1

{T−1/2

Ti+1∑
t=1

et

}2

+

{
T−1

Ti+1∑
t=1

ỹ2
t−1

}−1{
T−1/2

Ti+1∑
t=1

ỹt−1et

}2


+λ−1
i

{T−1/2

Ti∑
t=1

et

}2

+

{
T−1

Ti∑
t=1

ỹ2
t−1

}−1{
T−1/2

Ti∑
t=1

ỹt−1et

}2


+(λi+1 − λi)−1

{T−1/2

Ti+1∑
t=Ti+1

et

}2

+

{
T−1

Ti+1∑
t=Ti+1

ỹ2
t−1

}−1{
T−1/2

Ti+1∑
t=Ti+1

ỹt−1et

}2


+op(a
2
T )
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using Lemma A.1(b) where ỹt−j = yt−j − µ. Then, from Lemma A.1, we have

a−2
T T1
w→ g̃(1)2

[
−λ−1

i+1B
2
g,1(λi+1) + λ−1

i B2
g,1(λi) + (λi+1 − λi)−1[Bg,1(λi+1)−Bg,1(λi)]

2
]

+g̃(1)2

 −{g̃2(λi+1)}−1
B2
g,2(λi+1) + {g̃2(λi)}−1B2

g,2(λi)+

{g̃2(λi+1)− g̃2(λi)}−1
[Bg,2(λi+1)−Bg,2(λi)]

2


≡ g̃(1)2

[
{λiBg,1(λi+1)− λi+1Bg,1(λi)}2

λiλi+1(λi+1 − λi)
+
{g̃(λi)

2Bg,2(λi+1)− g̃(λi+1)2Bg,2(λi)}2

g̃(λi)2g̃(λi+1)2 {g̃(λi+1)2 − g̃(λi)2}

]
T2:

T2 = 2(T−1/2Si+1)′(T−1Hi+1)−1T−1Ki+1T
1/2AT − 2(T−1/2Si)

′(T−1Hi)
−1T−1KiT

1/2AT

−2[T−1/2(Si+1 − Si)]′[T−1(Hi+1 −Hi)]
−1T−1(Ki+1 −Ki)T

1/2ĀT

Define Ω̃p−1 = (Ω11 − Ω12,Ω12 − Ω13, ...,Ω1(p−1) − Ω1p)
′, where Ωij is the (i, j) element of

Ω defined in Lemma A.1. Then, using Lemma A.1(a)-(c), we have

a−2
T (T−1/2Si+1)′(T−1Hi+1)−1T−1Ki+1

w→ (1/Ω11)1/2Bg,2(λi+1)Ω̃′p−1

a−2
T (T−1/2Si)

′(T−1Hi)
−1T−1Ki

w→ (1/Ω11)1/2Bg,2(λi)Ω̃
′
p−1

a−2
T [T−1/2(Si+1 − Si)]′[T−1(Hi+1 −Hi)]

−1T−1(Ki+1 −Ki)
w→ (1/Ω11)1/2[Bg,2(λi+1)−Bg,2(λi)]Ω̃

′
p−1

Using Lemma A.1, it can further be shown that

T−1W ′PZW
w→ Ω−1

11 Ω̃p−1Ω̃′p−1g̃
2(1), T−1W ′PZ̄W

w→ Ω−1
11 Ω̃p−1Ω̃′p−1g̃

2(1)

T−1/2W ′PZe
w→ (1/Ω11)1/2Ω̃p−1Bg,2(1), T−1/2W ′PZ̄e

w→ (1/Ω11)1/2Ω̃p−1Bg,2(1)

so that ĀT − AT
p→ 0. Hence, a−2

T T2 = op(1).
T3:

a−2
T T3 = a−2

T [2(Mi+1 −Mi)
′(ĀT − AT ) + (ĀT − AT )′(Li+1 − Li)(ĀT − AT )]

p→ 0

since ĀT − AT
p→ 0. From (A.11), we then get

a−2
T FT,i

w→ g̃(1)2

[
{λiBg,1(λi+1)− λi+1Bg,1(λi)}2

λiλi+1(λi+1 − λi)
+
{g̃(λi)

2Bg,2(λi+1)− g̃(λi+1)2Bg,2(λi)}2

g̃(λi)2g̃(λi+1)2 {g̃(λi+1)2 − g̃(λi)2}

]

The result follows by noting that [T − 2(k + 1)]−1a−2
T SSR

(0)
1,k

p→ g̃(1)2.N

Proof of Theorem 3: Wewill prove the theorem for the bootstrap test based on F1a(λ, k) for
k even. The bootstrap statistic is given by

F ∗1a(λ, k) = (T − k)(SSR
∗,(1)
0 − SSR∗,(1)

1a,k )/[kSSR
∗,(1)
1a,k ]
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where

SSR
∗,(1)
0 =

T∑
t=1

(
y

(1)
t − y

(1)
t−1

)2

(A.12)

SSR
∗,(1)
1a,k =

k/2∑
i=1

T2i∑
t=T2i−1+1

(
y

(1)
t − ȳ

(1)
2i − α̂

(1)
2i (y

(1)
t−1 − ȳ

(1)
2i,−1)

)2

+

k/2∑
i=0

T2i+1∑
t=T2i+1

(
y

(1)
t − y

(1)
t−1

)2

(A.13)

In (A.13), α̂
(1)
2i denotes the slope estimate from an OLS regression of y(1)

t on a constant and

y
(1)
t−1 [t = T2i−1 + 1, ..., T2i; i = 1, ..., k/2]. Since y(1)

t = y
(1)
t−1 + e

(1)
t for t ≤ T, we have

a−2
T (SSR

∗,(1)
0 − SSR∗,(1)

1a,k )

=

k/2∑
i=1

(T2i − T2i−1)
[
a−1
T ē

(1)
2i

]2

+

[
a−2
T T−1

T2i∑
t=T2i−1+1

{
(y

(1)
t−1 − ȳ

(1)
2i,−1)e

(1)
t

}]2

a−2
T T−2

T2i∑
t=T2i−1+1

(
y

(1)
t−1 − ȳ

(1)
2i,−1

)2

(A.14)

Next, we establish an invariance principle for the sequence
{
a−1
T e

(1)
t ; t = 1, ..., T

}
. To this

end, let F∗t be the σ-field generated by {vs; s ≤ t}. Since e(1)
t = ĕtvt, { a−1

T e
(1)
t ,F∗t } is a

martingale difference array. Further, uniformly over r ∈ [0, 1],

a−2
T T−1

[Tr]∑
t=1

[
e

(1)
t

]2

− a−2
T T−1

[Tr]∑
t=1

ĕ2
t

p∗→ 0

since

E∗

a−2
T T−1

[Tr]∑
t=1

([
e

(1)
t

]2

− ĕ2
t

)
2

= E∗

a−2
T T−1

[Tr]∑
t=1

(
ĕ2
tt(v

2
t − 1

)
2

≤ CT−2

[Tr]∑
t=1

(a−1
T ẽt)

4 = op(1)

(where C is a positive constant), using the fact that under H(1)
0 , a−1

T ĕt = a−1
T et + a−1

T w′t(Π−
Π̆) = a−1

T et + Op(T
−1/2). Also, a−2

T T−1
∑[Tr]

t=1t ĕ
2
t

w→
∫ r

0
g2 uniformly over r ∈ [0, 1] (by

Lemma 2 in Cavaliere and Taylor, 2008). Then, applying Theorem 2.1 in Hansen (1992)
with ST (.) = T−1/2

∑[T.]
t=1 vt, we get

T−1/2

[Tr]∑
t=1

a−1
T e

(1)
t = a−1

T

∫ r

0

ĕ[Ts]dST (s)
w→p

∫ r

0

g(s)dB1(s) = g̃(1)Bg,1(r) (A.15)
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Utilizing (A.15), we have

a−2
T T−2

T2i∑
t=T2i−1+1

(
y

(1)
t−1 − ȳ

(1)
2i,−1

)2 w→p g̃(1)2

∫ λ2i

λ2i−1

[
B

(2i)
g,1 (s)

]2

a−2
T T−1

T2i∑
t=T2i−1+1

{
(y

(1)
t−1 − ȳ

(1)
2i,−1)e

(1)
t

}
w→p (1/2)g̃(1)2

 {B(2i)
g,1 (λ2i)

}2

−
{
B

(2i)
g,1 (λ2i−1)

}2

−g̃(1)−2 {g̃(λ2i)
2 − g̃(λ2i−1)2}


a−1
T T 1/2ē

(1)
2i

w→p (λ2i − λ2i−1)−1g̃(1)[Bg,1(λ2i)−Bg,1(λ2i−1)] (A.16)

Substituting (A.16) in (A.14) and noting that (T−k)−1SSR
∗,(1)
1a,k

p→ g̃(1)2, we get F ∗1a(λ, k)
w→p

F 0
1a(λ, k), where F 0

1a(λ, k) is the weak limit of F1a(λ, k) as stated in Theorem 1. The rest of
the proof follows from the proof of Theorem 5 in Hansen (2000).N

Proof of Theorem 4: The bootstrap BP test for k breaks is given by

G∗1(k) = [T − 2(k + 1)](SSR
∗,(0)
0 − SSR∗,(0)

1,k )/[kSSR
∗,(0)
1,k ]

where

SSR
∗,(0)
0 =

T∑
t=1

(
e

(0)
t − ē(0) − α̃(0)(e

(0)
t−1 − ē

(0)
−1)
)2

(A.17)

SSR
∗,(0)
1,k =

k+1∑
i=1

Ti∑
t=Ti−1+1

(
e

(0)
t − ē

(0)
i − α̂

(0)
i (e

(0)
t−1 − ē

(0)
i,−1)

)2

(A.18)

In (A.17), α̃(0) denotes the slope estimate from an OLS regression of e(0)
t on a constant and

e
(0)
t−1 [t = 1, ..., T ]. In (A.18), α̂

(0)
i denotes the slope estimate from an OLS regression of

e
(0)
t on a constant and e(0)

t−1 [t = Ti−1 + 1, ..., Ti]. We can write, after some algebra,

a−2
T (SSR

∗,(0)
0 − SSR∗,(0)

1,k ) = −T
[
a−1
T ē(0)

]2 −
[
a−2
T T−1/2

T∑
t=1

{
(e

(0)
t−1 − ē

(0)
i,−1)e

(0)
t

}]2

a−2
T T−1

T∑
t=1

(
e

(0)
t−1 − ē

(0)
i,−1

)2

+

k+1∑
i=1

(Ti − Ti−1)
[
a−1
T ē

(0)
i

]2

+

[
a−2
T T−1/2

Ti∑
t=Ti−1+1

{
(e

(0)
t−1 − ē

(0)
i,−1)e

(0)
t

}]2

a−2
T T−1

Ti∑
t=Ti−1+1

(
e

(0)
t−1 − ē

(0)
i,−1

)2

 (A.19)
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Next, we establish an invariance principle for the sequence
{
a−1
T e

(0)
t ; t = 1, ..., T

}
. In partic-

ular, we will show that for r ∈ [0, 1],

T−1/2

[Tr]∑
t=1

a−1
T e

(0)
t

w→p

∫ r

0

g(s)dB1(s) (A.20)

To this end, let F∗t be the σ-field generated by {vs; s ≤ t}. Since e(0)
t = ẽtvt, { a−1

T e
(0)
t ,F∗t } is

a martingale difference array. Further, uniformly over r ∈ [0, 1],

a−2
T T−1

[Tr]∑
t=1

[
e

(0)
t

]2

− a−2
T T−1

[Tr]∑
t=1

ẽ2
t

p∗→ 0

since

E∗

a−2
T T−1

[Tr]∑
t=1

([
e

(0)
t

]2

− ẽ2
t

)
2

= E∗

a−2
T T−1

[Tr]∑
t=1

(
ẽ2
t (v

2
t − 1

)
2

≤ CT−2

[Tr]∑
t=1

(a−1
T ẽt)

4 = op(1)

using the fact that a−1
T ẽt = a−1

T et+Op(T
−1/2) [eq. (A.7) in Xu, 2008]. Also, a−2

T T−1
∑[Tr]

t=1 ẽ
2
t

p→∫ r
0
g2. Then, again applying Theorem 2.1 in Hansen (1992) with ST (.) = T−1/2

∑[T.]
t=1 vt, we

get

T−1/2

[Tr]∑
t=1

a−1
T e

(0)
t = a−1

T

∫ r

0

ẽ[Ts]dST (s)
w→p

∫ r

0

g(s)dB1(s)

Noting that { a−2
T e

(0)
t e

(0)
t−1,F∗t } is a martingale difference array, we can show, using similar

arguments as above, that

T−1/2

[Tr]∑
t=1

a−2
T e

(0)
t e

(0)
t−1

w→p

∫ r

0

g2(s)dB2(s) (A.21)

for r ∈ [0, 1], where B2(.) is independent of B1(.). Finally, since a−2
T T−1SSR

∗,(0)
1,k

p→ g̃(1)2,

G∗1(λ, k)
w→p G

0
1(λ, k) using (A.20) and (A.21) in (A.19), where G0

1(λ, k) is the weak limit
of G1(λ, k) as defined in Theorem 2. Hence, following the proof of Theorem 5 in Hansen
(2000), pbk,G1

w→ U [0, 1], pbUDmax
w→ U [0, 1].N

Proof of Theorem 5: We will prove pbm,W1

p→ 0 and pbm,G1
p→ 0 under H(1)

a,m with m even.

Consequently, pbWmax

p→ 0 and pbUDmax
p→ 0. The proofs for the alternatives H(1)

b,m and

H
(0)
1,m can be established using similar arguments. The proof proceeds in two steps: (i) We

first show that the bootstrap counterparts F ∗1a(m), F ∗1b(m) andG∗1(m) of F1a(m), F1b(m) and
G1(m), respectively, are each Op(1) under H(1)

a,m; (ii) F1a(m) [hence W1(m)] and G1(m) both
diverge with T .
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For (i), first note that for s ∈ [0, 1],

a−1
T ĕ[Ts] = a−1

T eTs] + a−1
T

m/2∑
i=1

(α2i − 1)h[Ts]−1I([Ts] ∈ [T 0
2i−1 + 1, T 0

2i]) +Op(T
−1/2)

so that

a−2
T T−1

[Tr]∑
t=1

ĕ2
t = a−2

T T−1

[Tr]∑
t=1

e2
t + a−2

T T−1

[Tr]∑
t=1

m/2∑
i=1

(α2i − 1)2h2
t−1I(t ∈ [T 0

2i−1 + 1, T 0
2i]) + op(1)

p→
∫ r

0

g2 +

m/2∑
i=1

(α2i − 1)2(Ω
(2i)
11 )

∫ r

0

g(s)2I(s ∈ [λ0
2i−1, λ

0
2i])ds = V̆ (r) (say) (A.22)

where a−2
T T−1

∑[Ts]

t=T 02i−1+1
h2
t−1

p→ Ω
(2i)
11

∫ s
λ02i−1

g2 if s ∈ [λ0
2i−1, λ

0
2i] and Ω

(2i)
11 is the (1, 1) element

of Ω(2i), where Ω(2i) is defined analogously to Ω in Lemma A.1 but is now specific to regime
2i. Therefore, we have for r ∈ [0, 1],

a−1
T T−1/2

[Tr]∑
t=1

e
(1)
t = a−1

T

∫ r

0

ĕ[Ts]dST (s)
w→p

∫ r

0

g1(s)dB1(s) = B̆g,1(r) (say) (A.23)

where g1(s) = g(s)[1 +
∑m/2

i=1 (α2i − 1)2(Ω
(2i)
11 )I(s ∈ [λ0

2i−1, λ
0
2i])ds]

1/2. Note that
∫ r

0
g1(s)2 =

V̆ (r). Then, the results stated in (A.16) all hold with Bg,1(.) replaced by B̆g,1(.). Fur-
ther, (T − k)−1SSR

∗,(1)
1a,k

w→p

∫ 1

0
g1(s)2 = V̆ (1). Thus, F ∗1a(m) = Op(1). Entirely analogous

arguments can be used to establish F ∗1b(m) = Op(1).
Next, we show that G∗1(m) is stochastically bounded under H(1)

a,m. First, note that we can
write

ẽt = yt − ȳ − α̃(yt−1 − ȳ−1)− (wt − w̄)′Π̃

where T (α̃− 1) = Op(1) since H(1)
a,m involves a mix of I(1) and I(0) regimes. Further,

ȳ − α̃ȳ−1 = ȳ − ȳ−1 − (α̃− 1)ȳ−1 = T−1(yT − y0)− (α̃− 1)ȳ−1

= Op(aTT
−1/2)−Op(aTT

−1/2) = Op(aTT
−1/2)

Thus, in an I(1) regime, i.e., t ∈ [T2i + 1, ..., T2i+1], i = 0, ...,m/2, we have

a−1
T ẽt = a−1

T et + a−1
T (1− α̃)yt−1 +Op(T

−1/2) = a−1
T et +Op(T

−1)Op(T
1/2) +Op(T

−1/2)

= a−1
T et +Op(T

−1/2) (A.24)

In an I(0) regime, i.e., t ∈ [T2i−1 + 1, ..., T2i], i = 1, ...,m/2, we have

a−1
T ẽt = a−1

T et + (α2i − 1)a−1
T ht−1 +Op(T

−1/2) (A.25)
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Combining (A.24) and (A.25), we can write for t = 1, ..., T,

a−1
T ẽt = a−1

T et +

m/2∑
i=1

(α2i − 1)a−1
T ht−1I(t ∈ [T 0

2i−1 + 1, ..., T 0
2i])

so that for r ∈ [0, 1],so that

a−2
T T−1

[Tr]∑
t=1

ẽ2
t = a−2

T T−1

[Tr]∑
t=1

e2
t + a−2

T T−1

[Tr]∑
t=1

m/2∑
i=1

(α2i − 1)2h2
t−1I(t ∈ [T 0

2i−1 + 1, T 0
2i]) + op(1)

p→ V̆ (r)

where V̆ (r) is defined in (A.22). Hence, a−1
T T−1/2

∑[Tr]
t=1 e

(0)
t = a−1

T

∫ r
0
ẽ[Ts]dST (s)

w→p B̆g,1(r)

and the limits in (A.20) and (A.21) now hold with g(.) replaced by g1(.). Also, a−2
T T−1SSR

∗,(0)
1,k

p→
V̆ (1). Thus, G∗1(m) = Op(1).
To show (ii), note that since λ0 ∈ Λm

ε and F1a(m) = supλ∈Λmε
F1a(λ,m), it is suffi cient to

show that F1a(λ
0,m) = Op(T ). Define

Π̆ = (

T∑
t=1

wtw
′
t)
−1

T∑
t=1

wt∆yt

µ̃2i = µ2i + yT 02i−1−µ2i−1, i = 1, ...,m/2

Then ht−1 = yt−1 − µ̃2i, t ∈ [T 0
2i−1 + 1, T 0

2i]. We can write

SSR
(1)
0 =

T∑
t=1

(∆yt − w′tΠ̆)2 =

m/2∑
i=0

T 02i+1∑
t=T 02i+1

{
w′t(Π− Π̆) + et

}2

+

m/2∑
i=1

T 02i∑
t=T 02i−1+1

{
(α2i − 1)ht−1 + w′t(Π− Π̆) + et

}2

=
T∑
t=1

e2
t +

m/2∑
i=1

(α2i − 1)2

 T 02i∑
t=T 02i−1+1

h2
t−1

+ 2(Π− Π̆)′
m/2∑
i=1

(α2i − 1)

 T 02i∑
t=T 02i−1+1

ht−1wt


+(Π− Π̆)′(W ′W )(Π− Π̆) + 2(Π− Π̆)′W ′e+ 2

m/2∑
i=1

(α2i − 1)

 T 02i∑
t=T 02i−1+1

ht−1et


Let Z̄(1) = diag(Z̃

(1)
1 , ..., Z̃

(1)
m+1), where Z̃(1)

i is the first column of Z̃i = (hT 02i−1 , ..., hT 02i−1) and

the [(m+1)×1] vector γ1 = (0, α2−1, 0, α4−1, .., 0)′. Noting that Π̆−Π = (W ′W )−1W ′e+

(W ′W )−1
∑m/2

i=1 (α2i − 1)
∑T 02i

t=T 02i−1+1
ht−1wt, we can write

SSR
(1)
0 =

T∑
t=1

e2
t + γ′1Z̄

(1)′MW Z̄
(1)γ1 − e′W (W ′W )−1W ′e+ 2γ′1Z̄

(1)′e (A.26)
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Now we use the following facts: (i) e′W (W ′W )−1W ′e = a2
T [a−2

T T−1/2e′W (a−2
T T−1W ′W )−1.

a−2
T T−1/2W ′e] = a2

TOp(1) = Op(a
2
T ); (ii) γ′1Z̄

(1)′e = Op(a
2
TT

1/2). Thus, from (A.26), we get

a−2
T SSR

(1)
0 = a−2

T

T∑
t=1

e2
t + a−2

T γ′1Z̄
(1)′MW Z̄

(1)γ1 +Op(T
1/2)

Next, we have (with Π̂ denoting the estimate of Π under the alternative model),

SSR
(1)
1a,m =

m/2∑
i=0

T 02i+1∑
t=T 02i+1

{
w′t(Π− Π̂) + et

}2

+

m/2∑
i=1

T 02i∑
t=T 02i−1+1

 (α2i − α̂2i)(yt−1 − ȳ2i,−1)

+(wt − w̄2i)
′(Π− Π̂) + et


2

Then, noting that

Π̂− Π = (W ′W )−1[

m/2∑
i=1

(α2i − α̂2i)

T 02i∑
t=T 02i−1+1

wt(yt−1 − ȳ2i,−1) +W ′e]

= [Op(a
−2
T T−1)][Op(a

2
TT

1/2) +Op(a
2
TT

1/2)] = Op(T
−1/2)

we can show, after some simplification,

a−2
T SSR

(1)
1a,m = a−2

T

T∑
t=1

e2
t +Op(1) (A.27)

Combining (A.26) and (A.27),

a−2
T (SSR

(1)
0 − SSR

(1)
1a,m) = a−2

T γ′1Z̄
(1)′MW Z̄

(1)γ1 +Op(T
1/2) (A.28)

Now, since regime 2i (i = 1, ...,m/2) is I(0), a−2
T γ′1Z̄

(1)′MW Z̄
(1)γ1 = a−2

T Op(a
2
TT ) = Op(T ).

Since this term is positive and dominant in (A.28), F1a(λ
0,m) diverges to positive infinity

at rate T . Entirely analogous arguments can be used to show the divergence of G1(m) at
rate T . The details are omitted.N

Proof of Theorem 6: To prove this result, it is suffi cient to show that

lim
T→∞

P ( min
1≤i≤l+1

{p∗i } < ηl+1) ≤ η (A.29)

as the rest of the proof follows the same arguments as in the proof of Theorem 2 in Kejriwal
(2018). First, note that

P ( min
1≤i≤l+1

{p∗i } < ηl+1) = 1− P ( min
1≤i≤l+1

{p∗i } ≥ ηl+1)

= 1− Πl+1
i=1

[
P (p∗i ≥ ηl+1)

]
= 1− Πl+1

i=1

[
1− P ({p∗,(i)1,W1

< ηl+1} ∩ {p
∗,(i)
1,G1

< ηl+1})
]

(A.30)
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where the second equality follows from the independence of the test statistics across segments
and the third from the fact that p∗i = max{p∗,(i)1,W1

, p
∗,(i)
1,G1
}. Next, from Theorems 3 and 4, it

follows that under the null hypothesis of l breaks, we have for any segment i ∈ {1, ..., l+ 1},

P ({p∗,(i)1,W1
< ηl+1} ∩ {p

∗,(i)
1,G1

< ηl+1}) ≤ P ({p∗,(i)1,W1
< ηl+1})→ ηl+1 if i is I(1)

P ({p∗,(i)1,W1
< ηl+1} ∩ {p

∗,(i)
1,G1

< ηl+1}) ≤ P ({p∗,(i)1,G1
< ηl+1})→ ηl+1 if i is I(0) (A.31)

Thus, using (A.31) in (A.30), we have

lim
T→∞

P ( min
1≤i≤l+1

{p∗i } < ηl+1) ≤ 1−
[
1− ηl+1

]l+1
= η

which proves (A.29).N

Proof of Theorem 7: The proof uses arguments very similar to those used in proving
Theorems 3-6 and is hence omitted.N
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Appendix B: Additional Monte Carlo Results

Notes to Tables

1. Table B-1 reports the empirical size of asymptotic tests with nominal size 5%. The
tests K1,K′1,K4 are the ratio-based tests of Kim (2000) and Busetti and Taylor (2004)
and H1, H2, Hmax are the tests of Kejriwal et al. (2013).

2. Table B-2 reports the size-adjusted power of 5% bootstrap tests under different change
points and volatility intensity in the single break case with breakpoint λ01 = .5 and
serially uncorrelated errors (ρ = θ = 0) with abrupt volatility change (Model 1).

3. Table B-3 reports the size-adjusted power of 5% bootstrap tests in the single break
case with breakpoint λ01 = .5 and AR(1) errors (ρ = .5, θ = 0).

4. Table B-4 reports the size-adjusted power of 5% bootstrap tests in the single break
case with breakpoint λ01 = .5 and MA(1) errors (ρ = 0, θ = .5).

5. Table B-5 reports the size-adjusted power of 5% bootstrap tests in the two breaks case
with breakpoint vector (λ01, λ

0
2) = (.3, .8) and AR(1) errors (ρ = .5, θ = 0).

6. Table B-6 reports the size-adjusted power of 5% bootstrap tests in the two breaks case
with breakpoint vector (λ01, λ

0
2) = (.3, .8) and MA(1) errors (ρ = 0, θ = .5).

7. Table B-7 reports the empirical power of 5% bootstrap recursive and the proposed
non-recursive BP tests in the single break case with breakpoint λ01 = .5 and AR(1)
errors (ρ = .5, θ = 0).

8. Table B-8 reports the empirical power of 5% bootstrap recursive and the proposed
non-recursive BP tests in the single break case with breakpoint λ01 = .5 and MA(1)
errors (ρ = 0, θ = .5).

9. Table B-9 reports the probabilities of selecting the true number of breaks from the
sequential procedure under different abrupt volatility break points and intensities in
the two breaks case with breakpoint vector (λ01, λ

0
2) = (.3, .8), serially uncorrelated

errors (ρ = θ = 0) and level η = .10.

10. Table B-10 reports the regime-wise parameter estimates and wild bootstrap p-values
of the ADF test for the OECD countries with persistence breaks.
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Table B-2: Size-adjusted power of bootstrap tests under different change points and volatility intensity,
[Model 1, DGP 1, m = 1, ρ = θ = 0, α = 0.5, 5%]

T λ01 Test Model 1: δ
1/5 1/3 1/2.5 1/1.5 1/1.1

200

0.2
H∗1 .05 .05 .04 .07 .28
H∗2 .04 .04 .04 .05 .09
H∗max .05 .04 .05 .06 .20

0.3
H∗1 .05 .04 .05 .15 .61
H∗2 .04 .04 .04 .08 .20
H∗max .04 .05 .04 .11 .46

0.5
H∗1 .04 .05 .06 .56 .94
H∗2 .04 .04 .04 .24 .55
H∗max .05 .04 .05 .44 .89

0.6
H∗1 .08 .17 .27 .87 .98
H∗2 .03 .04 .07 .41 .70
H∗max .04 .08 .12 .77 .95

0.7
H∗1 .33 .51 .61 .92 .96
H∗2 .19 .24 .27 .58 .77
H∗max .23 .32 .44 .86 .94

0.9
H∗1 .31 .39 .44 .58 .62
H∗2 .30 .31 .32 .43 .47
H∗max .29 .33 .37 .55 .60

400

0.2
H∗1 .06 .06 .06 .30 .88
H∗2 .05 .05 .05 .08 .38
H∗max .05 .05 .05 .16 .74

0.3
H∗1 .06 .06 .06 .73 1.0
H∗2 .05 .05 .05 .26 .73
H∗max .05 .05 .05 .55 .98

0.5
H∗1 .06 .08 .20 .99 1.0
H∗2 .05 .05 .06 .78 .99
H∗max .05 .05 .10 .97 1.0

0.6
H∗1 .58 .84 .94 1.0 1.0
H∗2 .07 .18 .31 .93 1.0
H∗max .30 .65 .83 1.0 1.0

0.7
H∗1 .96 .99 1.0 1.0 1.0
H∗2 .67 .75 .82 .98 1.0
H∗max .88 .96 .98 1.0 1.0

0.9
H∗1 .84 .88 .90 .93 .93
H∗2 .78 .79 .80 .84 .86
H∗max .80 .84 .87 .93 .93
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Table B-9: Break selection probabilities under different abrupt volatility break points and intensities, [Model
1, DGP 5 and 6, m = 2, ρ = θ = 0, 5%]

T DGP α/(α1, α2) τ Model 1: δ
1/3 1/2.5 1/1.5 1/1.1 1 1.1 1.5 2.5 3

400

5 0.5

0.2 Pc .47 .54 .76 .83 .84 .84 .84 .63 .44
Po .13 .15 .17 .16 .15 .14 .14 .30 .45

0.3 Pc .11 .11 .62 .83 .84 .85 .80 .50 .35
Po .06 .07 .14 .15 .14 .14 .16 .37 .46

0.5 Pc .07 .06 .66 .84 .84 .82 .66 .08 .08
Po .08 .10 .14 .14 .15 .16 .17 .08 .06

0.8 Pc .68 .77 .87 .86 .84 .80 .61 .18 .15
Po .15 .13 .12 .13 .15 .17 .19 .08 .06

0.9 Pc .89 .88 .87 .85 .84 .83 .78 .69 .66
Po .09 .11 .12 .14 .15 .15 .17 .17 .16

6 (0.2, 0.9)

0.2 Pc .86 .85 .89 .89 .90 .90 .89 .72 .55
Po .12 .14 .11 .11 .11 .10 .11 .27 .42

0.3 Pc .18 .41 .88 .89 .89 .90 .88 .67 .50
Po .07 .09 .11 .11 .11 .10 .12 .29 .40

0.5 Pc .08 .28 .88 .88 .90 .89 .88 .31 .11
Po .07 .09 .12 .12 .10 .11 .11 .12 .09

0.8 Pc .80 .86 .88 .89 .88 .89 .86 .46 .32
Po .14 .12 .12 .11 .12 .11 .12 .12 .08

0.9 Pc .90 .90 .90 .89 .89 .88 .88 .86 .86
Po .09 .10 .10 .11 .11 .12 .12 .13 .13

600

5 0.5

0.2 Pc .78 .80 .85 .86 .87 .87 .88 .74 .58
Po .15 .16 .15 .14 .13 .13 .12 .25 .41

0.3 Pc .09 .12 .83 .86 .87 .87 .88 .71 .54
Po .05 .06 .15 .14 .13 .13 .12 .27 .40

0.5 Pc .05 .07 .86 .88 .86 .85 .83 .13 .07
Po .07 .08 .13 .12 .14 .15 .16 .10 .08

0.8 Pc .82 .86 .87 .87 .86 .86 .76 .25 .18
Po .15 .13 .13 .14 .14 .14 .21 .13 .09

0.9 Pc .88 .89 .88 .86 .87 .87 .85 .81 .81
Po .12 .11 .12 .14 .14 .14 .15 .18 .18

6 (0.2, 0.9)

0.2 Pc .84 .85 .86 .85 .86 .86 .86 .80 .67
Po .16 .15 .15 .15 .14 .14 .14 .20 .33

0.3 Pc .57 .76 .86 .86 .86 .86 .87 .79 .67
Po .12 .15 .14 .14 .14 .14 .13 .21 .32

0.5 Pc .32 .68 .85 .86 .85 .86 .88 .64 .30
Po .11 .15 .15 .14 .15 .14 .12 .14 .13

0.8 Pc .84 .85 .86 .86 .86 .87 .86 .74 .56
Po .16 .16 .14 .14 .14 .14 .14 .15 .12

0.9 Pc .86 .86 .86 .86 .85 .86 .86 .87 .85
Po .14 .14 .14 .14 .15 .14 .14 .14 .15
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Table B-10: Regime-wise estimates of OECD countries with breaks in persistence

Country m̂ Regime AR sum 90% Band ADF p-value
(1) (2) (3) (4) (5) (6)

Belgium 1
1st .57 [.44, .75] .00
2nd .82 [.71, 1.05] .11

France 2
1st .10 [-.12, .38] .00
2nd .65 [.51, .89] .10
3rd .63 [.51, .79] .00

Germany 2
1st .21 [.10, .36] .00
2nd .52 [.42, .64] .00
3rd .06 [-.51, 1.15] .08

Italy 2
1st .01 [-.13, .19] .00
2nd .51 [.36, .73] .00
3rd .88 [.82, 1.02] .07

Luxembourg 1
1st .87 [.76, .1.10] .51
2nd -.13 [-.80, 1.17] .01
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