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Abstract
Server farms constitute the heart of any e-commerce site. This paper evaluates the
performance of server farm systems for handling real-time transactions. The
paper uses a simulated environment to implement server farms and tests the
performance for various design policies and parameters. These design choices
include scheduling policy, priority allocation, priority handling, number of
machines in server farm, network delays and transaction mix. Results indicate
that the prudent policies that schedule all transactions perform very well for low
load conditions but fare badly for high load conditions. Simulation also found
that some network latency actually improves system performance when the
variance in task arrival rates is high. This paper demonstrates that performance
of server farm system is contingent on the design choices made during the

implementation of the system.



1 BACKGROUND

This paper evaluates the performance of server farm system for handling realtime
transactions using a simulation environment. Server farms are computers that are connected
together with various networking schemes to evaluate the system to handle large volumes of
transactions. Server farms intend to improve the performance of a system by distributing the
traffic on network across multiple servers. Load balancer is used for prioritizing and scheduling
transactions to individual servers.

E-commerce transactions executed by server farms are critically dependent upon time to
execute. Tasks involved in these transactions have to be completed within a stipulated time
period. Once the specified deadline elapses, these transactions may lose their values or may
even negatively impact the system. These tasks are often referred to as transactions with real
time constraints or real-time transactions for short. For instance, consider an online stock
trading system where a trader may demand a trade to be executed within a specified time period
or may want the system to execute the trade if the price falls within a certain price window.
Trades can also be executed if the trader (or system acting on the instructions of the trader)
observes a price differential between two different markets. Window of opportunity during
which the price differential exists is small and lasts for a short period of time. Trading operation
is useful only if it is executed in this time frame and loses its value once the specified prices
cease to exist.

Any system that is responsible for handling the real time transactions must be capable of
handling the realtime requirement imposed by these transactions. For example, one of the
design objectives of these e-commerce applications is to maximize the number of transactions

serviced within the stipulated time period, but limit the number of transactions serviced that have



already missed their deadlines. It has to be noted that objective of these reaktime transaction
processing systems is starkly different from the objective of traditional transaction processing
systems (TPS). While the conventional TPS focus just on maximizing the average throughput
for a set of transactions, the reaktime transaction processing systems also have the objective to
minimize the number of tardy transactions'. This difference can be illustrated using a simple
example: Assume two design policies to execute transactions, policy A and policy B. Policy A
has an average throughput of 0.6 transactions per unit time and average number of tardy
transactions as 15% of all the transactions. Policy set B executes only 0.5 transactions per time
period but has only 5% tardy transactions. Conventional transaction processing system would
choose policy A and thereby maximize the throughput of the system. By contrast, a real-time
transaction processing system would prefer policy B, despite its low throughput, in order to
reduce the number of tardy transactions.

Conventional TPS operate with the assumption that all the transactions need to be
executed and thereby are required to be committed at some point of time. However, this
assumption does not hold true for reaktime systems, as some of the transactions have to be
deliberately aborted if they fail to meet their required deadlines. A critical operational
requirement from these systems is that they detect and abort tardy transactions before they
consume excessive computational resources. Failure to detect the tardy transaction in time
would result in deterioration of the performance of the system. This might also result in
snowball effect. Large number of tardy transactions in the system will consume system
resources preventing the system to allocate resources to service other transactions before their

deadlines, in turn, making these transactions tardy too.

' Tardy transactions are the transaction that were not executed before their specified deadline



It might also be dangerous to consider that eliminating all the tardy transaction is a best
design policy for a reaktime transaction processing system. If the load on the system is low,
system might end up using expensive resources just to identify the tardy transactions and
eliminate them. In low load conditions, it might be beneficial just to schedule all transactions
without worrying about eliminating tardy transactions because systems has enough resources
available.

The performance of any real-time system depends upon the design of the control
parameters. The design policies and parameters governing a server farm’s performance include
system load, the transaction scheduling policy, the priority assignments to the transactions, the
number of servers or nodes in the farm system, and communication or network delays between
the servers. The paper analyzes the impact of these design policies on the performance of server
farms. The paper uses a generalpurpose simulation system, SimDS [7], a simulation
environment for design of distributed systems. This environment provides a mechanism to
analyze the policies before they can be implemented in real environment. This research will
provide us clues to design of better real time applications.

The rest of the paper is organized as follows: section 2 describes the past research on
modeling and evaluation of real-time systems, section 3 introduces design policies and
parameters that influence the performance of server farms, section 4 describes the simulation
model, section 5 presents the finding of the research, section 6 gives the conclusions, and section

7 presents the implications of the research.

2 LITERATURE

A significant body of research in the distributed systems focuses on real time

transactions. However, there is a lack in the research focusing on the use and design of server



farm systems for supporting realtime transactions. Existing distributed system research
primarily focuses on developing analytical models of the systems [6, 12, 16, 19, 20, 24, 26].
Other researchers have focused on analyzing different mechanism for operation of realtime
systems under different environmental conditions [8, 12, 21, 22, 23]. They use these models to
analyze the performance of distributed systems. These researchers also proposed certain design
policies that control the performance of the systems. We have utilized some of these design
policies in our simulation. Some researchers have performed simulations to analyze the
performance of reaktime systems for specific design parameters [1, 2, 3, 4]. However, none of
the simulation-based studies have attempted to simulate the utilization of server farm systems for
real-time transactions.

Existing server farm literature focuses primarily on analyzing the performance of server
farm systems for web hosting services [31]. Researchers also have focused on developing load-
balancing strategies for these server farm systems [9, 32]. Load balancing software is the heart
of any server farm. Load balancer tracks the demand for processing power from different
machines, prioritizes the tasks, and schedules and reschedules tasks to individual machines.
Several vendors are involved in deve lopment of commercial server farm systems. These include

Blackstone Technology Group, Compaq and Sun Microsystems.

3 DESIGN POLICIES

As mentioned in the earlier section, the performance of a server farm depends on several
policy parameters specified during the design of the system. In this section, we present few of
the design policies that can potentially impact the performance of server farms. In the later

sections, we analyze the performance of server farms for a subset of these policies.



The first set of policies, implemented by a load balancer, governs the scheduling of the
transactions to machines in a server farm. Load balancer tracks demands for processing power
from different machines, prioritizes the tasks and schedules or reschedules them. Different
transactions have different value associated with completion of the transaction or have different
opportunity costs for missing the deadlines. Some system critical transaction might require
execution at all costs. Other transactions might be aborted easily without much loss to the value
of the system as a whole. Two mechanisms are involved in scheduling of transactions. First
mechanism assigns priorities to incoming transactions [8, 13, 25, 27]. Second mechanism -
defines how the load balancer is going to schedule transactions with different priorities.

e Priority Value Allocation: Three different options for priority allocation can be

utilized to assign priorities to transactions

o FIFO Policy: The policy assigns the priorities based on the first come first serve
basis i.e. the first transaction arriving at the system receives the highest priority

while the last transaction arriving at the system receives the lowest priority.

o Deadline Policy: This policy assigns priorities based on transaction deadlines by

assigning higher priority to transactions with earlier deadlines.

o Slack Policy: This policy assigns priorities based on the slack time for the
transactions. The slack time refers to the time differential between the
transaction deadline and the estimated processing time for the transaction.

Transaction with the least slack time is assigned the highest priority

e Scheduling Policies: Once a priority has been assigned to a transaction, the load
balancer needs to allocate the processor time for the transaction [6, 14]. If any of the

machines in the server farms is idle than the transaction is scheduled immediately to



the idle server. If none of the machines are available and all of them are servicing
higher priority transactions then the arriving transaction has to wait for the arriving
transaction to complete before it can be scheduled. In this case, the transaction is just
placed in the queue. But if the arriving transaction has a higher priority than all the
transaction being serviced at that moment, the scheduler implements one of the
following policies to resolve the contention of the arriving transaction to use the

system.

o Non-preemptive Policy: In this policy, all the current transaction are allowed to
complete before any new transaction is scheduled. Once, any of the machine
becomes idle, the first transaction with the highest priority in the queue is

scheduled.

o Preemptive Policy: Under this policy, as soon as a high priority transaction
arrives, the transaction with the lowest priority is aborted immediately. The
arriving transaction is scheduled immediately to the server that was servicing the
aborted transaction. The current transaction maintains its existing priority value
implying that if another high priority transaction arrives before any machine
becomes available the arriving transaction will be scheduled ahead of the

aborted transaction.

o Promoting Preemptive Policy: This policy is similar to the preemptive policy.
However, in this case the aborted transaction assumes the priority of the new
transaction. This ensures that the transaction receives a fair chance of getting
executed and does not have to spent most of its time getting in and out of the

queue.



o Conditional Non-preemptive Policy: This policy allows the current transaction
to complete if the system estimates that the arriving high priority transaction can
afford to wait for one of the current transactions to be completed. The system
computes the slack time of the arriving transaction, and if this slack time is
greater than the estimated processing time for any of the current transactions, it

allows all the current transactions to execute.

Another design issue that a load balancer must consider while scheduling the transactions

is the handling of the ‘overloading transactions’ [1, 2, 14]. The overloading transactions are

defined as transactions that are unlikely to be completed before their deadlines. Three strategies

to manage the overloading transactions are presented here:

Schedule All Policy: This policy completely ignores the overload issue and schedules

all transactions irrespective of their likelihood of completion.

Tardy Policy: Tardy policy focuses on aborting all transactions whose deadlines have
elapsed. Policy ensures that all tardy transactions are removed from the queue at the
earliest opportunity. This policy is not concerned with transactions that are estimated
to miss their deadlines but is only concerned with transactions that have already missed

their deadlines.

Feasible Policy: This policy aborts all transactions that are unlikely to be completed
before their respective deadlines. Load balancer achieves this by computing the
estimated slack times for all transactions and aborting the transactions that have
negative slack times. Practical implementation of this policy actually involves some
overhead costs in computing the slack times for all transactions. However, our

simulation does not model these overheads.



Each server in a server farm must have access to the appropriate data to execute the
transactions. When several machines serve the same content, following policies for data ‘
fragmentation and replication can be implemented [12, 15, 19]:

e No Replication Policy (Shared Storage): This policy assumes that only one copy of
data exists throughout the server farm. This policy gains relevance if application
requires frequent data updates, network is relatively failure safe, and network delays

are minimal.

o Full Replication Policy (Replicated Storage): In this policy, the system replicates and
stores all the data at each machine. This policy is viable where the response time is

critical, the network is somewhat unreliable, and network delays are significant.

e Partial Replication Policy (Hybrid Solution): This policy implementation involves a
mix of no-replication and full-replication policies. Different number of replicas for
different data sets may be kept at several sites. Determination of the number of copies
for a particular data set depends on the frequency of access needed to the data set at

each site, network delays and response time required by the system.

Simultaneous access to data source gives rise to issues related to consistency and
serializability of transactions [5, 12, 20]. Two widely accepted concurrency control policies that
could be implemented in server farms are:

e Locking Based Policy: Under this policy, each transaction requests and obtains access
rights (called locks) prior to accessing data source. If the transaction is requesting to
modify the data in some form, the locks are provided on exclusive basis. But if the

transaction is interested just in reading the data, the locks can be shared by several



transactions at the same time. The Jocks owned by a transaction are released once the

transaction is completed.

e Optimistic Policy: Under this policy, the transactions are permitted to execute without
any kind of locking mechanism. However, once the transaction is complete and is
ready to commit, the system ensures that the transaction does not conflict with any of
the uncommitted transactions present in the system. If no conflict is present then the
transaction is committed otherwise some of the conflicting transactions are aborted to

ensure serializability.

A locking conflict may arise when a server or transaction tries to obtain a lock to a
transaction that is already locked. Database systems use different resolution policies to tackle
such situations [11, 18]. Two popularly implemented conflict resolution policies are:

e Blocking Policy: Blocking policy suspends the requesting transaction for duration that

is equal to completion time for an average transaction.

e Restart Policy: Restart policy terminates the transaction and informs the originating

site. Originating site than proceeds to resubmit the lock request.

4 SIMULATION MODEL

This paper simulates a server farm configuration as shown in Figure 1. Each simulated
server farm configuration is assumed to consist of several machines (or servers or nodes). Each
machine is assumed to have both computing and data storage capabilities. For the purpose of
the simulation, we assume that all the servers are fail safe i.e. they are always up and running.
We do not address the issue of load balancing in case of node failures. Handling redistribution

of load in case of failures is left to be addressed in the future research.



Clients

Servers

Figure 1: Server Farm Architecture

Simulation assumes relational database model for data storage. Data is logically arranged
as tables, and tables may or may not be replicated on different servers in the server farm
depending on the data distribution and replication policies. For the purpose of simulation, the
granularity of data replication is assumed to be one table [10]. Each table, however, has a
designated primary site that is kept fixed for the period of the simulation. This primary site is
responsible for performing all serializability and concurency tests on the data contained in the
table. In the case of centralized concurrency control, our simulation assumes that site 1 is always
the locking site.

Load balancer distributes the incoming transactions to individual machines based on the
scheduling policy used. Each transaction has its associated releases time and a deadline before
which the transaction needs to be executed. The simulation assumes deadlines to be known a
priori. The simulation also assumes that each transaction has access privileges to all data sets
maintained at all servers. The issue of data access and security are not being considered in this
simulation [17, 28]. It is also assumed that each server has the ability to determine the entire
read and write requirements for the arriving transaction and distributes the sub-transactions to the

necessary nodes. This server is also responsible for sending lock requests to the site maintaining



the locks for these sub-transactions. All sub-transactions have to wait for the receipt of the locks
before being scheduled for execution.

Once the sub-transactions have been executed, all the results are returned to originating
machine for computations. This machine computes the final results and initiates the commit
process. The transaction is said to be complete once the results have been computed but before
the commit process is initiated. This assumption is valid because we assume that all servers and
networks are operational at all times.

If one of the sites executing the sub-transactions decides to abort a transaction, it has to
inform the originating site, which then initiates and coordinates the abort process between all
sites. Each aborted transaction has to release all locks that it had acquired. Thereby, the cost of
rolling back a transaction is same as the cost of acquiring the locks.

To maintain the integrity of the process, ‘atomicity of broadcasts’ has to be preserved,
i.e., the system must ensure that all transactions are received in the correct order. This is
implemented by maintaining a separate logical network queue for each pair of sites. Each new
message in this logical queue is assigned a random delay greater than the delays associated with
transactions already in the queue.

We hawve used two parameters to measure the performance of the system under various
policy combinations. These parameters are

e Number of OK transactions: Number of OK transactions are all the transactions that

have been completed before their respective deadlines expired.

e Throughput: Throughput is defined as total number of transactions serviced per unit of

simulation time. (Throughput is presented in 1000’s in the results)



Experiment design consisted of 20 different sets of experiments with different seeds. In
each experiment, the systems monitors 600 incoming transactions out of which first 200 are
ignored to enable the system to attain a steady state. The simulation clock is reset after 200

transactions are completed.

5 RESULTS AND DISCUSSION

The performance of a server farm is governed by several independent design policies
described in earlier section. However, evaluating system performance for all possible
combinations of the design parameters requires an exponential amount of time. Thereby, for this
simulation we adopted a realistic strategy to examine the system performance for a priori
selected combinations of design parameters. We also tried to understand the impact of
individual design choices and attempted to discern the underlying reasons for the observed

behaviors.

5.1 Analysis of Overloading Transaction Scheduling Policy on the Performance of a

Server Farm System

The system load is implemented as the arrival rate of transactions at each node. Figure 2
& Figure 3 indicate the impact of system load on the performance of a two machine server farm
system under disparate overloading transaction handling policies implemented by the load
balancer.

The results indicate that the system performance is stable when the load balancer follows
‘Feasible’ or ‘No Tardy’ scheduling policies. However, when ‘Schedule All’ policy is followed
system performance deteriorates considerably for high loads. Throughput of system exhibits a
‘bell shaped curve’ for ‘Schedule All’ policy. This indicates that system has an optimal arrival

rate for which system achieves a maximum throughput. The arrival rate governs the system

14



performance before this optimal and the service times govern the system performance after the
optimal. The number of OK transactions decrease for all the policies with increase in system
load but number of OK transactions reduce drastically after the optimal arrival rate in the case of

‘Schedule All” policy.
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Throughput
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Figure 2. System throughput for two machine server farm under disparate overloading

transaction handling policies
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Figure 3: Number of OK transactions serviced by two machine server farm under disparate

overloading transaction handling policies

The system performance does not deteriorate with arrival rate for ‘No Tardy’ and
‘Feasible’ policies due to the fact that both of these policies focus on eliminating the tardy or
potential tardy transactions, thereby, reducing the number of transactions waiting to be serviced
at any point of time. The number of transactions in the queue does not explode with increase in
arrival rate and system does not reach critical state. As Figure 3 indicates, only few transactions
miss their deadlines under these policies. By comparison, in ‘Schedule All’ policy the queue

sizes keep on increasing due to excessive waiting time of the transactions. Figure 4 shows the



average queue lengths in the CPU for each node under ‘Schedule All” policy. Average queue
lengths increase sharply toward the upper end of the arrival rate spectrum. Increase in queue
length causes the increase in waiting time for arriving transactions causing some of these
transactions to miss their deadlines, thereby; number of OK transactions serviced decreases
rapidly.

Figure 4 also indicates that queue lengths at the locking site are greater than the queues at
the other site and rise more steeply with the increase in the system load. Therefore, the CPU
availability at the locking site is one of the bottlenecks in distributed transaction processing

systems.
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Figure 4: Average queue lengths in CPU for ‘Schedule All’ Policy

Figure 5 & Figure 6 show the impact of scheduling policies on the system performance
for a single server system. The impact of scheduling policies on the performance is much more

clear for such a system than with more complex systems.
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Figure 5: System throughput for one node system under different scheduling policies
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For lightly loaded systems (very few arrivals per second), the ‘Schedule All’ policy
performs better than the other two policies. But when the system load increases, ‘Feasible’ and
‘No Tardy’ policies outperform ‘Schedule All’ policy. Another interesting observation is that
‘Feasible’ policy always performs better than ‘No Tardy’ policy. As pointed out earlier, the
deterioration in the performance of ‘Schedule All’ policy is related to the waiting time of
transactions in process queues at all nodes. The distinction between the other two policies is

more subtle. ‘Feasible’ policy aborts more transaction than ‘No Tardy’ policy.
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Figure 6: Number of OK transactions for a one node system under different scheduling

policies

Figure 7 & Figure 8 analyze the system performance for a four server system. For low
arrival rates, the performance of a four machine server farm system exhibits the same behavior as
that of a one or two machine server farm. However, for high arrival rates, the system
performance does not suffer and throughput increases monotonically with arrival rates. This
behavior can be attributed to the fact that system did not attain its optimal. This finding indicates
that adding more machines to a server farm increases the overall throughput of the system. The
number of OK transactions show a negative correlation to arrival rates.

These results give us good indication to the scheduling policies that can be followed by
load balancer to distribute the load to the machines in a server farm. ‘No Tardy’ and ‘Feasible’

policies provide overall better performance but ‘Schedule All’ policy outperforms them under

17



low load condition. A load balancer encounters both periods of low as well as high load
conditions. Thus, the best options for a load balancer is to implement an intelligent mechanism
for aborting transactions. This aborting mechanism should not terminate any transactions
prematurely at low arrival rates but should increase the intensity of aborting transactions as
system load increases to prevent the system from being overloaded. This amounts to the fact
that system should use ‘Feasible’ or ‘No Tardy’ policy for high system load conditions and

should prefer ‘Schedule All’ policy for low system load.
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Figure 7: System throughput for four node server farm under different scheduling policies
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Figure 8: Number of OK transactions for a four node server farm under different scheduling

policies

5.2 Analysis of impact of Priority Assignments Policies on the performance of the

system

Each transaction that amives at arrives at the server farm system is assigned a priority.

This priority value is used by the scheduler to schedule transactions to the processor. Once a



process becomes free, it selects the next transaction to be serviced based on the priorities of the

transactions waiting to be serviced.

14

12 4

08 4 —e—FIFO
—m Deadline

Throughput

0.6 7 —a— Slack

0.2 1

1 12 14 1.6 1.8

Arrival Rate

Figure 9: System throughput for a one node system under different priority handling policies
In this section, we analyze the performance of various priority handling policies for

‘Schedule All’ scheduling policy. Figure 9 & Figure 10 show the impact of priority handling

policies on the system performance for a one node system.
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Figure 10: Number of OK transactions serviced by a one node system for different priority

handling policies

Figure 11 & Figure 12 show the impact of various priority handling policies on the
performance of a two node server farm. It can be seen from the figures that the priority
assignment policies do not determine the system performance under low load conditions. This
result corresponds to the intuition. For low arrival rates the number of transaction waiting in the
queue is small (often zero), thereby, eliminating the impact of priority policies. This result is

also supported by Figure 4 that illustrates that CPU queues in all nodes are very small under low
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load conditions. Priority policies gain significance once there are multiple transactions waiting in

the queue.
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Figure 11: System throughput for a two node server farm under different priority handling

policies
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Figure 12: Number of OK transactions serviced by a two node server farm for different

priority handling policies

When the system load increases, the ‘Slack’ policy significantly outperforms both ‘FIFO’
as well as ‘Deadline’ policy. ‘FIFO’ policy performance the worst, which justifies the intuition
as this policy ignores the deadlines and schedules the transactions as they arrive. This causes
transactions with short deadlines to miss their deadlines adversely affecting the system
performance. The ‘Slack’ policy estimates the ‘slack time’ by estimating the service time for
the transaction. The performance of the ‘Slack’ policy is dependent of this estimation of the
service time of transactions. If the slack estimates are low, the ‘Slack’ policy will behave similar

to ‘Deadline’ policy by scheduling the transactions with earlier deadlines before other

20



transactions. However, if the slack estimates are infinitely large, ‘Slack’ policy mimics ‘FIFO’
by servicing transaction on first come first serve basis.

It has to be noted that for the purpose of our experiments, we assume that the deadlines
for all transactions are known a priori. In actual systems this is not the case. In real life,
systems will have to estimate the deadlines of the transaction and make the policy decisions
based on those deadlines. Correctness of these estimates will play a significant role in
determining the performance of the system. However, investigation into deadline estimation

methodologies is not the focus of this paper.

5.3 Analysis of Impact of Concurrency Conflict Resolution Policies

When a transaction tries to obtain locks on a data item, concurrency conflict arises if the
data item is already locked by another transaction. Figure 13 & Figure 14 present the impact of
‘Blocking’ and ‘Restart’ conflict resolution policies for a two-node system implementing

‘Schedule All’ policy.
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Figure 13: System throughput for a two node server farm under different conflict resolution

policies
The figures indicated an unexpected but interesting result. The system performance for a two node
system is not dependent on the conflict resolution policies. We will have to examine the assumption
closely to analyze this result. The simulation assumes that all data items are equally likely to be accessed

by any given transaction. When the system load is low, the number of outstanding transactions is few and
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the probability of conflict is small. This precludes the need for conflict resolutions, thereby; the
concurrency conflict resolution policies have no impact on the system performance under low load

conditions.
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Figure 14: Number of OK transactions serviced by a two node server farm under two different

conflict resolution policies

At high loads, system performance is governed by other factors, particularly the waiting
time in queue for the transactions. These factors mask any impact that the conflict resolution
policies have on the performance of the system, hence making it difficult to isolate the impact of
conflict resolution policies on the system performance. Even for intermediate load ranges, there
is little difference in the performance of the system for both conflict resolution policies, although
‘Blocking’ policy seems to perform slightly better than the ‘Restart’ policy. This differential
can be explained by the fact that immediately restarting a transaction tends to flood the system,
thereby, reducing system performance. However, this difference in performance is not
significant.

We recommend that a real time distributed transaction processing system can use any of
the two conflict resolution policies because the system performance is dominated by scheduling
policies and not impacted much by the conflict resolution policies. A system can make the

choice of conflict resolution policy based on ease of implementation of the policy.
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5.4 Impact of Network Delays on the Performance of the System

In the preliminary set of experiments, the performance of the system was observed for no
network delays. But in real world, transactions are subjected to network delays and these
network delays tend to vary significantly depending on the message size being transmitted.
Figure 15 & Figure 16 show the performance of the system for a four node server farm under
None, Small, or Large network delay conditions. For the experiments, the message delays were

derived from identical distributions.
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Figure 15: Impact network delays on the throughput of a four node server farm
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Figure 16: Impact of network delays on the number of OK transactions serviced by a four

node server farm
These figures uncover a very interesting finding. The system performance actually
improves with network delays i.e. the system performed better when the transactions were
associated with large network delays. Furthermore, the gap between the performance levels for

low and high network delays actually increased with the increase in the arrival rate for incoming
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transactions. One possible explanation for this anomalous behavior could be that the network
delays actually offset the system load by reducing the size of queues in the system. However,
the performance of the system needs to be analyzed further before any conclusion can be drawn.
We conducted additional experiments to analyze this unexpected result further. Figure
17 & Figure 18 present the impact of the various network delays for a four node system with
high arrival rate and segmented by scheduling policies: ‘Schedule All’, ‘Feasible’ and ‘No
Tardy’. The network delays for these experiments were varied from 10" to 102 seconds per

transaction.
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Figure 17: System throughput for a four node server farm under different network delays

segmented by scheduling policies

— Al

—e— Feasible
150 1/\‘\ —a— No Tardy

Number of OK Transactions

0 0.0001 0.001 0.01

Mean Delay per message

Figure 18: Number of OK transactions serviced by a four node server farm for different

network delays segmented by scheduling policies
The figures indicate that the system performance is steady for networks delays under
‘Feasible’ and ‘No Tardy’ policies. But, for ‘Schedule All’ policy system performance follows a

‘bell shaped’ curve i.e. the system performance improves initially with the network delay but the
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performance declines for larger delays. These finding suggest that network delay offsets the load
on the system processes. A number of factors can be responsible for this trend in system
performance. This behavior can also be associated with the instability in the system. We
further analyze the performance of system to isolate the effects of ‘temporary instability’.
Temporary instability in the system can be caused by high variance in the arrival rates.
The variance in the arrival rate can cause a temporary accumulation of transaction in the process
queue. Since each transaction has a deadline, it has a time frame within which it needs to be
completed, thus, temporary instability can cause a significant reduction in the system
performance. Figure 19 & Figure 20 analyze the impact of variance in interarrival times on the
system performance under ‘Schedule All” policy. During experimentation, interarrival rates
wire generated from uniform distribution having the same mean (1.6 transactions per second) but

different variance (varying from 0.00033 to 0.208).
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Figure 19: System throughput for a four node server farm for different network delays

segmented by variance in the interarrival times

The findings indicate a significant negative impact of delay variance on the system
performance. Increasing variability in the arrival times is directly proportional to the increasing
variability in queue lengths, thereby, creating ‘temporary instability’. This causes the
transactions to be delayed beyond deadlines, which reduces the system performance. It seems

that the network delay actually reduces the variability in the queue length by spreading out the



arrival of transactions. This causes the reduction in the temporary instability, hence improving

the performance of the system for high network delays.
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Figure 20: Number of OK transactions serviced by a four node server farm under different

network delays and segmented by variance in the interarrival times
We also analyzed how the network delay impacts the system performance for different
types of transactions. Impact of delays on read-only transactions is restricted to delays in lock
and unlock requests since the read-only transactions are processed locally. Update transactions,
on the other hand, are more likely to be effected by the network delays. We examined the impact
of delays on the type of transactions by varying the incoming mix of transactions. The
transaction mix is defined by the fraction of update transactions in the transaction mix. Figure

21 & Figure 22 illustrate the impact of mix of incoming transactions on the system performance.
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Figure 21: System throughput for update transactions in the mix varying from

The figures indicate that the system performance is better for read-only transactions,

however, the system performance suffers for high network delays. The gap between the
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performance levels for no update transactions and 50% update transactions widens for high
network delays. The observations support the intuition that network delays impact different
types of transactions differently and allow some transactions to be completed at the expense of

others.
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Figure 22: Number of OK transactions serviced by the system for update transactions in the

mix varying from 0 to 50 %
5.5 Scalability

So far we have illustrated the performance of real-time distributed transaction processing
systems for several design parameters. But one other important design parameter is the number
of network nodes itself. Figure 23 & Figure 24 depict the performance of the system for one,
two, and eight node systems.

The figures indicate that the number of transactions serviced by the system before the
respective deadlines is almost same for all systems at low loads. However, the throughput of the
system varies widely depending on the number of nodes present in the system. The system with
higher number of nodes yields a significantly higher throughput. This is not unexpected as a
higher node system also associated higher computing resources. However, at high system loads,
the number of OK transactions serviced by the eight-node system is much less than those for the
corresponding one or two node systems. The throughput of the eight-node system undergoes

drastic deterioration for high system loads as compared to less complex systems. This steep



decline may be due to high overheads required to maintain the data integrity for more complex
systems. Each transaction spawns a number of sub-transactions to perform lock, compute,
commit, and unlock operations. Some of these sub-transactions might be required to be sent to
all data nodes and may be needed to execute at all sites. In complex systems, the number of sub-
transactions may overwhelm the system causing a sharp degradation in the performance of the

system.
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Figure 23. System throughput for one, two, and eight node server farm
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Figure 24: Number of OK transactions serviced by one, two, and eight node server farm

Another useful metric to evaluate the system performance is average system throughput
as compared to the total system throughput. Figure 25 presents the average throughputs for one,

two, and eight machine server farm.

The throughput per node for the eight-node system is worse than that for less complex
systems. This is in contrast to the total throughput that was more for the eight-node system.

The difference in average throughput for eight-node system and less complex systems increases
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as the system load increases. Further research needs to be carried out to analyze the metrics that
capture the economic impact of the complex systems. This research is beyond the scope of this

paper.
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Figure 25: Average throughput for one, two, and eight node server farm
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Figure 26: Total throughput of the system for one, two, four, and eight node server farm with

0% update transactions in the mix
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Figure 27: Average throughput of the system for one, two, four, and eight node server farm

with 0% update transactions in the mix
Another interesting thing to evaluate is how the performance of the system is affected by

the complexity of the system for different kinds of transactions. Figure 26 through Figure 33
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elucidate the total throughputs and average throughputs for one, two, four, and eight node server

farm system for different transaction mixes.
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Figure 28: Total throughput of the system for one, two, four, and eight node server farm with

12.5% update transactions in the mix
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Figure 29: Average throughput of the system for one, two, four, and eight node server farm

with 12.5% update transactions in the mix
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Figure 30: Total throughput of the system for one, two, four, and eight node server farm with

37.5% update transactions in the mix
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Figure 31: Average throughput of the system for one, two, four, and eight node server farm

with 37.5% update transactions in the mix
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Figure 32: Total throughput of the system for one, two, four, and eight node server farm with

50% update transactions in the mix
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Figure 33: Average throughput of the system for one, two, four, and eight node server farm

with 50% update transactions in the mix

The figures show some interesting trends in the behaviors of the system for different
transaction mixes. The performance of a distributed system is scalable if all transactions are
read-only transactions. The average throughput remains same in almost all load conditions for

one, two, four, and eight node server farm systems for read only transactions. Thus, the
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throughput for an eight node server farm is almost four times the throughput for a two node
system amounting to a linear scalability. However, if the transaction load is near the unstable
region, the system performance suffers faster for more complex systems.

When the fraction of update transaction is 50% in the transaction mix, the total
throughput for complex systems is better than less complex systems. However, the total
throughput deteriorates rapidly in complex systems as system load increases. Thereby, for high
load conditions, the total throughput for less complex systems is actually better than that of more
complex systems. In the intermediate range of transaction mixes, the degrédation in
performance exhibits a monotonic behavior, i.e., the degradation in performance with system
load in complex systems is quicker than that in simple system. Also, this rate of degradation
increases with the increase in fraction of update transactions in the transaction mix.

The above findings suggest that transaction mix should govern the design of a real-time
distributed transaction processing system. If the system is to be designed for more read only
operations, it is a good idea to create large number of nodes in the system for faster processing
and better system throughput. This justifies the use of server farm systems for web viewing
applications. However, if the system is responsible for high number of update transactions, the

update capabilities should be limited to small number of nodes.

6 CONCLUSIONS

The results of this research provide insights into design of server farm systems for
handling real time e-commerce transactions. Experiments demonstrate that system
performance, defined by number of successful transactions serviced and the system throughput,
is dependent on several factors. Perhaps, most critical of these factors is the scheduling policy

that governs the handling of transactions arriving at the system. The system performance
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degrades sharply with the system load for a prudent scheduling policy where all transactions are
scheduled. At high loads, policies that tend to eliminate transactions that have already missed
deadlines or are expected to miss deadlines performed much better. Thereby, we need an
intelligent system that schedules all transactions at low system loads and eliminates all ‘tardy’
transactions at high loads. The success of this system is critically dependent on the estimation of
the time required to complete a transaction.

An interesting finding of this research was that the concurrency conflict resolution
schemes did not affect the system performance for any system load as the system performance is
dominated by the waiting time in queue under all conflict resolution schemes. Systems with
high variance in arrival rate actually benefit from small to medium network delays. Thereby, if
the transaction arrival rate has high variance, spreading out the transaction would help the system
performance. Performance for highly complex systems degrades rapidly if there is high fraction
of update transactions arriving at the system. However, the system throughput increases for
complex systems servicing only read only transactions. We recommend spreading the read
capabilities across all the nodes in the distributed system and limiting the update capabilities only
to few nodes.

In this research, we tested only a subset of design policies that can be implemented by a
real time distributed transaction processing system. The design policies not covered in this
research can be tested in future research. We also did not determine an economic measure to
evaluate the value of a complex system. In this research we also assumed the transaction
deadlines to be known a priori. A probabilistic model can be developed in future research to

relax this assumption. We also did not consider partial mix of read and write policies in the
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transaction mix. Partial replication of read-write policies can give us a better insight in the

design of the complexity of the system.

7 DESIGN IMPLICATIONS

This section presents two major design implications inferred from the study. First
implication pertains to the network delays experienced by transactions and second concerns the
scheduling of overloading transactions by the load balancer.

o Implication 1: Tt was noticed that a small amount of network delay actually enhanced
the performance of the system by reducing the variance in the arrival of the
transactions. However, high network delays deteriorated the system performance.

This implies that a hierarchical structure is more suitable for a server farm system

(Figure 34). This structure would reduce large network delays. However, transactions

will still face small network delays. The performance evaluation for this hierarchical

structure will be undertaken in future research.
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Figure 34: Hierarchical Server Farm Architecture
e Implication 2: ‘Schedule All’ policy performed better than ‘Feasible’ or ‘No Tardy’
policy under high load conditions. However, the performance of the system reduced

drastically for ‘Schedule All’ policy with increase in system load. We propose an
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intelligent system to be used with the load balancer (Figure 34). This system would
sense the load and decide which scheduling policy to be use. The implementation and

evaluation of this intelligent system is scheduled for future research.

8 REFERENCES

[1] Abott, R.K and Garcia-Molina, H. Scheduling reaktime transactions. ACM SIGMOD Rec. (March
1988), 71-81.

[2] Abott, R.K and Garcia-Molina, H. Scheduling reattime transactions: A performance evaluation.
Proceedings of the 14th VLDB Conference (Los Angeles, Aug. 29-Sept. 1, 1988), 1-12.

[3] Abott, R.K and Garcia-Molina, H. Scheduling I/O transactions with deadlines: A performance
evaluation. IEEE RealTime System Symposium, (Dec. 1990), 113-124.

[4] Abott, R.K and Garcia-Molina, H. Scheduling reaktime transactions: A performance evaluation.
ACM Transactions on database systems, vol. 17, no. 3, (September 1992), 513-560.

[5] Adya, A., Gruber, R., Liskov, B. and Mahewhwari, U. Efficient Optimistic Concurrency Control
Using Loosely Synchronized Clocks, Proceedings of the ACM SIGMOID International
Conference on the Management of Data, May 1995

[6] Chaturvedi A.R., Choubey A.K, and Roan ] Scheduling the allocation of data fragments in a
distributed database environment : A machine learning approach. IEEE Transactions on
Engineering Management, vol. 41, No. 2, (May 1994), 194-207.

[7] Chaturvedi, A. R., Gupta, Samir, and Bandyopadhyay, S. “SimDS: A Simulation Environment for the
Design of Distributed Database Systems”, DATABASE, vol 29(3), (Summer 1998), 65-81

[8] Carey, M., Jauhari, R. and Livny, M. Priority in DBMS resource scheduling. Proceedings of the 15th
VLDB conference, 397-410.

[9] Cherkasova, L., “FLEX: Load Balancing and Management Strategy for Scalable Web Hosting
Service”, Proceedings of the Fifth International Symposium on Computers and Communications
(ISCC’00), Antibes, France, July 3-7, 2000

[10] Dayal, U., Blaustein, B. et. al. The HiPAC project: Combining active databases and timing
constraints. ACM SIGMOD Rec.(March 1988), 51-70.

[11] Davidson, S., Lee, I. and Wolfe, V. A protocol for timed atomic commitment. IEEE conference on
distributed computing systems, Newport Beach, CA, Jun 1989, 199-206.

[12] Gavish B., and Suh M.W. Configuration of fully replicated distributed database system over wide
area networks. Annals of Operation Research, vol. 36, (1992), 167-192.

[13] Huang, J, Stankovic, J. A., Ramamritham, K., Towsley, D., and Purimetla, B., .. Priority Inheritance
in Soft RealTime Databases, The Journal of ReatTime System, vol. 4, 1992, 243-268

[14] Hong, D., Johnson, T. and Chakravarthy, S. Rea-Time Transaction Scheduling: A Cost Conscious
Approach, SIGMOD Conference, 1993, 197-206

[15] Hsiao H., and Dewitt D. Performance study of 3 high availability data replication sttrategies.
Distributed and Parallel Databases, vol. 1, No. 1, (Jan. 1993), 53-80.

35



[16] Lee H., and Liu Sheng O.R. A multiple criteria model for the allocation of data files in a distributed
information system. Computers Operation Research, vol. 19, No. 1, (1992), 21-33.

[17] Minsky, N. H. and Ungureanu, V. Unified Support for Heterogeneous Security Policies in
Distributed Systems, Seventh USENIX Security Symposium, (1998)

[18] Lam, K., Pang, C., Son, S. H., and Cao, J., Resolving Executing-Committing Conflicts in
Distributed Realtime Database Systems, The Computer Journal, Vol. 42, No. 8, (1999), 674-692

[19] Ram S., and Chastain C.L. Architecture of distributed data base systems. The Journal of Systems
and Software, vol. 10, (1989), 77-95.

[20] Ram S., and Narasimhan S. Database Allocation in a distributed environment : Incorporating a
concurrency control mechanism and queuing costs. Management Science, vol. 40, No. 8, (Aug.
94), 969-983

[21] Ramathirtham K., and Stankovic J.A. Scheduling algorithms and operating system support for reak
time systems. Proceedings of IEEE, vol. 82, No. 1, (Jan. 1994), 55-66.

[22] Sha, L., Lehoczky, J. and Jensen, E. Modular concurrency control and failure recovery. IEEE
Transactions on Computers, vol. 37, 146-159.

[23] Shin K., and Ramanathan P. RealTime computing : A new discipline of computer science and
engineering. Proceedings of IEEE, vol. 82, No. 1, (Jan. 1994), 6-23.

[24] Shu L., and Young M. ReatTime concurrency control with analytic worst case latency guarantees.
Proceedings of 10th IEEE Workshop on RealTime Operating Systems and Software, New York,
(May 1993), 66-73.

[25] Sivasankaran, R. M., Stankovic, J. A., Towsley, D., Purimetla, B. and Ramamritham, K., Priority

Assignment in RealTime Active Databases, International Journal of Very Large Data Bases, Vol.
5, No. 1, January 1996, 19-34.

[26] Son, S. H., Beckinger, C. and Kim, Y. K.., MRDB: A Multi-user Real Time Database Testbed,
Proceeding of 27" Hawaii International Conference on System Sciences, 1994, 543-552

[27] Son, S. H. and Park, S., Scheduling Transactions for Distributed Time-Critical Applications,,
Readings in Distributed Computing Systems, edited by T. L. Casavant and M. Singhal, IEEE

Computer Society Press, 1994

[28] Son, S. H., David, R. and Mukkamala, R, Supporting Security Requirements in Multilevel RealTime
Databases, Proceedings of the IEEE Symposium on-Security and Privacy, Oakland, CA, May
1995, 199-210

[29] Wolfson O. The overhead of locking (and commit) protocols in distributed databases. ACM
Transactions on Database Systems, vol. 12, No. 3, (Sept. 1987), 453-471.

[30] YuP.S., Wu K, Lin K., and Son S.H. On reaktime databases : Concurrency Control and
Scheduling. Proceedings of IEEE, vol. 82, No. 1, (Jan. 1994), 140-157.

[31] JAWS: Understanding High Performance Web Systems. Work in Progress, Object Technologies
International and Eastman Kodak Company, http://www.cs.wustl.edu/~jxh/research/research.htm]

[32] Availability Analysis for Unisys e-@action Application Delivery System.
http://www.unisys.com/hw/servers/enterprise/optimized/consolidation

36



ADDITIONAL INSTITUTE PAPERS AVAILABLE FROM THE KRANNERT
GRADUATE SCHOOL OF MANAGEMENT

-1995-
1069  Sugato Chakravarty and John J. McConnell, AN ANAYLSIS OF PRICES, BID/ASK
SPREADS, AND BID AND ASK DEPTH SURROUNDING IVAN BOESKY'S
ILLEGAL TRADING IN CARNATION'S STOCK.

1070 John J. McConnell and Henri Servaes, EQUITY OWENERSHIP AND THE TWO
FACES OF DEBT.

1071 Kenneth J. Matheny, REAL EFFECTS OF MONETARY POLICY IN A
'NEOCLASSICAL' MODEL: THE CASE OF INTEREST RATE TARGETING.

1072 Julie Hunsaker and Dan Kovenock, THE PATTERN OF EXIT FROM DECLINING
INDUSTRIES.

1073 Kessan Joseph, Manohar U. Kalwani, THE IMPACT OF ENVIRONMENTAL
UNCERTAINTY ON THE DESIGN OF SALESFORCE COMPENSATION PLANS.

1074 K. Tomak, A NOTE ON THE GOLDFELD QUANDT TEST

1075 Alok R. Chaturvedi, SIMDS: A SIMULATION ENVIRONMENT FOR THE DESIGN
OF DISTRIBUTED DATABASE SYSTEMS

1076 Dan Kovenock and Suddhasatwa Roy, FREE RIDING IN NON-COOPERATIVE
ENTRY DETERRENCE WITH DIFFERENTIATED PRODUCTS

1077 Kenneth Matheny, THE MACROECONOMICS OF SELF-FULFILLING
PROPHECIES

1078 Paul Alsemgeest, Charles Noussair and Mark Olson, EXPERIMENTAL
COMPARISONS OF AUCTIONS UNDER SINGLE-AND MULTI-UNIT DEMAND

1079  Dan Kovenock, Casper D de Vries, FIAT EXCHANGE IN FINITE ECONOMIES

1080  Dan Kovenock, Suddhasatwa Roy, DYNAMIC CAPACITY CHOICE IN A
BERTRAND-EDGEWORTH FRAMEWORK

1081 Burak Kazaz, Canan Sepil, PROJECT SCHEDULING WITH DISCOUNTED CASH
FLOWS AND PROGRESS PAYMENTS

-1996-

1082 Murat Koksalan, Oya Rizi, A VISUAL INTRACTIVE APPROACH FOR MULTIPLE
CRITERIA DECISION MAKING WITH MONOTONE UTILITY FUNCTIONS

1083 Janet S. Netz, John D. Haveman, ALL IN THE FAMILY: FAMILY, INCOME, AND
LABOR FORCE ATTACHMENT



1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

Keith V. Smith, ASSET ALLOCATION AND INVESTMENT HORIZON
Arnold C. Cooper and Catherine M. Daily, ENTREPRENEURIAL TEAMS

Alok R. Chaturvedi and Samir Gupta, SCHEDULING OF TRANSACTIONS IN A
REAL-TIME DISTRIBUTED TRANSACTION PROCESSING SYSTEMS:
SCALEABILITY AND NETWORKING ISSUES

Gordon P. Wright, N. Dan Worobetz, Myong Kang, Radha V. Mookerjee and Radha
Chandrasekharan, OR/SM: A PROTOTYPE INTEGRATED MODELING
ENVIRONMENT BASED ON STRUCTURED MODELING

Myong Kang, Gordon P. Wright, Radha Chandrasekharan, Radha Mookerjee and N.
Dan Worobetz, THE DESIGN AND IMPLEMENTATION OF OR/SM: A
PROTOTYPE INTEGRATED MODELING ENVIRONMENT

Thomas H. Brush and Philip Bromiley, WHAT DOES A SMALL CORPORATE
EFFECT MEAN? A VARIANCE COMPONENTS SIMULATION OF CORPORATE
AND BUSINESS EFFECTS

Kenneth J. Matheny, NON-NEUTRAL RESPONSES TO MONEY SUPPLY SHOCKS
WHEN CONSUMPTION AND LEISURE ARE PARETO SUBSTITUTES

Kenneth J. Matheny, MONEY, HUMAN CAPITAL, AND BUSINESS CYCLES: A
MODERN PHILLIPS CURVE-STYLE TRADEOFF

Kenneth J. Matheny, OUTPUT TARGETING AND AN ARGUMENT FOR
STABILIZATION POLICIES

Kenneth J. Matheny, THE RELEVANCE OF OPEN MARKET OPERATIONS AS A
MONETARY POLICY TOOL

-1997-

James C. Moore, William Novshek and Peter Lee U, ON THE VOLUNTARY
PROVISION OF PUBLIC GOODS

Michael R. Baye, Dan Kovenock and Casper G. deVries, THE INCIDENCE OF
OVERDISSIPATION IN RENT-SEEKING CONTESTS

William Novshek and Lynda Thoman, CAPACITY CHOICE AND DUOPOLY
INCENTIVES FOR INFORMATION SHARING

Vidyanand Choudhary, Kerem Tomak and Alok Chaturvedi, ECONOMIC BENEFITS
OF RENTING SOFTWARE

Jeongwen Chiang and William T. Robinson, DO MARKET PIONEERS MAINTAIN
THEIR INNOVATIVE SPARK OVER TIME?



1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

Glenn Hueckel, LABOR COMMAND IN THE WEALTH OF NATIONS: A SEARCH
FOR “SYSTEM”

Glenn Hueckel, SMITH’S UNIFORM “TOIL AND TROUBLE”: A “VAIN
SUBTLETY”?

Thomas H. Brush and Philip Bromiley, WHAT DOES A SMALL CORPORATE
EFFECT MEAN? A VARIANCE COMPONENTS SIMULATION OF CORPORATE
AND BUSINESS EFFECTS

Thomas Brush, Catherine Maritan and Aneel Karnani, MANAGING A NETWORK OF
PLANTS WITHIN MULTINATIONAL FIRMS

Sam Hariharan and Thomas H. Brush, RESOURCES AND THE SCALE OF ENTRY
CHOICE: THE COMPETITIVE ADVANTAGE OF ESTABLISHED FIRMS?

Thomas H. Brush, Philip Bromiley and Margaretha Hendrickx, THE RELATIVE
INFLUENCE OF INDUSTRY AND CORPORATION ON BUSINESS SEGMENT
PERFORMANCE: AN ALTERNATIVE ESTIMATE

Thomas Brush, Catherine Maritan and Aneel Karnani, PLANT ROLES IN THE
MANAGEMENT OF MULTINATIONAL MANUFACTURING FIRMS

Thomas H. Brush, Catherine Maritan and Aneel Karnani, THE PLANT LOCATION
DECISION IN MULTINATIONAL MANUFACTURING FIRMS: AN EMPIRICAL
ANALYSIS OF INTERNATIONAL BUSINESS AND MANUFACTURING
STRATEGY PERSPECTIVES

Piyush Kumar, Manohar U. Kalwani and Magbool Dada, THE IMPACT OF WAITING
TIME GUARANTEES ON CUSTOMERS’ WAITING EXPERIENCES

Thomas H. Brush, Philip Bromiley and Margaretha Hendrickx, THE FREE CASH
FLOW HYPOTHESIS FOR SALES GROWTH AND FIRM PERFORMANCE

Keith V. Smith, PORTFOLIO ANALYSIS OF BROKERAGE FIRM
RECOMMENDATIONS

- 1998 -

Charles Noussair, Kenneth Matheny, and Mark Olson, AN EXPERIMENTAL STUDY
OF DECISIONS IN DYNAMIC OPTIMIZATION PROBLEMS

Jerry G. Thursby and Sukanya Kemp, AN ANALYSIS OF PRODUCTIVE
EFFICIENCY OF UNIVERSITY COMMERCIALIZATION ACTIVITIES

John J. McConnell and Sunil Wahal, DO INSTITUTIONAL INVESTORS
EXACERBATE MANAGERIAL MYOPIA?



1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

John J. McConnell, Mehmet Ozbilgin and Sunil Wahal, SPINOFFS, EX ANTE

Sugato Chakravarty and John J. McConnell, DOES INSIDER TRADING REALLY
MOVE STOCK PRICES?

William T. Robinson and Sungwook Min, IS THE FIRST TO MARKET THE FIRST
TO FAIL?: EMPIRICAL EVIDENCE FOR MANUFACTURING BUSINESSES

Margaretha Hendrickx, WHAT CAN MANAGEMENT RESEARCHERS LEARN
FROM DONALD CAMPBELL, THE PHILOSOPHER? AN EXERCISE IN
PHILOSOPHICAL HERMENEUTICS

Thomas H. Brush, Philip Bromiley and Margaretha Hendrickx, THE FREE CASH
FLOW HYPOTHESIS FOR SALES GROWTH AND FIRM PERFORMANCE

Thomas H. Brush, Constance R. James and Philip Bromiley, COMPARING
ALTERNATIVE METHODS TO ESTIMATE CORPORATE AND INDUSTRY
EFFECTS

Charles Noussair, Stéphane Robin and Bernard Ruffieux, BUBBLES AND ANTI-
CRASHES IN LABORATORY ASSET MARKETS WITH CONSTANT
FUNDAMENTAL VALUES

Vivian Lei, Charles N. Noussair and Charles R. Plott, NON-SPECULATIVE
BUBBLES IN EXPERIMENTAL ASSET MARKETS: LACK OF COMMON
KNOWLEDGE OF RATIONALITY VS. ACTUAL IRRATIONALITY

-1999-
Kent D. Miller and Timothy B. Folta, ENTRY TIMING AND OPTION VALUE

Glenn Hueckel, THE LABOR “EMBODIED” IN SMITH’S LABOR-COMMANDED
MEASURE: A “RATIONALLY RECONSTRUCTED” LEGEND

Timothy B. Folta and David A. Foote, TEMPORARY EMPLOYEES AS REAL
OPTIONS

Gabriele Camera, DIRTY MONEY

Wilfred Amaldoss, Robert J. Meyer, Jagmohan S. Raju, and Amnon Rapoport,
COLLABORATING TO COMPETE: A GAME-THEORETIC MODEL AND
EXPERIMENTAL INVESTIGATION OF THE EFFECT OF PROFIT-SHARING
ARRANGEMENT AND TYPE OF ALLIANCE ON RESOURCE-COMMITMENT
DECISIONS

Wilfred Amaldoss, Robert J. Meyer, Jagmohan S. Raju, and Amnon Rapoport,



1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

APPENDICES FOR COLLABORATING TO COMPETE: A GAME-THEORETIC
MODEL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF PROFIT-
SHARING ARRANGEMENT AND TYPE OF ALLIANCE ON RESOURCE-
COMMITMENT DECISIONS

-2000-

Sugato Chakravarty and Kai Li, AN ANALYSIS OF OWN ACCOUNT TRADING BY
DUAL TRADERS IN FUTURES MARKETS: A BAYESIAN APPROACH

Sugato Chakravarty, STEALTH TRADING: THE NEXT GENERATION

S.G. Badrinath and Sugato Chakravarty, ARE ANALYST RECOMMENDATIONS
INFORMATIVE?

Sugato Chakravarty and Asani Sarkar, THE DETERMINANTS OF LIQUIDITY IN
U.S. CORPORATE, MUNICIPAL AND TREASURY BOND MARKETS

Vivian Lei and Charles Noussair, AN EXPERIMENTAL TEST OF AN OPTIMAL
GROWTH MODEL

Paul Healy and Charles Noussair, BIDDING BEHAVIOR IN THE PRICE IS RIGHT
GAME: AN EXPERIMENTAL STUDY

Kent D. Miller and Zur Shapira, BEHAVIORAL OPTION THEORY:
FOUNDATIONS AND EVIDENCE

Kent D. Miller, KNOWLEDGE INVENTORIES AND MANAGERIAL MYOPIA

Gabriele Camera, Charles Noussair, and Steven Tucker, RATE-OF-RETURN
DOMINANCE AND EFFICIENCY IN AN EXPERIMENTAL ECONOMY

Timothy B. Folta, Jay J. Janney, SIGNALING FOR RESOURCE ACQUISITION:
PRIVATE EQUITY PLACEMENTS BY TECHNOLOGY FIRMS

Michael R. Baye, Dan Kovenock, Casper G. de Vries, COMPARATIVE ANALYSIS
OF LITIGATION SYSTEMS: AN AUCTION-THEORETIC APPROACH

Sugato Chakravarty, Asani Sarkar, DO DIFFERENCES IN TRANSPARENCY
AFFECT TRADING COSTS? EVIDENCE FROM U.S. CORPORATE, MUNICIPAL
AND TREASURY BOND MARKETS

Charles Noussair, Stephane Robin, Bernard Ruffieux, GENETICALLY MODIFIED
ORGANISMS IN THE FOOD SUPPLY: PUBLIC OPINION VS CONSUMER
BEHAVIOR

Gabriele Camera, SEARCH, DEALERS, AND THE TERMS OF TRADE



1141 David Masclet, Charles Noussair, Steven Tucker, Marie-Claire Villeval, MONETARY
AND NON-MONETARY PUNISHMENT IN THE VOLUNTARY
CONTRIBUTIONS MECHANISM

1142 Charles Noussair, Stephane Robin, Bernard Ruffieux, DO CONSUMERS NOT CARE
ABOUT BIOTECH FOODS OR DO THEY JUST NOT READ THE LABELS

1143 Timothy B. Folta, Douglas R. Johnson, Jonathan O’Brien, UNCERTAINTY AND THE
LIKELIHOOD OF ENTRY: AN EMPIRICAL ASSESSMENT OF THE
MODERATING ROLE OF IRREVERSIBILITY



