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Abstract
We propose an evolutionary metaheuristic for approximating the preference-nondominated
solutions of a decision maker in multiobjective combinatorial problems. The method starts out
with some partial preference information provided by the decision maker, and utilizes an
individualized fitness function to converge towards a representative set of solutions favored by
the information at hand. The breadth of the set depends on the precision of the partial
information available on the decision maker’s preferences. The algorithm simultaneously
evolves the population of solutions out towards the efficient frontier, focuses the population on
those segments of the efficient frontier that will appeal to the decision maker, and disperses it
over these segments to have an adequate representation. Simulation runs carried out on randomly
generated instances of the Multiobjective Knapsack Problem and the Multiobjective Spanning

Tree Problem have found the algorithm to yield highly satisfactory results.

1. Introduction

Since many real-life problems are multiobjective in nature and have combinatorial components,
the last decade has witnessed a growing interest in Multiobjective Combinatorial Optimization
(MOCO). The majority of the available MOCO methods concentrate on obtaining an

approximation of the efficient frontier of the problem. Even if a good approximation can be



found, the fact remains that the true goal of the decision maker (DM) in a concrete application is
a single solution to be implemented, or at most a small subset of solutions for detailed
consideration. Concluding the exploration with an approximation of the entire efficient frontier
hence necessitates a subsequent search, where the DM will have to first spend some time
eliminating irrelevant solutions, and then choose from among a limited selection of relevant

ones.

The present study draws on the proven strength of metaheuristics in addressing combinatorial
problems and on the work done to date on partial information in the field of Multiple Criteria
Decision Making to develop an evolutionary metaheuristic to approximate only the relevant
segments of the efficient frontier. The method starts out with some partial information on DM
preferences, and evolves a population of solutions towards those regions of the objective space
that will appeal to the DM. An individualized fitness function is utilized to allow each solution to
represent itself as favorably as possible in light of the known preferences of the DM. By means
of this fitness function, the algorithm converges towards, not a single solution, but a set of
solutions favored by the information at hand. The breadth of the set depends on the precision of
the partial information available. The DM may then either search the final population of the
metaheuristic interactively, or draw a sample of diverse solutions that is small enough for his/her
detailed consideration. Simulation runs indicate that the algorithm yields highly satisfactory
solutions for randomly generated instances of the Multiobjective Knapsack Problem and the

Multiobjective Spanning Tree Problem.

The next section overviews the relevant literature and defines the terms that will be used in the

rest of the text. Section 3 highlights the significance of the method being proposed and gives the



details of the algorithm. Section 4 summarizes computational findings for test problems, and
finally Section 4 presents our conclusions and directions for further research.

2. Background Literature And Terminology

Multiple Objective Decision Making (MCDM) is characterized by the existence of trade-offs
between different objectives, which must be evaluated in terms of the preferences of a given
DM. In MOCO, this is further complicated by a large and irregular search space causing even the
single-objective versions of the underlying problems to be NP-hard. A critical survey of the
scope and methods of MCDM is given in Stewart (1992), while surveys of MOCO may be found

in Ulungu and Teghem (1994) and Ehrgott and Gandibleux (2000).

In the presence of multiple criteria, the concept of optimality breaks down, to be replaced by that
of efficiency. A solution is said to be efficient if there exists no other solution performing at least
as well in terms of all objectives and better in terms of at least one objective. Together, all
efficient solutions to the problem define the efficient frontier. Formally, let X be the set of

feasible solutions and fx(x), k =1, ..., p, be the k" objective function evaluated at solution x € X.

We say that ye X is an efficient solution to the MOCO problem

"Max'{f, () £ (x).... £, (%)}

if there exists no x€ X such that fi(x) > fy(y) for all k = 1, ..., p, with at least one inequality strict.
If any such x exists, it is said to dominate y. The ideal point of the problem,

f*= (f,*,fz*,...,fp *), dominates all feasible solutions and is found by separately maximizing

the objectives:

fiF= Ai?(x{fk (x)}



Given a MCDM problem without any information on the preferences of the DM, a particular
solution xe X may be said to be superior to another ye X if and only if x dominates y. If the
DM's preference structure is known and can be represented by a utility function

U ) = ulf, (2),... f, (x)),
then the superiority of solutions will be determined by their appeal to the DM and solution x may
be said to be preferred to solution y if and only if

Ux)2U(y).
Given the inherent difficulty of expressing and measuring preferences, there will usually be only
partial or incomplete information available on the function U. If we represent all likely utility
functions by the set Q, then we would be able to say that x is preferred to y under Q if and only
if

Ux)2U(y) V UeQ.
If no such xeX exists, then solution y is preference-nondominated under Q. Moreover, if a
solution y has the highest utility score for at least one likely utility function, i.e.,

3 UeQ > wsz?WQﬁ
then y is potentially optimal.

An overview of issues related to decision making under partial information on U, and of the
early literature on the subject, may be found in Weber (1987). While occasional studies (see, for
instance, Hazen, 1986) have considered varying families of utility functions, the widespread

tendency has been to assume that U is linear
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and that partial information pertains to the vector w = (W, ..., Wp) of criteria weights. Takeda
and Satoh (2000) have used a Data Envelopment Analysis approach to provide a partial ranking
of alternatives under imperfect information on criteria weights for an additive value function.
Most other work in the field has aimed to identify preference-nondominated or potentially
optimal solutions (see, for instance, Athanassopoulos and Podinovski, 1997).

If the DM is able to formulate linear inequalities constraining the possible values of w, then these

inequalities, in conjunction with a normalizing constraint of the form

p
Zwk =1

k=1
form a polytope W of all possible weight vectors. Under these circumstances, solution X is at

least as preferred as solution y under W if and only if

Bl

Y w, (fi () = f(N)20 ¥V weW.

k=1
Special cases where W's characteristics simplify checking whether the above is true have been

addressed by Kirkwood and Sarin (1985) and Carrizosa et al (1995).

Malakooti et al. (1994) have distinguished between the two cases where (i) there exists an

le W defining U which cannot be more precisely determined, and where (ii)

underlying vector w
several different vectors in W may be valid for different points in X, in effect rendering the
utility function U nonlinear. The significance of the distinction lies in the potential optimality of
preference-nondominated solutions that are convex dominated. An alternative ye X is said to be

convex dominated by the alternatives in the set X\{y} if at least one convex combination of the

alternatives in this set dominates y, i.e.,

3y, 3 Zﬂifk(xi)sz(y) V k=1,..,p; 2.“.’21; u, 20 vV xiGX\{y}

e X\{y} x'eX\{y)



In case (i), it is impossible for convex dominated alternatives to be potentially optimal, but in

case (ii), these solutions also may be potentially optimal.

Extensions of the work done on MCDM under partial preference information to MOCO are
virtually nonexistent. The majority of authors studying MOCO problems have aimed to
characterize or approximate the full efficient frontier, although the cardinality of this set may be
exponential in problem size. Occasional interactive metaheuristics have been designed that
progressively elicit information from an accessible DM and converge towards the unique
solution that represents the DM's most favored comprorﬁise of objectives (Teghem, Tuyttens,
and Ulungu, 2000; Pamuk and Koksalan, 2001). The partial information case where the DM is
not accessible beyond providing some limited preference information a priori, on the other hand,

has to our knowledge not been addressed.

The success of multiobjective extensions of metaheuristics such as Tabu Search (for instance,
Gandibleux, Mezdaoui, and Freville, 1996), Simulated Annealing (for instance, Czyzak and
Jaszkiewicz, 1998), and Evolutionary Algorithms (for instance, Zitzler and Thiele, 1999) in
approximating the efficient frontiers of MOCO problems makes it likely that these methods may

further be extended to work in the partial information case.

3. Evolutionary Metaheuristic for Approximating Preference-Nondominated Solutions

The significance of the Evolutionary Metaheuristic for Approximating Preference-Nondominated
Solutions (EMAPS) proposed here lies in the fact that all available preference information is
used to guide and restrict the search effort. Instead of spending computational resources securing
the entire efficient frontier, some parts of which are of no interest to the DM, the portions that are

of interest are searched in greater depth. The subsequent search for a single solution is hence



carried out in a narrower and more relevant search space. The more precise the partial
information on the DM's preferences, the narrower will be the space in question. The algorithm
is hence a flexible tool, and may be used for all cases between the two extremes of perfect
information and no information. If the utility function of the DM is known precisely, then the
algorithm will approximate the optimum for that function; whereas in the absence of any

preference information, the full efficient frontier will be approximated.

Figure 1 below compares the evolution directions of EMAPS with those of other methods in
literature. Traditionally, the goals of the multiobjective evolutionary metaheuristics are twofold:
(1) to push the population of solutions out towards the efficient frontier, and (2) to disperse it
over the frontier to have an adequate representation. Dominance-based fitness functions are the
most common tool for guiding the population in direction (1), while direction (2) is usually
achieved by some form of fitness sharing or niching. In EMAPS, a third goal has been added to
the other two, as the algorithm simultaneously strives (3) to focus the population on those
segments of the efficient frontier that will appeal to the DM, given our partial information on

his/her preferences.
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Figure 1. Directions of evolution for (a) traditional methods (b) EMAPS



EMAPS evolves a population of solutions with the goal of generating a good approximation of
the DM's preference-nondominated solution set (X'"°) under a constrained weight set W.
Although it is assumed that W is defined by linear inequalities and consistent with a linear utility
function, the algorithm does not automatically eliminate convex dominated solutions. A major
factor in the design of the algorithm is the use of strategies that encourage the population's
diversity and hence a good coverage of the entire set X" For this purpose, duplicate solutions
are not permitted to be simultaneously present in the population. The fitness score of each new
offspring is calculated by solving an LP model. This allows each member of the population to be
evaluated in terms of the weight vector we W that puts it at the greatest advantage, and assigns

X"™P that are underrepresented.

higher scores to those solutions that approximate the portions of
Finally, new solutions entering the population tend to replace inferior solutions to which they are

similar.

3.1 The Restricted Weight Space

For the purposes of this study, we will assume that the DM provides us with some information
that can be transformed into linear inequalities on criteria weights, which we use to constrain the
weight space W. The information may include, for instance, a partial ranking of objectives,
pairwise comparisons of solutions, and upper and lower bounds on objective weights. If the
criteria have been scaled to have approximately equal ranges of values, then statements on the
relative importance of criteria may be directly translated into inequalities on criteria weights.
Statements of the form:

e f > f, (the DM finds objective k to be at least as important as objective m)

i

e x'>x’ (the DM prefers solution x' over solution x' )



o w? <w, <w” forasubset of objectives K {1, ..., p}

may thus be utilized to form the set:
wk 2 Wm V fk - fm

iwk(fk(xi)"fk(xj))ZO vV x> x’

k=1

W=4W (wpwzr--ywp) W:B _<._Wk .<_W£JB V kGK r

"

We assume that W is a nonempty set, i.e., that the information provided by the DM is consistent,
both internally and with our assumptions on the form of the utility function. The resolution of
inconsistencies during the specification of W remains a problem of some interest, but is not
addressed here, since various resolution methods may conceivably be devised without much

difficulty.

3.2 Forward Filtering

At several points in the algorithm, a set of p-dimensional (solution or weight) vectors is filtered
to obtain a smaller diverse set by an operation known as forward filtering. The idea is to choose
those vectors that are approximately evenly spaced and collectively cover all parts of the space
covered by the entire set. This is achieved by constructing a subset of elements that are as
dispersed as possible with respect to a given metric, and is explained in detail in Steuer, 1986
(pp-311-321). In EMAPS, Euclidean distances have been selected as the metric to be maximized

in constructing the forward-filtered subset.



3.3 Initialization and Weight Space Sampling

The initial population of EMAPS consists of some solutions generated randomly, and some
relatively higher-quality solutions used to seed the population. The seed solutions are produced
by repeated applications of a base heuristic known to work well on the single-objective version
of the underlying MOCO problem; where the single-objective problems to be solved are formed
by linearly aggregating the objective functions using different weight vectors obtained through

an even sampling of the restricted weight space W.

In the absence of any special structure for W, it is possible to generate a large set R of weights by

incrementing each w, uniformly from 0 to 1 by some step size 1/r. The set

formed in this way has cardinality

=)
The weight vectors belonging to the set WNR may then be used for the linear aggregation of
objectives. If the set WNR has fewer elements than the desired number of seed solutions, the
process may be repeated for a higher value of r. If the set WNR has too many elements, it may
be forward-filtered to the desired cardinality. It should however be noted that not all aggregation

weights need lead to distinct solutions, so that the number of seed solutions that are actually

obtained may be smaller than the number of weight vectors in the filtered set.
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3.4 The Fitness Function

The likelihood that a solution will survive and reproduce during evolution is determined by its
fitness score, which, in EMAPS, should reflect the solution’s contribution to approximating
X™P_ One way of evaluating this contribution involves allowing each solution to select a
favorable search direction in W, and measuring how superior it is to the other solutions in the
population with respect to performances along that direction. Such a fitness function evolves the
population in the three directions illustrated in Figure 1: (1) A given solution immediately has
higher fitness than any solutions it dominates, so evolution is towards the efficient frontier. (2)
Solutions approximating relatively underrepresented portions of X™P have higher fitness than
those that are clustered together, since the former outperform a higher proportion of the
population under their preferred search direction, while the latter have to vie with each other for
fitness. This implicit sharing effect spreads the population over X"™ P (3) Solutions
approximating X™P have higher fitness than solutions approximating other portions of the
efficient frontier that are remote from the search directions indicated by W, so evolution

‘focuses’ on the available preference information.

3.4.1 Relative strength of solutions

Given the existing population X' at any point in the algorithm, suppose that we would like to
compare a new solution x"" with the members of X'. Let us denote by ¢(w, x) the linear

combination under weight vector w of the criteria values for solution x& X:

o0nx) = Y w, £, (x)

11



new

If we can somehow compute a favorable weight vector for x"*, w™*"e W, then a measure of

X""’s strength relative to some x'e X' would be

81’ — ¢(Wnew’xnew )_¢(wnew’xi)’
indicating the surplus utility the DM might derive from choosing x™" over x' if s/he indeed has a
linear utility function defined by the weights w"™". The strength of x™" relative to the entire

population X' may then be measured by either the average of these differences:

b3

= x'eX’

=22
X1

or the difference between x™" and its closest contender along the search direction w"":

=i’}

A negative ¢ value indicates that x™" is outperformed by some x'€X' even at its favorable
weights, so that it cannot be potentially optimal for linear utility functions. However, it is
possible for a convex-dominated solution with € <0 to be potentially optimal if the underlying
utility function is not linear. By itself, the worst-case measure € may be a poor indicator of x"*"’s
fitness, as it is possible for an x"" with a few close contenders to fall in a fairly underrepresented
portion of X™P, and hence outperform many other solutions in X' under its favorable weights.
Taken together, the two terms ensure that the fitness function forces the population to maximize
not only the weighted criterion values wify(x), but also the spread of solutions across the relevant
portion of the efficient frontier. Thus, in EMAPS, the fitness score is a convex combination of €

and € :

ﬁtness(x"ew )= € + (1-a)e

12



for some o€ [0,1]. Extensive test runs suggest that o levels of 0.00, 0.25, and 0.50 tend to work
well. If computational resources can be spared, a conservative approach would be to make

several runs of EMAPS under different values of o and combine the results.

3.4.2 Favorable weight computation

A straightforward application of the above idea is to solve the following LP to find the favorable

news

weights W™ of x"" as the weights that maximize x"**’s fitness:

(04

Max e +1-a)

| 'lx’EX'
st iw,f”(fk(x")—fk(x"eW))+ef =0V x'eX'
k=1
e-€'<0V xeX'
W"eWEW,

€ and the € unrestricted in sign

However, since the number of constraints in the above LP is proportional to the cardinality of the
population, and since it has to be solved frequently, the calculation of favorable weights and
fitnesses may become too time-consuming for large population sizes. As an alternative, it is
possible to store a smaller set X" of dispersed high-quality solutions and substitute X" for X' in
the LP to be solved for the computation of w"". In our applications of EMAPS, we used as X" a
forward-filtered subset of the seed solutions in the initial population. The smaller LP for each
x"" can then be solved in less time, resulting in substantial time savings over the course of

news

evolution. The objective function of the smaller LP, however, does not directly yield x™"’s

w new

fitness. Once the favorable weights w"™" are found, the score fitness(x"*") must instead be

calculated separately using the entire population X', as explained in the previous section.

13



3.4.3 Fitness updates

Since the fitness of solution x™" is calculated with respect to the population at the time of x"*"’s
entry, fitness values may become outdated as the population evolves. Hence a solution may
retain the high fitness score assigned at the time of its entry, and yet be outperformed by many
others that entered the population after it. Conversely, if a certain portion of X" becomes
relatively less represented over time, the fitnesses of the solutions falling in that portion may
become too low to reflect their increased contribution to approximating X' °. To prevent such
occurrences, the fitness values of all solutions in the population are updated upon every entry
into, or exit from, the population. This process is not very time consuming since, with the use of

X", the favorable weight vectors of solutions do not depend on the members of X' at any given

time.

3.5 Evolution

Evolution involves iteratively choosing members of the population to be recombined to form
new solutions, which may then replace relatively inferior members of the existing population.
While the genetic representation of solutions and the (crossover, mutation, repair, etc) operators
being employed during evolution are problem-specific, some generic features of the algorithm

are detailed below.

3.5.1 The selection of parents and creation of offspring

The population maintained by EMAPS is always sorted in order of decreasing fitness scores. The
first parent for a crossover is then selected in reference to ranks in the sorted population. The
probability that the member with rank r will be chosen to become the first parent in the next

crossover is given by (see Reeves, 1993):

14



1) 2 -r+1)
P(x[])—m—)—.

After the second parent is selected on a purely random basis, crossover, repair, and mutation

operators appropriate for the problem at hand are utilized to produce one or more offspring.

3.5.2 Sampling of weights to guide evolutionary operators

It is often possible to design evolutionary (recombination, repair, etc.) operators that exploit a
known base heuristic for the single-objective version of the MOCO problem being addressed. If
such operators are to be employed by the algorithm, a rule must be specified for the selection of
the operator-guidance weight vector w used to aggregate the objectives and create the single-
objective problem to be solved. In EMAPS, the existence of favorable weights proves useful in
the choice of w. For instance, in a recombination operator such as the one described below for
multiobjective spanning tree problems, w* may be set equal to the favorable weights of either of
the parents, or to some combination of the two. In some cases, time may be gained by storing
information on single objective problems obtained under a predetermined set of weight vectors,

pre

WP™ forward filtered from a larger set WAR. The member of WP to be used as w* in a given

operation may then be found by minimizing some distance metric from favorable weights.

3.5.3 Population entry and replacement rules to encourage diversity

If a new offspring has a fitness score that is worse than that of the lowest-ranking solution in the
population, it is immediately discarded and referred to as a “stillborn” baby. Solutions that are
duplicates (in the objective space) of the existing members of the population are also denied
entry, although they are not counted among the stillborn. If the new solution is distinct from the
existing population members and not stillborn, then it is inserted into the population at the place

indicated by its fitness score.

15



As the new solution x"*" enters the population, it is compared to each of the existing members
x'e X' with respect to their own favorable weights. If any x' performs worse under its own
favorable weights w' than x™¥, i.e. we have

' = ¢(wi,xi )—- ¢(wi,x”“w)< 0,
then x'e X' is a candidate for removal from the population. (While € measures the surplus utility
the DM would derive from choosing x"" over x' if s/he had a linear utility function with weights
w"¥, (' measures the surplus utility s/he would derive from choosing x' over x™ if s/he had a

linear utility function with weights w'.)

We set

¢t =Minf'}

’i<0
and remove the solution x'e X' with the most negative {' from the population. The fact that x™¥
outperforms x' under the weights w' implies that the search directions favoring the two solutions
are not very distant, and that X" is more promising than x' in its ability to approximate X™°. In
this sense, the replacement scheme described above tends to replace population members by
similar and better-performing ones, and is therefore expected to encourage diversity in the

population.

The population cardinality in EMAPS is upward flexible with a predetermined upper limit. So
long as the population size is below this limit, we employ only the replacement policy described
above, and increase cardinality by one if no solution with negative (' exists. After the upper limit

is reached, a second replacement policy is put into effect: in the absence of solutions with

16



negative (', the entering solution replaces the member of the population with the lowest fitness

score to keep the population size stable.

3.6 Termination

EMAPS may be terminated when any of the following conditions holds:

(i) a predetermined number of new offspring are consecutively stillborn, indicating that the
population cannot be improved much further

(ii) the population has converged to a predetermined extent, as measured by the percentage of
genes that have the same value in a predetermined majority of the population

(iii) a predetermined number of crossovers have been realized.

Following termination, the population is purged of dominated solutions and forward filtering
may be applied to present the DM with a predetermined number of diverse solutions.
Alternatively, the DM may choose to have access to the entire final population, e.g., to perform

an interactive search on its members.

3.7 Customization for a Specific Application

A flowchart of EMAPS may be found in Figure 2 below. To customize EMAPS to fit a given

MOCO problem, it is necessary to specify

(i) a genetic representation of solutions

(i1) crossover and mutation operators and probabilities

(iii) a repair operator or penalty function to be employed if the genetic operators may yield
infeasible solutions

(iv) a base heuristic for the single-objective version of the problem

17
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Figure 2. Flowchart for EMAPS
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(v) initial and maximum population cardinality values

(vi) number of desired seeds in the initial population

(vii) number of desired weights in WP™

(viii) number of desired solutions to be used in favorable weight LPs

(ix) a value for o, determining the proportion of € to £ in the fitness definition

(x) termination conditions

(xi) a rule for the selection of a subset of solutions to be presented to the DM or a method for

the DM to search the ending population.

4. Computational Findings

To date, the generic metaheuristic described above has been implemented on two well-known
MOCO problems, namely the Multiobjective Knapsack Problem (MOKP) and the Multiobjective
Spanning Tree Problem (MOST). In all simulation runs, the maximum population cardinality
was set to 500 and the maximum number of crossovers to 5000. For larger problems, with broad
search spaces and wide W sets, we found these values to be too low, but restrictions on computer

resources prevented us from increasing them any further.

Initial population sizes and characteristics were defined with reference to p, since the search
space grows exponentially with the number of objectives. Table 1 below indicates the step sizes
1/r used to define the sets R. The targeted number of weight vectors forward filtered out of WNR

and used to seed the population equaled two thirds of the initial population cardinality.
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Table 1. Initial population characteristics for EMAPS

p 2 3 4
Initial population cardinality 60 90 150
Targeted number of seed weights 40 60 100
Step size 1/r 1/800 1/145 1/76
Cardinality of set R 801 10731 79079

The seed solutions were further forward filtered to obtain twenty dispersed high-quality solutions
to be used in favorable weight LPs. In addition, WP weight sets of cardinality 10 were forward
filtered out of WNR and the corresponding solutions used to guide the repair operator in MOKP
and the crossover operator in MOST. To counteract the high intensification tendencies inherent
in these operators, the mutation probability was set to 0.90. Crossover probability, on the other
hand, was specified as 1.00. The algorithm was terminated when either the maximum number of
crossovers was realized, or the population converged (meaning that 95% or more of the genes
had the same value in 95% or more of the population), or 50 consecutive offspring were

stillborn.

The alpha (o) parameter in the fitness function, measuring the weight of the average versus the
minimum utility surplus, was varied to equal o = 0.00, 0.25, 0.50, 0.75 and 1.00 and the
performances of each of these versions as well as the union of their outputs were evaluated. The
union operation involved first combining the final populations and then deleting duplicated or
dominated solutions. As a final point, the performances of forward filtered subsets of the union

sets were also investigated.

To evaluate EMAPS's performance, it is necessary to recall that the algorithm aspires to provide

the DM with a good approximation of his/her preference-nondominated solution set (XPND)

20



under the constrained weight set W. If there is actually a single element of W defining the DM's
preferences, which cannot be more precisely determined a priori, then the performance measure
must be in reference to this single underlying utility maximization problem. If, on the other hand,
all elements of W are equally likely to define the DM's preferences, or perhaps different weight
vectors are valid for different regions of the efficient frontier, then the performance measure

must take the entire W into account.

t

Our simulation runs on MOKP and MOST involved actual criteria weights w,*" randomly

generated from a discrete uniform distribution over [0, 1] and then normalized to sum to one.
The utility maximization problem

Max U(x)

xeX

was then solved for the utility functions

- Linear U(x)=- i w i (f, *= £ (x))

k=1
- Tchebycheff U(x)=- Max{w“’k(fk *~fi (x))}
=l,..., p
where f* is the ideal point for the problem. Linear and Tchebycheff utility functions are
commonly used for simulations in literature (see, for example, Koksalan and Sagala, 1995)

because they correspond to the opposing DM tendencies of aggregation versus balance of

objectives. Performance may hence be evaluated by the scaled deviation percentages

U(xBENCH )_ U (x5

d =100 U(xBENCH )’U(xBAD) ’

BENCH

where x is a good benchmark solution to the utility maximization problem, xB4P is a poor

BEST

solution, and x is the solution with highest U(x) value from among all the solutions in the

final population of EMAPS or a subset thereof presented to the DM.
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In addition, W sets of varying sizes were constructed around the normalized weights w** as:

p
Zwk =1
k=1

W= w=(w1,w2,...,wp)
act k —
wh-ws<w, <w, +0 V k=1.,p

for the values @ = 0.05, 0.15, and 0.25. The W sets corresponding to these three w levels were
referred to as the cases of W1, W2, and W3, respectively. The bound constraint on wy was

replaced by 0<w, <2w whenever we had w;*" - w < 0 and by 1-2w < w, <1 whenever we

had w,* + o > 1.

The weight vectors falling in the WNR sets were used (without filtering) with linear utility

functions in the generation of approximate preference-nondominated solution sets X™P  These
sets are approximate in the sense that they do not contain any convex dominated solutions and
may not contain all supported efficient solutions in the range since not all possible we W are

used, although the sampling of W is quite dense.

Scaled deviation percentages 8])2 were calculated for each X € X™ and the average

PND
X

was used to measure how successfully EMAPS approximates on the average. Furthermore,

the 8[?( value for the solution X that is approximated with the least success, '
d . = xg%{Slx}

measured representative ability by identifying any gaps that may exist in the population.
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4.1 PDEM Implementations on MOKP
Given the set {1, ..., J} of items that may be placed into a knapsack of capacity b, the

Multiobjective Knapsack Problem (MOKP) is formulated as:

J
"Max" {Zcij, k=1,..,p}

J
<
st.z ax; < b
J=1

x,€{01} Vji=1..,7J

where ckj is the contribution of the j‘h item to the k™ objective, a; is the volume of the jth item, and
X; is a binary variable that takes on the value 1 if the j"™ item is included in the solution and 0
otherwise. For each of three problem dimensions given by p = 2, 3, and 4, ten different instances
of MOKP were generated by varying the random number seeds used in the generation process.
For all instances, J was fixed at 200, ij and a; values were randomly generated from a discrete
uniform distribution over [60, 100], and knapsack capacity b was set to half of the total item

volumes in an effort to make the problem harder to solve (see Martello and Toth, 1990).

The base single-objective heuristic used to seed the initial population and to perform local search
in later iterations is the greedy algorithm, which fills the knapsack from scratch in order of
decreasing contribution per unit capacity usage ratios cj/a;. The greedy algorithm was also used
under actual weights w* in reverse, by filling the knapsack in order of increasing ratios, to

BENCH

obtain the x®*P solutions. The x solutions in reference to the single utility functions defined

by w** were found by an optimization package. However, since the combined cardinality of all

the R sets equaled 906,110, solving all problems induced by the weight vectors in the WNR sets

proved computationally too excessive. The X™P sets for MOKP were, therefore, formed by
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solving linear relaxations of the utility maximization problems, and it was found that even the

Savg and Onax values computed in reference to these 'upper bound' solutions were quite excellent.

Straightforward genetic representations and crossover/mutation operators were adapted from
single-objective knapsack literature (Beasley and Chu, 1998) as follows: Each solution is
represented by a binary chromosome, each gene of which holds the value of one decision
variable x;. The genetic operators chosen are uniform crossover and single bit flip mutation.
Hence, given the parent solutions x"' and x*, a random binary crossover mask of length J is
generated, and the offspring solutions x! and x* are created by interpreting 0’s in the mask as
marking the genes x®! will inherit from x', and x®* from x" Similarly, a 1 in the crossover

! and from x™' by x“%. Any offspring

mask marks a gene that will be inherited from x"* by x€
solution that is not stillborn is then mutated with a predetermined probability. Mutation involves

the random selection of one of J genes, which is then flipped from 0 to 1 or 1 to 0, corresponding

to the insertion or removal of an item, respectively.

Since the genetic operators outlined above do not guarantee feasibility, a greedy empty-and-fill
repair operation is defined as follows: At initialization, the vectors w’e WP are used in turn to

define a composite objective function coefficients

- og .k
€ —iwk €
k=1

and the items sorted with respect to their contribution per unit capacity usage ratios c;/aj. An
additional binary variable in uniform crossover determines which offspring will be assigned the
favorable weights of which parent. Then, when an offspring assigned the weight vector w*# is to
be repaired, the sorted item list corresponding to the w°e WP* with the shortest Euclidean

distance from w** is used. If a solution violates the knapsack capacity, items are taken out of the

24



knapsack in the list order until feasibility is restored. If a solution (either upon generation or after
an empty operation) does not utilize the full knapsack capacity it could command, then

additional items are put into the knapsack in the list order.

4.2 PDEM Implementations on MOST
The Multiobjective Spanning Tree (MOST) problem on a graph G = (N, E) with edge weights

ck(e), k=1,...,p, associated with each edge ec E, is formulated as

Max {—;ck(e), k= 1,..,p},

where T(G) denotes the set of all spanning trees of G. For the purposes of this study, twenty
instances of the MOST problem were generated for each value of p = 2, 3, 4. The first ten
problems in each dimension (MOST20) were over complete graphs on 20 nodes; the other ten
problems (MOSTS50) over complete graphs on 50 nodes. In both cases, cx(e) values were

randomly generated from a discrete uniform distribution of range [60, 100].

A greedy algorithm adding low-cost edges to a growing tree so long as cycles are not created
was used, not only to seed the initial population, but also to find x°FT solutions to the problems
with linear utility functions. Moreover, the greedy algorithm was used in reverse to obtain x**"
solutions. The x°"" solutions for the problems with Tchebycheff utility functions were sought by
Hamacher and Ruhe’s (1994) procedure evaluating the 9000 best minimum spanning trees. Even
for those cases when this procedure did not result in an optimal solution, it yielded x 600D
solutions with excellent bounds on relative accuracy. Table 2 below gives the number of

problems (out of ten) where x°PT was found, and for those problems where it could not, indicates

the maximum distance of x°°°P from optimality, as a percentage of the bound on the objective
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Table 2. Benchmarks for MOST problems with Tchebycheff utility function

Cases where x”' ' was Max. distance of x"0°°

Problem P found from optimality

2 10 -
MOST20 3 7 0.09%

4 0 0.31%

2 8 "~ 0.05%
MOSTS50 3 7 0.06%

4 0 0.30%

value. Finally, the X™® sets approximating the DM's preference nondominated solutions were
found by using the greedy algorithm to solve linear utility maximization problems to optimality.

No genetic representations were utilized and the cut-and-combine mutation and subgraph-MST
crossover operators we designed dealt directly with the spanning trees. Subgraph-MST crossover
is based on the greedy algorithm and finds the single-objective Minimum Spanning Tree of the
subgraph obtained by taking only the edges of the parent trees into consideration. At
initialization, sorted arc lists are formed and stored for ten different composite arc cost values
corresponding to w°e WP*, Then, when parent solutions x"! and x™ are to be recombined, the
subgraph-MST crossover operator is applied twice to the subgraph formed by juxtaposing the
arcs of x"' and x"?, yielding two offspring solutions x*! and x?. The composite arc costs used to
create x©' are those found for the member of WP with shortest Euclidean distance from x"’s
preferred weights w'', while those used to create x“* correspond to the member of WP with
shortest Euclidean distance from w'>. After the offspring have been formed, the mutation
operator deletes a random arc in the spanning tree and randomly inserts another arc that would
combine the two resulting trees into another spanning tree. Hence, the genetic operators being

used always yield feasible solutions and no repair operator or penalty function is required. The
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mutation operator is rather disruptive, as it is hoped that this will counterbalance the strong

intensification tendency inherent in the crossover operator.
4.3 Simulation results

Tables 3 and 4 below present the average of the 8, values and the maximum of the &y values
observed over the ten problem instances of each problem type. In each row, the minimum value
for the EMAPS versions corresponding to the o levels of 0.00, 0.25, 0.50, 0.75, and 1.00 is
marked with a star (*). Tables 3 and 4 also include the results for the union operation and for
forward-filtered subsets of the union operation of cardinality 20 (filt20) and 50 (filt50). Space
restrictions prevent us from presenting similar tables for running times and 6 values for the case
of a single underlying utility function. The maximum ranges for & values under linear utility
functions equal 0.35, 1.10, and 4.00, and those under Tchebycheff utility functions equal 1.20,

7.00, and 12.00, for MOKP, MOST20, and MOSTS50, respectively.

As might be expected, § values increase when the form of the DM's utility function is very
different from that assumed by the algorithm, when the problem dimension is high, and when the
precision of the partial information on DM preferences is low. High values of the o parameter
also seem to weaken the evolutionary forces involved in the algorithm, resulting in high 8 levels.
Simply setting o. = 0.00 and working only with the minimum utility surplus seems to yield quite
successful results for MOST problems, while o levels of 0.50 or 0.25 seem to work better for
MOKRP. Studying the distribution of stars in Tables 3 and 4, we find that once again o = 0.25 and

0.50 work well for MOKP, while o = 0.00 and 0.25 perform better for MOST problems.
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Table 3. Average ,,, values

(0

Problem | W |p union | filt20 | filt50
0.00 | 0.25] 0.50| 0.75| 1.00

2170.08]70.08 | 70.08 | 0.08| 0.09| 0.07| 0.08| 0.08

W1 (3] 0.11] 0.11|70.10| 0.10| 0.11 | 0.08| 0.11| 0.10

4] 0.10| 0.09|70.08| 0.09| 0.09| 0.08| 0.10| 0.09

21 0.10{7009| 0.11] 0.11| 0.11| 0.07 | 0.09| 0.11

MOKP |W2 (3| 0.15| 0.13]70.11 | 0.11| 0.12| 0.09| 0.13| 0.11
41 022(70.19]70.19(70.19| 022 | 0.14| 021 | 022

2] 019]70.15]70.15| 0.17 | 0.17 | 0.09| 0.15| 0.15

W3 (3] 021]7016] 0.17] 0.20| 023 | 0.12| 0.17| 0.18

4| 043| 035]70.34| 035] 0.38| 0.25| 0.39| 0.38

2170.00 | 70.00 [ 0.00 [ 70.00 | 70.00 | 0.00| 0.00| 0.00

W1 {3 ]70.00 | 0.00 [ 70.00]70.00|70.00| 0.00| 0.00| 0.00

4170.00 | 70.00]70.00 [ 0.00]70.00| 0.00| 0.01| 0.04

2170.00 | 70.00 | 70.00 [ 70.00 | 0.00 | 0.00| 0.00| 0.00

MOST20 | W2 [ 3]70.00 | 70.00 | 0.00 | 0.01] 0.01 | 0.00| 0.04 | 0.02
4170.04| 0.05] 0.09] 0.10| 0.18| 0.02| 0.18| 0.13

2(70.00 | 0.00 | 0.00 | 0.01] 0.02| 0.00| 0.01| 0.00

W3 [3|70.01] 004 008] 0.17] 0.17| 0.01| 0.31| 0.05
4170.15] 0.67] 067] 0.70| 0.73| 0.12| 1.03| 0.34
2170.00]70.00 [ 70.00 | 70.00 [ T0.00 | 0.00| 0.00| 0.00

W1 {3]70.00]70.00]70.00]70.00]70.00| 0.00| 001 0.00
4170.00 | 0.00[70.00] 0.01| 0.01| 0.00| 0.04| 0.01

2170.00 | 70.00 | "0.00 | 0.00 | 0.00 | 0.00| 0.00| 0.00

MOST50 [ W2 [3]70.01 | 0.03] 0.03]| 0.05| 0.07| 0.01| 0.04| 0.04
417008 0.15] 022] 034 0.51| 0.07| 0.28| 0.25

2170.00] 0.01]70.00] 0.01] 0.11] 0.00| 0.00[ 0.00

W3 [3]70.04] 030] 028 030 0.51] 0.03] 0.13] 0.29
417027] 099] 1.13] 1.10| 158 022 074 1.17
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Table 4. Maximum O, values

Problem | W | p x union | filt20 | filt50
0.00 | 0.25] 0.50[ 0.75| 1.00

2] 022[7016|70.16| 0.22] 020 0.16 | 0.16| 0.16

W1 (3] 027] 029 027]70.23] 0.27| 0.23| 0.23| 0.24
4170497049 70.49]70.49 (7049 | 0.49| 049 0.53

2] 056(7027| 039] 028 029 0.18| 0.18| 0.18

MOKP | W2 3| 059| 049|044 | 046 0.51| 0.35| 0.35]| 0.36
4| 139 1.13]7091| 1.65| 1.69| 0.83| 0.83| 0.92

21 094] 091]70.53] 059 064 | 035| 0.35]| 0.35

W3 (3| 147]7071] 0.77] 0.73| 0.89| 0.51| 0.51| 0.60
413527173 1.77] 181 | 221 | 1.10| 1.10| 1.21
2170.00|70.00 [ 70.00 | 70.00 | T0.00 | 0.00| 0.00| 0.00

WI (3] 0.02]70.00]70.00| 0.02| 0.02| 0.00| 0.22| 0.11
4170.05|70.05]70.05]70.05]70.05] 0.05| 0.30] 0.18
2170.00]70.00[7000] 001 029] 0.00| 0.01| 0.00

MOST20 | W2 |3 | 0.11 | 0.06 | 0.16] 0.28 | 0.36| 0.06| 0.51| 0.23
417065| 1.00] 134 153] 2.10] 049 | 1.90] 1.10

217000 7000] 021] 0.17] 064 | 0.00| 0.20| 0.00

W3[3]7026] 097] 1.47] 2.19] 3.08| 0.22] 0.82] 0.57
47204 548 453 ] 4.85] 5.67| 143]| 4.07] 249

2 (70.00 | 70.00 [ 70.00 [ 70.00 [ T0.00 | 0.00| 0.00] 0.00

W1 [3]70.01|70.01] 0.02] 0.02] 0.05] 0.01] 0.07] 0.03
4170.07[70.07]70.07 | 70.07|70.07| 0.07] 0.16] 0.07

2(70.00| 0.04] 0.12] 0.03] 0.03] 0.00| 0.01] 0.00

MOST50 | W2 {3 ]70.13| 0.69] 0.69] 0.58] 0.70] 0.11| 0.28] 0.13
417079 1.63] 289 346 3.22| 0.58| 1.22| 0.94

217001] 024] 0.19] 0.33] 1.26] 0.01] 0.03] 0.01

W3 [3]7052] 3.04] 334 331] 415 030 096 | 0.40
4]74.06| 820] 6.54| 6.57| 8.85| 1.81] 3.54| 2.22

When the union is taken of the different versions, average SQVg values remain below 0.25 %,
maximum Omax values below 1.81 %, and average & values below 0.32 % with a linear underlying

utility function and below 2.14 % with a Tchebycheff underlying utility function for all

problems. Even if the DM does not wish to search the entire set of solutions resulting from the
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union operation, the results remain encouraging for forward filtered subsets. When the DM is
presented a set of at most 20 solutions, if s/he is able to choose the best therein, average 6 and
avg values are below 1.2 % and 8.« values are below 4.5 % in all cases with linear underlying
utility functions. When the sample size increases to 50, the corresponding figures fall to 1.0 %
and 2.5 %. When the underlying utility function of the DM sharply differs from what is assumed
by the algorithm, however, average 8 values can go up to 7.0 % for 20-solution samples and 3.5
% for 50-solution samples, so conducting an interactive search over the entire union set may be

worthwhile.

Computation durations, like § values, tend to increase when there are increases in size of the
problem, the dimension of the problem, or the size of the restricted weight space. We find that
extreme levels of 0.00 and 1.00 for « result in shorter run times, conceivably because they
simplify the LPs that must be solved for favorable weight computations. Maximum values for a
233mHz Pentium II processor equal 400 seconds for MOKP and MOST20, and 600 seconds for
MOST?20. If we ignore the extreme values for o = 0.75, average durations are under 7 minutes
for all cases. Combining and if necéssary filtering the results of the five versions takes less than

40 minutes for all problems.

Finally, the simulation results illustrate the focusing capability of the EMAPS fitness function
when one compares the union sets obtained for the same problem under different degrees of
precision. Figure 3 below displays typical results for one 2-dimensional and one 3-dimensional
problem. It is quite clear in the figure that as the size of the restricted weight space W increases,
the cardinality and spread of the union set increases to approximate a wider range of preference-

nondominated solutions.
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Figure 3. Illustration of the effect of precision on EMAPS

5. Conclusions

The simulation runs discussed above indicate that EMAPS succeeds in finding a high-quality
approximation of the DM's preference-nondominated set in all cases. The effect of the parameter
a, controlling the balance in the fitness function of the minimum and the average utility surplus,
seems to follow no fixed pattern. Further research on this effect remains of interest, as does the
design of a dynamic metaheuristic where o is progressively adjusted. In our simulations,
values of 0.00, 0.25, and 0.50 appeared to yield good results. The final populations reported

under different levels of o were distinct but mostly of equally high quality. When the problem

31




size or dimension is large, or the partial information available on the DM's preferences is not

XPPM to be approximated grows quite large and running EMAPS under

very precise, the set
several different levels of o and combining the results emerges as a good alternative to
increasing the maximum number of crossovers or the maximum population cardinality allowed,
especially if the latter is not feasible with the given computational resources. When the resulting

set from the union operation is filtered to obtain a smaller subset of disperse solutions, a

representative sample of high quality solutions may be obtained.

The fitness function designed for EMAPS makes it possible for the population to move in all
three of the desired evolutionary directions simultaneously without requiring the use of niching,
fitness sharing, or other mechanisms traditionally employed to guarantee a good spread of the
population over the efficient frontier. When a positive value is used for the parameter o, convex
dominated solutions in otherwise underrepresented regions of the set of preference-
nondominated solutions may have higher fitness than supported efficient solutions in crowded
regions. This may improve the metaheuristic’s performance for nonlinear utility functions,

especially when a small population is used.

Comparisons of the algorithm with others in the literature are desirable, and may be carried out
for the no information case where the entire efficient frontier is being approximated. The method
can easily be customized to solve different MOCO problems as well as other multiobjective
problems that cannot be solved analytically. The evolution operators and base heuristics required
for customization may in many cases be readily adapted from the vast catalog of evolutionary
algorithms that have been developed in recent years to address single-objective combinatorial

optimization problems.
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