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Abstract. Motivated by our earlier study of convex extensions [25], we define a polyhedral

basis over a convex set. We explore properties of polyhedral functions that lead us into studying

their relations to convexification and disjunctive programming. In particular, we show that a

polyhedral basis is easy to identify for cartesian products of simplices. A special case, that of

an n-dimensional hypercube, is of particular interest in this study. In this case, we show that

convex and concave envelopes of multilinear sets are derived as a consequence of disjunctive

programming and Reformulation Linearization Techniques. We answer in negative an open

question whether there exist polynomial functions that will provide convexification processes

for general integer programs just as multilinear functions are used to convexify 0-1 programs

in the reformulation linearization technique and the lift and project algorithm.

The polyhedral functions also correspond to nonlinear rounding ideas and we will explore

these in the article. This interpretation allows us to study probabilistic mathematical programs

and explore their relation to multilinear programs. More concretely, we demonstrate that a

probabilistic mathematical program is equivalent to the lagrangian relaxation of a multilin-

ear program. Consequently, we study approximation schemes and demonstrate that rounding

schemes often hint at polyhedral basis functions. Some negative results about Lagrangian

relaxation are presented.

This is a preliminary set of proofs and provides many directions for further work in con-

vexification techniques. Some of the results that follow easily are stated without proofs.

Mohit Tawarmalani: Krannert School of Management, Purdue University.
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1. Introduction

This working paper presents the proofs of many results of interest in convexi-

fication and their relation to disjunctive programming [4,3,5,23], reformulation

linearization technique [17,20,18,16,19], semidefinite relaxations [9]. The work

presented herein is related to Lasserre’s hierarchy in that the probability mea-

sures are associated with variables, but is distinct in the fact that we consider

subsets of the face lattice of the hypercube (and there is no face lattice for semi-

algebraic sets considered in Lasserre’s work) and also that we go beyond the

general definition of probabilistic measures to provide specific types of proba-

bilistic measures that allow us to reconstruct whatever can be said about all

the probabilistic measures. For example independent events allow us through

convexification operation to determine if there exists a probabilistic measure

satisfying certain prespecified probabilities.

2. Polyhedral Function Basis

We often deal with finite collection C = {Ci | i ∈ I} of sets. With a slight abuse

of notation, but with the view of simplifying presentation, we denote
⋃

i∈I Ci by

C itself. For example, conv(C) denotes conv(∪i∈ICi) and x ∈ C is equivalent to

x ∈ ∪i∈ICi.

Definition 1. Given a finite collection of disjoint convex sets C = {Ci | i ∈ I},

and a set X such that
⋃

i∈I Ci ⊆ X ⊆ conv(C), the polyhedral basis is a collection
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of functions F = {fi | i ∈ I} such that for any x ∈ X and the collection F , the

following hold:

– fi(x) ≥ 0

–
∑

fi∈F fi(x) = 1

– for every fi(x) 6= 0, there exists yi ∈ Ci such that x =
∑

i∈I fi(x)yi

and for every x ∈ Cj , fj(x) = 1.

If the set X is not explicitly specified, it is to be assumed as conv(C).

The motivation behind our definition of polyhedral function basis should be

apparent. For every point in conv(C) but not in C, the polyhedral basis provides a

convex representation of x in terms of points in C, or in other words, a certificate

of its inclusion in conv(C). Indeed, for the definition to be meaningful, it is

necessary that C be a collection of disjoint sets, or else, the polyhedral basis can

not possibly exist (consider a point x ∈ Ci ∩ Cj). However, it may be noted

that the disjointness does not impose a restriction since any collection of convex

sets can always be written as a collection of disjoint convex sets using the meet

irreducibles of the canonical distributive lattice of the sets.

Example 1. Consider the canonical simplex ∆3 in R
3 given by:

{(x1, x2, x3) | x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 ≤ 1}.

Let C be the collection of extreme points of ∆3. Then, it is easy to verify that

x1, x2, 1−x1−x2 forms a polyhedral basis for C. It is in fact clear in this example

that the above functions are the only functions that satisfy the requirements of

a polyhedral basis since the convex multipliers are determined uniquely (see for
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example exercise 2.28(b) in [15]). In general the unique polyhedral basis for ∆n

is given by x1, . . . , xn, 1 − x1 − · · · − xn.

The next result motivates our definition of polyhedral basis.

Theorem 1. Consider a polyhedral basis F of C over X. The generating set of

the epigraph (hypograph) of the convex (concave) envelope of any fi ∈ F over X

is a subset of C.

Proof. Any x 6∈ C can be expressed as: x =
∑

i∈I fi(x)yi. By definition, fi(x)

equals 1 for every x ∈ Ci and 0 for every x ∈ Cj where j 6= i. Further, fi(x) =

∑

i∈I fi(x)fi(yi) = fi(x). It follows then as a simple corollary of Theorem 7 in

[25] that x does not belong to the generating set.

In particular, if C is a collection of a finite number of points, then Theorem 1

implies that in order to construct the convex hull of any function in F , we need

to consider only the points in C.

From Definition 1, and the definition of convex hull, it is clear that there

always exists a polyhedral basis. In fact, Theorem 1 can be generalized signifi-

cantly. In order to do so, we first define a lifting of a point/subset of R
n.

Definition 2. Consider a polyhedral basis F of C as in Definition 1. The lifting

of a point, x is a mapping, φ(x) : R
n 7→ R

n+|I| such that φ(x) = (x, f1(x), . . . , fm(x)).

The lifting of a subset, S, of R
n is denoted as φ(S) and represents

⋃

x∈S φ(x).

The lifting of a collection of sets S = {Si | i ∈ I} is defined as φ(S) = φ (∪i∈ISi).

Theorem 2. Consider a polyhedral basis F of C over X and the corresponding

lifting φ. Then, conv(φ(C)) = conv(φ(X)).
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Proof. (⊆) Since
⋃

i∈I Ci ⊆ X , φ(C) ⊆ φ(X). It is therefore apparent that that

conv(φ(C)) ⊆ conv(φ(X)).

(⊇) Consider the representation of a point x ∈ X as x =
∑

i∈I fi(x)yi,

where each yi ∈ Ci as guaranteed by the definition of polyhedral basis. Restrict

attention to the yi used in the above representation. It can be easily verified that

φ(x) =
∑

i∈I fi(x)φ(yi) since φ(yi) = (yi, ei) where ei is the ith unit vector of

R|I|. Therefore, φ(x) ∈ conv(φ(C)). In other words, φ(X) ⊆ conv(φ(C)). Taking

the convex hull on both sides, we have conv(φ(X)) ⊆ conv(φ(C)).

Lemma 1. Consider a set X and a linear transformation A. Then A conv(X) =

conv(AX).

Proof. (⊇) Follows easily from AX ⊆ A conv(X) and that A conv(X) is convex

(see Theorem 3.4 [14]).

(⊆) For an arbitrary x ∈ A conv(X), there exists a y in conv(X) such that x =

Ay. In particular, if X ⊆ R
n, there exist n+1 points in X , say y1, . . . , yn+1 such

that y =
∑n+1

i=1 λiyi (see Theorem 2.29 [15]). Then, x = Ay =
∑n+1

i=1 λiAyi ∈

conv(AX).

The following generalization of Theorem 2 and Theorem 1 follows easily.

Theorem 3. Consider a polyhedral basis F of C (see definition 1), the corre-

sponding lifting φ (see definition 2) and a linear transformation A with range C.

Then:

conv(Aφ(C)) = conv(Aφ(X)).
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Proof. It follows from Theorem 2 and Lemma 1 that:

conv(Aφ(C)) = A conv(φ(C)) = A conv(φ(X)) = conv(Aφ(X)).

We shall return to Theorem 3 occasionally during this paper as it embodies

the motivation for our work on polyhedral basis functions.

Corollary 1. Consider a polyhedral basis F of C, the corresponding lifting φ

and the function g(x) =
∑

i∈I aifi(x), where ai, i ∈ I are real constants. The

generating set of the epigraph (hypograph) of the convex (concave) envelope of

g(x) is a subset of C.

Proof. Follows as a direct application of Theorem 3 by considering the linear

transformation, A, that maps φ(x) = (x, f1(x), . . . , f|I|(x)) to (x,
∑

i∈I aifi(x)).

It follows easily from Definition 1 that the functions in a polyhedral basis

are linearly independent. In particular, assume that fi(x) can be expressed as a

linear combination of some functions in F indexed by a subset of I\{i}. Then,

fi(x) =
∑

j∈I

j 6=i

λjfj(x). (1)

We arrive at a contradiction by evaluating (1) at any point x in Ci. Corollary 1

along with the independence of the functions in F motivates our definition of a

vector space of polyhedral functions.

Definition 3. Consider a polyhedral basis F of C. The vector space of polyhe-

dral functions V(F) is defined as linear combinations of the functions in the

polyhedral function basis. F forms an orthogonal basis of V(F).
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Definition 4. Consider two functions g(x) and h(x) that belong to V(F). We

define their polyhedral product, g � h as the function corresponding to the vector

formed by taking the termwise product of their vector representations.

The motivation for the polyhedral product arises from the fact that for any

two polyhedral basis functions fi(x)fj(x) = 0 for i 6= j and f2
i (x) = fi(x)

everywhere on C. It is easy to verify that (g � h)(x) = g(x)h(x) for every x in C.

Further, from Corollary 1, the generating set of the epigraph and hypograph of

g � h is a subset of C.

When can polynomial functions be used to describe polyhedral basis func-

tions? We try to answer this question partially in the following few results:

Theorem 4. Consider a collection of convex sets C indexed by the set I and its

polyhedral basis F . F is not composed of polynomial functions if there exist i

and j in I such that aff(Ci) ∩ aff(Cj) 6= ∅.

Proof. Either Ci is a single point or contains an infinite number of points. In

either case, it follows from the fundamental theorem of algebra that if fi(x) is a

polynomial then fi(x) = 1 over the affine hull of Ci. Similarly, fi(x) = 0 for any

point in Cj , j 6= i. Therefore, aff(Cj) ∩ aff(Ci) = ∅.

Theorem 5. Consider a collection of convex sets C indexed by the set I and let

its polyhedral basis be F . If there exists a set Ci ∈ C and a point x̄ ∈ Ci such

that there exists a neighborhood of x̄ where the points yj in the representation

x =
∑

j∈I fj(x)yj can be expressed as yj = gj(x) such that each component of gj

is continuous and differentiable and x̄ can be expressed as a convex combination
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of the points gi1 , . . . , gim
where {i1, . . . , im} ⊆ I\{i}, then F is not composed of

polynomial functions.

Proof. Consider the representation x =
∑

j fj(x)gj(x) in the neighborhood of

x. Then, taking the derivative on both sides with respect to the lth coordinate

we get:

el =
∑

j

∇lfj(x)gj(x) +
∑

j

fj(x)(∇lgj(x))t, (2)

where ∇l denotes the differential operator with respect to the lth co-ordinate.

Let P ⊆ I\{i} be the set of points gp(x) which have non-zero multipliers in the

representation of x̄. We denote the convex hull of gp(x), p ∈ P by CP . Clearly,

x̄ ∈ ri(CP ) (see Theorem 6.9 in [14]), CP ⊆ conv(C), and each function in F

is bounded between 0 and 1 over conv(C). Therefore, for any j ∈ I , ∇fj(x̄) is

orthogonal to aff(CP ). Consider any d ∈ aff(CP ). Then:

d =
∑

l

dl

∑

j

∇lfj(x̄)gj(x̄) +
∑

l

dl

∑

j

fj(x̄)(∇lgji)
t(x̄)

=
∑

j

gj(x̄)
∑

l

dl∇lfj(x̄) +
∑

j

fj(x̄)
∑

l

dl(∇lgj(x̄))t

=
∑

j

fj(x̄)
∑

l

dl(∇lgj(x̄))t

=
∑

j

fj(x̄)(∇gj(x))td

= (∇gi(x̄))td (3)

where dl is the lth co-ordinate of d. (3) shows that the derivative of gi(x̄ +

λd) with respect to λ is d. Restricting attention to some p̄ ∈ P , and choosing

d = (gp̄(x̄) − x̄), the directional derivative is then gp̄(x̄) − x̄. This implies that

x̄+gp̄(x̄)− x̄ ∈ aff(CP ). Theorem 4, however asserts that gp̄(x̄) 6∈ aff(Ci) leading
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to a contradiction of the assumption that a polynomial polyhedral basis can be

constructed.

The above result easily provides the following corollary.

Corollary 2. Consider a collection of points P = {x1, . . . , xm}. If x1 can be

expressed as a convex combination of points in P\{x1}, then there does not exist

a polynomial polyhedral basis for P .

Proof. Since there is only one point in each convex set, the functions gj(x) are

constant. Therefore, the current result follows directly from Theorem 5.

Example 2. Consider a collection of three points in a one-dimensional space co-

ordinatized by the values 0, 1 and 2. Even for this small example, there does not

exist a polynomial polyhedral basis as shown in Corollary 2. In the following, we

construct f0(x), f1(x) and f2(x) that can be easily verified to form a polyhedral

basis for this small example:

f0(x) =
1

2
(1 − x + |1 − x|)

f1(x) = 1 − |1 − x|

f2(x) =
1

2
(x − 1 + |1 − x|).

In fact, define if we define hi−(x) = 1
2 (i − x + |i − x|), hi(x) = 1 − |i − x| and

hi+(x) = 1
2 (x− i + |i− x|), then a polyhedral basis for 0, 1, . . . , n can be formed

by the functions defined over [0, n]:

f0(x) = h1−(x)

fi(x) = hi(x) + hi−1−(x) + hi+1+(x) i = 1, . . . , n − 1

fn(x) = hn−1+(x).
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Theorem 6. Consider a collection of convex sets C indexed by the set I and let

be F be a polyhedral basis for C. Assume that d is a unit vector along a recession

direction for ri(conv(C)). Then, for every polynomial function f ∈ F and every

point x̄ ∈ aff(conv(C)), f(x̄ + λd) = f(x̄) for all λ ∈ R ( i.e, f is constant along

the direction d).

Proof. aff(ri(conv(C))) = aff(conv(C)) (Theorem 6.2, [14]). For any point x̂ ∈

ri(conv(C)), x̂ + λd ∈ ri(conv(C)) for all λ ≥ 0 and f(x) is bounded between

0 and 1. It then follows easily that f(x̂ + λd) = f(x̂) for all λ. Now, consider

a point x̄ ∈ aff(conv(C))\ri(conv(C)) and a point x̂ ∈ ri(conv(C)). From the

definition of the relative interior, there exists a ε larger than zero such that

x̂ + δ(x̄ − x̂) ∈ ri(conv(C)) for every δ such that 0 ≤ δ < ε. We have shown

that function f(x̂ + δ(x̄ − x̂) + λd) − f(x̂ + δ(x̄ − x̂)) is zero and therefore from

fundamental theorem of algebra f(x̂ + γ(x̄− x̂) + λd) − f(x̂ + γ(x̄− x̂)) = 0 for

any γ ∈ R. Choose γ = 1 to prove the current result.

Example 3. Consider the collection of three convex sets A = (0, 0), B = (0, 1)

and C = {(1, a)|a ∈ R}. Denote the basis function corresponding to the three

sets by fA, fB and fC respectively and assume fA is polynomial. Then, fA

is independent of the second co-ordinate since (0, 1) is a recession direction of

ri(conv(A ∪ B ∪ C)). By noting that fA(0, 1) = 0 and fA(0, 0) = 1, we derive a

contradiction. A similar argument shows that fB is also not polynomial.

Definition 5. Consider two arbitrary collections C and D of convex sets. Let

C = {C1, . . . , Cn} and D = {D1, . . . , Dm}. We define C +D as the collection of

all Minkowski sums of the form Ci +Dj where i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
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Definition 6. Consider two arbitrary collectons F and G of functions. Let F =

{f1, . . . , fn} and G = {g1, . . . , gm} We define F×G as the collection of functions

figj where i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

Lemma 2. For any two sets S1 and S2, conv(S1 + S2) = conv(S1) + conv(S2).

Proof. (⊆) Clearly, any x ∈ conv(S1+S2) is expressible as a convex combination

of a finite number of points in S1 + S2 (see Theorem 2.27 and 2.29 in [15])

or x =
∑

j λj(yj + zj) where yj ∈ S1 and zj ∈ S2 for every j. Then, x ∈

∑

j λjyj +
∑

j λjzj ∈ conv(S1) + conv(S2).

(⊇) If x ∈ conv(S1) + conv(S2), then x = y + z where y =
∑l

j=1 λjyj and

z =
∑m

k=1 γkzk. We can therefore express x as follows:

x =

n
∑

j=1

λj

m
∑

k=1

γkyj +

m
∑

k=1

γk

n
∑

j=1

λjzk

=

n
∑

j=1

m
∑

k=1

λjγk(yj + zk)

Lemma 3. For sets S1 ⊆ R
n, S2 ⊆ R

m and linear transformations A1 : R
n 7→

R
p and A2 : R

m 7→ R
p, conv(A1S1 + A2S2) = A1 conv(S1) + A2 conv(S2).

Proof. Follows from Lemma 1 and Lemma 2.

We denote by AC the collection {AC1, . . . , ACn} where C = {C1, . . . , Cn}.

Theorem 7. Let C1, . . . , Cn be n collections of convex sets and let F1, . . . ,Fn

be their polyhedral basis respectively. and A1, . . . , An be linear transformations.

Assume Ci ∈ R
mi and Ai : R

mi 7→ R
m. Then,

conv(A1C1 + · · · + AnCn) = A1 conv(C1) + · · · + An conv(Cn). (4)
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There are (vector) functions k1, . . . , kn such that for every point x in conv(A1C1+

. . . + AnCn):

1. ki(x) ∈ conv(Ci), for i = 1, . . . , n

2. x =
∑n

i=1 Aiki(x)

3. If x ∈ A1C1 + · · · + AnCn, then ki(x) ∈ Ci.

Let Gi be a collection of functions defined over conv(A1C1 + . . . + AnCn) by

composing each function in Fi with ki. If the sets in the collection A1C1 + . . . +

AnCn are disjoint, then G1×· · ·×Gn forms a polyhedral basis for A1C1+. . .+AnCn.

Proof. Observe that

⋃

C∈AiCi+AjCj

C =
⋃

C∈Ci

AiC +
⋃

C∈Cj

AjC.

Applying Lemma 3 (tail) recursively to derive (4).

We need to verify that the functions k1(x), . . . , kn(x) exist. Consider any

point x in conv(A1C1 + · · ·+AnCn). By (4), x ∈ A1 conv(C1)+ · · ·+An conv(Cn).

In other words, there exist x1, . . . , xn such that xi ∈ conv(Ci), i = 1, . . . , n and

x = A1x1 + · · · + Anxn. Define ki(x) = xi. If x ∈ A1C1 + · · · + AnCn, then by

definition ki(x) can be defined such that ki(x) ∈ Ci. We have thus argued that

the functions ki(x) as provided by the statement of the thoerem exist.

Now, we verify that G1×· · ·×Gn is indeed a polyhedral basis for C1+ . . .+Cn.

Let the cardinality of Ci be Ii. Property 1. Each function in G1 × · · · × Gn

is a product of non-negative functions and is therefore non-negative. Property

2. Since
∑

f∈Fi
f(ki(x)) = 1,

∏n
i=1

∑

f∈Fi
f(ki(x)) = 1. Property 3. ki(x) =
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∑

fij∈Fi
fij(ki(x))yij where yij ∈ Cij ∈ Ci. Therefore,

x =
n

∑

j=1

∑

ij∈Ij

fjij
(kj(x))Ajyjij

=
n

∑

j=1

∑

ij∈Ij

fjij
(kj(x))





∏

l6=j

∑

il∈Il

flil
(kl(x))



 Ajyjil

=
n

∑

j=1

∑

ij∈Ij

fjij
(kj(x))





∑

i1∈I1

· · ·
∑

ij−1∈Ij−1

∑

ij+1∈Ij+1

· · ·
∑

in∈In

n
∏

l=1

l6=j

flil
(kl(x))






Ajyjil

=
∑

i1∈I1

· · ·
∑

in∈In

n
∏

l=1

flil
(kl(xj))

n
∑

l=1

Alylil

Clearly,
∑n

l=1 Alylil
∈

∑n

l=1 Clil
where Ci = {Ci1, . . . , Ci|Ii|}.

Now, we only need to show that for every x ∈ A1C1 + · · · + AnCn, one of

the polyhedral functions takes a value 1 and the rest take a value 0. By the

disjointness of sets in A1C1 + · · ·+AnCn, if x ∈
∑n

l=1 Clil
, then kl(x) ∈ Clil

∈ Cl.

Then,
∏n

l=1 flil
= 1 and the rest of the functions in G1 × · · · × Gn take a value 0

at x.

Definition 7. Consider two arbitrary collections C and D of convex sets. Let

C = {C1, . . . , Cn} and D = {D1, . . . , Dm}. We define C ×D as the collection of

all sets of the form Ci × Dj where i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

Corollary 3. Let C1, . . . , Cn be n collections of convex sets and let F1, . . . ,Fn

be their polyhedral basis respectively. Assume Ci ⊆ R
mi Then,

conv(C1 × · · · × Cn) = conv(C1) × · · · × conv(Cn).
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Let ki(x) be the projection of x into R
mi . Define Gi to be a collection of functions

defined over conv(C1 × . . .×Cn) by composing each function in Fi with ki. G1 ×

· · · × Gn forms a polyhedral basis for C1 × . . . × Cn.

Proof. Let 0i be the collection
{

{0}
}

in R
mi (i.e, it contains only the origin).

Apply Theorem 7 to the collections Cl ×
n
∏

j=1

j 6=l

0j . It is easy to verify that the

functions ki satisfy the requirements of Theorem 7 and the disjointness of the

sets in C1 × . . . × Cn follows from the disjointness of sets in C1, . . . , Cn.

3. Multilinear Sets

In this section, we explore multilinear sets and show that the convex hull of

the solutions of multilinear functions over a hypercube is polyhedral as a simple

corollary of Theorem 3.

Indeed, this allows us to consider arbitrary subsets of the face lattice of the

hypercube to develop relaxations for 0-1 programs. In fact these correspond to

the different multilinear functions that can be generated as a result of Theorem

10 in [25]. Indeed any 2n linearly independent columns, where each column cor-

responds to a multilinear function and the entries correspond to the function

evaluated at the extreme points of the hypercube, provides alternate basis for

the Reformulation Linearization Hierarchy. For a binary program, it is clear from

the proof of Theorem 10 in [25] that there is a single multilinear function which

if multiplied with all the constraints reduces all the constraints to redundant

inequalities and the convex envelope of the function intersected with the hyper-

plane f(x) = 0 is the convex hull of the solutions to the IP. In fact, it can be
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argued that multiplying an inequality with the basis function of a face and then

linearizing it is equivalent to defining polyhedral functions for the sub-faces and

then posing the inequality on the face using the polyhedral functions to define

the point on the face.

4. Finite Probability Spaces and Probabilistic Rounding

Consider a finite probability space with a universal set U an arbitrary collection

of events A = {A1, . . . , An} where each Ai ⊆ U . The set of events generated by

A is the set of events that are obtained by taking unions or intersections of the

sets in A or their complements. The generated set of events will be denoted by

G(A).

Definition 8. Consider a collection A of events. A probability assignment as-

signs probabilities to events in G(A) obeying the axioms of probability.

Definition 9. A convex probabilistic inequality for A is an inequality that must

be obeyed by any probability assignment to A and is convex in the probabilities

of the events in G(A).

One of the simplest convex (in fact linear) probabilistic inequalities is P (A1∩

A2) ≤ P (A1). A more interesting example is P (A)+P (B)+P (C)−P (A∩B)−

P (B ∩ C) − P (C ∩ A) ≤ 1 which follows easily from the inclusion-exclusion

principle.
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Definition 10. We define a probabilistic mathematical program as a mathemat-

ical program that minimizes a convex function of probabilities of events in G(A)

over a set of inequalities relating the probability of the events.

Example 4. We consider a simple (probably the most simple) probabilistic math-

ematical program to illustrate the concept:

(P) min P (A ∩ B)

s.t. P (A) ≥ 0.5

P (B) ≥ 0.6.

Clearly, P (A ∩ B) ≥ 0.1 as is easily seen by the addition law of probabilities:

P (A∪B) = P (A) + P (B)−P (A∩B). Setting P (A) = 0.5 and P (B) = 0.6 in a

manner such that P (A∪B) = 1, we get a valid probabilistic assignment obeying

the constraints of P (B).

The probabilistic mathematical program does not seem to have been used

in practice. We imagine that it has a potential to serve as an important instru-

ment in bounding probabilities as is often done in proof techniques based on

the probabilistic method ([2]). From a more practical standpoint, probabilistic

mathematical programs may be useful when the worst/best case scenario for the

occurrence of certain event/events is desired possibly in the context of decision

making under uncertainity. Unfortunately, probabilistic mathematical programs

are not easy to solve and it will be clear as a by-product of our discussion that

in general the probabilistic mathematical program is NP-Hard.

Interestingly, even though the probabilistic mathematical program does not

require the events to be independent, we will show next that placing such a
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restriction provides many structural results about the unrestricted probabilistic

mathematical program.

Consider an abitrary collection of events A indexed by the set I . An arbi-

trary event in G(A) can be wrriten in disjunctive normal form as a union of

intersections. In other words, any event E ∈ G(A) can be written as:

E =

n
⋃

c=1

⋂

j∈Jc

Sj

where each Jc ⊂ I and Sj is either Aj or its complement. We associate with each

event E, an expression multilinear in terms of the probabilities of the events Ai

such that the expression provides the probability of E under the assumption

that A1, . . . , An are independent. The inclusion-exclusion formula provides such

a description easily. Another way to derive the same formula is by expressing E

as:

E = ¯̄E =

n
⋂

c=1

⋂

j∈Jc

Sj .

In the sequel, each term of the form
∏

i P (Ai) will be referred to as a multilinear

term.

Example 5. Consider an event E = (A1 ∩ A2) ∪ A3. The multilinear formula we

associate with P (E) is obtained by expressing E as:

E = (A1 ∩ A2) ∩ A3.

Therefore, P (E) assuming independence of A1, A2 and A3 is:

P (E) = 1 − (1 − P (A1)P (A2))(1 − P (A3))

= P (A1)P (A2) + P (A3) − P (A1)P (A2)P (A3)
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which also follows easily from the addition law (a special case of inclusion-

exclusion). The multilinear terms are P (A1)P (A2), P (A3) and P (A1)P (A2)P (A3).

Following the idea of translating each of the event probabilities to multilin-

ear expressions, we construct a mathematical program from the probabilistic

mathematical program in the following manner:

Algorithm AssocMathProgram:

1. For each event E used in the probabilistic mathematical program introduce

a variable PE .

2. For each event Ai ∈ A, introduce 0 ≤ PAi
≤ 1.

3. For every event E introduced in Step 1 such that E 6∈ A, introduce a con-

straint equating PE to the associated multilinear expression.

Taking Example 4, we get the following mathematical program after simple

preprocessing:

(PM ) min{PAPB | 0.5 ≤ PA ≤ 1, 0.6 ≤ PB ≤ 1}

Clearly, the optimal solution to (PM ) is 0.3. The result is as expected since we

are restricting to independent events A and B. So, in general the following is

apparent.

Theorem 8. Consider any probabilistic mathematical program P . The associ-

ated mathematical program derived using Algorithm AssocMathProgram provides

an upper bound to P .
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The associated mathematical progam has the form that it includes inequali-

ties relating multilinear functions of the probabilities. In fact, it is easy to show

that every multilinear function can be expressed as a linear combination of prob-

abilities of some events in G(A) under the additional assumption that the events

are independent. This ties in with the fact that multilinear functions form a poly-

hedral basis of the extreme points of a hypercube (see Definition 3, and the pre-

ceding discussion). As a result any mathematical program involving multilinear

functions of variables is associated with a probabilistic mathematical program

where the multilinear functions are replaced by the appropriate probabilities. In

particular, a multilinear program is associated with a linear probabilistic math-

ematical program.

What makes the associated mathematical program interesting is that it can

be easily relaxed to produce a reformulation of the probabilistic mathematical

program. Before, we provide such a reformulation, we argue in Theorem 9 that

the axioms of probability can be expressed in terms of convex hulls of certain

multilinear equations over the unit hypercube.

The following result is hinted to in [9].

Theorem 9. Consider a collection of events A indexed by I and another collec-

tion E ⊆ G(A). A probability assignment is valid for E if and only if the probabil-

ities lie in conv(F ), where F is the set of feasible solutions to 0 ≤ P (Ai) ≤ 1 and

the multilinear inequalities relating each event in E to the multilinear function

associated with it.
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Proof. Let A denote the collection of events over which P is formulated and

let A be indexed by I . Now, consider the collection of events B, consisting of

events of the form
⋂

i∈I Si where each Si is either equal to Ai or Ai. Note

that the events in B are disjoint and cover the probability space in the sense

that
⋃

Bi∈B Bi = U where U is the universal set. Now, consider an event E in

G(A). By expressing each event in the disjunctive normal form, it is easily seen

that E can be expressed as a disjoint union of events in B. Therefore, if the

probabilities of events in B are known, probabilities for other events in G(A)

can be easily computed. Further, there exists a valid probability assignment to

events in E if and only if there exists an assignment of probabilities to events

in B such that for every Bi ∈ B, P (Bi) ≥ 0 and
∑

Bi∈B P (Bi) = 1. This is the

canonical simplex in 2|I| dimensional space. Consider the linear transformation

M : R
2|I|

7→ R
|E| such that each point (P (B1), . . . , P (B2|I|) is transformed to

(

P (E1), . . . , P (E|E|)
)

. We have already shown in Theorem 3 (as a very special

case) that conv(F 2
M ) is precisely the above linear transformation of the canonical

simplex.

Corollary 4. A linear relation between the probabilities of the events holds if and

only if the corresponding multilinear inequality holds over the unit hypercube.

Proof. Follows directly from Theorem 9.

Note that linearity/convexity of the relation is necessary in Corollary 4. For

general nonlinear expressions, the result does not hold. For example, P (A1 ∩

A2) 6= P (A1)P (A2), even though the corresponding multilinear expression holds.
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Corollary 5. Let A be a collection of events and consider a probabilistic math-

ematical program P that relates probabilities of events in a collection EP , where

EP ⊆ G(A). Let F be the feasible region of P . Apply Algorithm AssocMath-

Program to generate an associated mathematical program PM . Let FM denote

the feasible region of PM . Further, let F 1
M be the set of feasible solutions to the

inequalities of PM generated in 1st step of AssocMathProgram and F 2
M be the

set of feasible solutions to the inequalities of 2nd and 3rd step. Then, P can be

refomulated as the relaxation of PM where FM is relaxed to F 1
M ∩ conv(F 2

M ).

Proof. Follows directly from Theorem 9.

We illustrate the ideas in Theorem 9 by returning to the Example 4. Using

the well-known convex envelope of a bilinear term [10,1], Corollary 5 establishes

that the following mathematical program:

min{max(P (A) + P (B) − 1, 0) | P (A) ≥ 0.5, P (B) ≥ 0.6}, (5)

is equivalent to (P ). For this example, it is easily seen that the optimal value

indeed matches.

The relation of probabilistic experiments to polyhedral basis is rather close.

Consider a collection of convex sets C indexed by I . Inject the convex sets in a

higher dimensional space such that the sets are located at the extreme points

of the canonical simplex. More formally, construct the collection S indexed by I

such that Si ∈ S if: Si = {(yi, ei) | yi ∈ Ci, i ∈ I}, and ei is the ith unit vector.

Clearly, by Theorem 2, if we have available to us a polyhedral basis for C over a

superset X and φ is the lifting of C, then conv(S) = conv(φ(C)) = conv(φ(X)).
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Then, constructing the polyhedral basis is in essence equivalent to constructing

an experiment such that given a point x ∈ X , the polyhedral functions assign

probabilities to some arbitrarily chosen point in Ci such that the expected value

is x. In particular, if fi(x) is the polyhedral function associated with Ci and

fj(x) is the polyhedral function associated with Cj , then treating fi and fj as

probabilities fi(x) + fj(x) can be considered as a probability associated with

Ci ∪ Cj . Corollary 3 provides the formal explanation of why independence of

events is important in constructing such probabilistic experiments or polyhedral

basis.

Now, we show that probabilistic rounding schemes have inadvertently though

in rather inventive ways used the essential idea behind Theorem 9. Many note-

worthy advances in the art of probabilistic rounding have interpreted, albeit this

does not seem to have been realized, relaxations of mathematical programs as

probabilistic mathematical programs and have developed experiments for sam-

pling from the event space interpreting the optimal solution as a solution to

probabilistic mathematical program. As pointed above, this often amounts to

defining a polyhedral basis for the feasible region which is expressible as a col-

lection of convex sets.

In the seminal paper on randomized rounding [12], the authors identified

the optimal value of each variable x in the linear programming relaxation with

its probability of being 1. Further, they rounded each variable independently

of the other. This corresponds to using multilinear functions as a polyhedral

basis for the underlying hypercube. In the presence of an inequality of the form
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∑n
i=1 xi ≤ 1, the LP solution is rounded by picking a random number r uniformly

over [0, 1] and assigning xj to 1 if and only if r ∈ [
∑j−1

i=1 xi,
∑j

i=1 xi]. Such an

experiment corresponds to the unique polyhedral basis for the simplex provided

in Example 1.

A remarkable probabilistic rounding scheme was designed in the paper of

Goemans and Willimason [8]. We argue that this experiment in fact defines a

polyhedral basis for the extreme points of the boolean quadric polytope. We

first present a brief overview of the probabilistic rounding scheme developed in

[8]. The authors define a relaxation for the max-cut problem by employing a

matrix X = xxt and relaxing the condition that X is rank-one to its positive-

semidefiniteness following [9]. Then as guaranteed by incomplete Cholesky Fac-

torization, they express X = V V t, thereby associating each xixj with 〈vi, vj〉,

where vi is a unit vector and corresponds to the ith row of V . Choosing another

unit vector r randomly, a variable xi is set to 1 if 〈vi, r〉 ≥ 0 and −1 if 〈vi, r〉 < 0.

To see that the rounding scheme defines a polyhedral basis for the boolean

quadric polytope, define the event Ai as the event that xi is set to 1. Choose

an additional unit-vector vt and assign xi to 1 if sgn(〈vi, r〉) = sgn(〈vt, r〉) and

to −1 if sgn(〈vi, r〉) = − sgn(〈vt, r〉), where sgn(a) is 1 if a ≥ 0 and −1 other-

wise. We need to argue that there exists a superset, SB , of the extreme points

of the boolean quadric polytope such that for any ȳ ∈ SB , a probabilistic ex-

periment can be constructed where the probabilities of Ai is provided by the ith

co-ordinate, ȳi, and the probabilities of Ai ∩ Aj is provided by ȳij which cor-

responds to the co-ordinate yiyj . Note that ȳij does not necessarily equal ȳiȳj
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when ȳ is not an extreme point of the quadric polytope. As shown in Lemma

2.2 of [8]:

P (Ai ∩ Aj) + P (Ai ∩ Aj) =
arccos(〈vi, vj〉)

π
. (6)

It can be easily verfied (and also following from the multilinear equality: x1x2 +

(1 − x1)(1 − x2) = 1 − x1 − x2 + 2x1x2 and Corollary 4) that:

P (Ai ∩ Aj) + P (Ai ∩ Aj) = 1 − P (Ai) − P (Aj) + 2P (Ai ∩ Aj). (7)

Consider a point ȳ ∈ SB . Interpreting the co-ordinates of ȳ as the probabilities

of P (Ai) and P (Ai ∩ Aj), we easily obtain:

xit = cos(ȳiπ)

xij = cos
(

(1 − ȳi − ȳj + 2ȳij)π
)

.

Provided the matrix X = [xij ] is positive semidefinite, the vectors vi can be

found by Incomplete Cholesky Factorization allowing the construction of a prob-

abilistic experiment with the required probabilities since given xij and xit it is

easy to find the probability of P (Ai ∩ Aj) using (7). On closer inspection, the

reader may notice that our argument implicitly employs the linear transfor-

mation between the cut polytope and the boolean quadric polytope originally

provided in [22]. The remaining part is to show that the matrix X defined above

is positive-semidefinite if ȳ is an extreme point of the boolean quadric polytope.

This is easy to verify by setting vi = vt if ȳi = 1 and vi = −vt otherwise. Inter-

estingly, the constructed poolyhedral basis is not explicitly available in closed

form but requires the application of Cholesky Factorization. Indeed, since the
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feasible region of the trignometric formulation in Theorem 2.9 in [8] is now ex-

pressed as a subset of the boolean quadric polytope it should be clear that the

formulation is not just a relaxation but a reformulation of max-cut.

In addition to the connection between probabilistic rounding schemes and

polyhedral basis Theorem 9 points to some interesting relations between re-

laxations of multilinear programs. In fact, we next argue that the relaxation

constructed in Corollary 5 is a natural Lagrangian relaxation of the associated

mathematical program. This in turn implies that most relaxations for multilin-

ear programs are further relaxations the associated probabilistic mathematical

program.

Theorem 10. Consider a mathematical program with multilinear expressions

of variables restricted to lie in the unit hypercube. Substitute new variables for

the multilinear expressions. Form a Lagrangian relaxation by dualizing all con-

straints except those enforcing that the variables lie in the unit hypercube and

the equality constraints between the newly introduced variables and the multi-

linear expressions they represent The Lagrangian relaxation thus formed is a

reformulation of the associated probabilistic mathematical program.

Proof. Since the feasible region of the Lagrangian subproblem is bounded, it

follows from Theorem 1.17 in [15] that the perturbation function is proper and

lower semicontinuous. Therefore, the Lagrangian dual and the relaxation con-

structed in Corollary 5 are duals of each other with no duality gap.
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Returning to Example 4, Theorem 10 states that the following Lagrangean

relaxation is a reformulation of the probabilistic mathematical program:

(L) max
λ1,λ2≥0

min
P (A1),P (A2)∈[0,1]

P (A1)P (A2) − λ1(P (A1) − 0.5) − λ2(P (A2) − 0.6)

The optimum value of a multilinear function over a hypercube is attained at one

of the extreme points [7,13]. It is easy to see that (L) can be rewritten as:

max 0.5λ1 + 0.6λ2 + a

s.t. a ≤ min{1− λ1 − λ2,−λ1,−λ2, 0}

λ1, λ2 ≥ 0.

The optimum value of the above program is indeed 0.1 which is attained at

(λ∗
1, λ

∗
2, a

∗) = (1, 1,−1). Note that λ∗
1 and λ∗

2 are respectively the optimum dual

multipliers of P (A1) ≥ 0.5 and P (A2) ≥ 0.6 in (5).

Lemma 4. Consider a Lagrangian relaxation maxλ minx L(λ, x) and two real

numbers α, β greater than or equal to zero. Assume that there exists an al-

gorithm A that given a λ calculates zA(λ), such that α minx L(λ, x) ≥ zA(λ) ≥

β minx L(λ, x). Then, α maxλ minx L(λ, x) ≥ maxλ zA(λ) ≥ β maxλ minx L(λ, x).

Proof. If λ∗ is the optimal solution to maxλ minx L(λ, x), then maxλ zA(λ) ≥

zA(λ∗) ≥ β minx L(λ∗, x) = β maxλ minx L(λ, x). If λ′ is the optimal solution to

maxλ zA(λ), then maxλ zA(λ) = zA(λ′) ≤ α minx L(λ′, x) ≤ α maxλ minx L(λ, x).

Some related references. [20] [21][11][24][6]
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