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Abstract

We consider a problem that arises in disaster-related strategic planning: investing
in the links of a stochastic network to improve its expected post-disaster performance.
We are given a network whose links are subject to random failures, where the failure
probability of a link is reduced by investing in the link. The operational links define a
network realization, in which a specified pair of origin-destination (O-D) nodes need to
be connected with a shortest path. There is a fixed penalty cost for any network
realization that does not have connectivity between the O-D nodes. Our objective is to
allocate a given budget to the links of the network such that the expected shortest path
between the O-D nodes is minimized. We formulate the problem as a two-stage
stochastic integer program with recourse, and propose a solution procedure by optimizing
the expected shortest path over the connected network realizations, subject to a bound on
the probability of disconnected realizations. In the proposed iterative procedure, given a
feasible investment decision, we characterize the benefit from investing in a particular
link by measuring the improvement in the expected shortest path.

Keywords: Decision-dependent link failure, stochastic integer programming



1. Introduction

Consider the following strategic planning problem of enhancing the survivability
and performability of an infrastructure network in a populated geographical region under
risk factors caused by a disaster, such as an earthquake. In the pre-disaster planning stage,
a planner has to identify the set of links whose vulnerable components need to be
upgraded in order for the network to remain connected between significant origin-
destination (O-D) nodes in the aftermath of a potential disaster. This is critical from the
perspective of emergency response operations. Moreover, the path that enables
connectivity in the survived network, for any O-D pair, should be fast enough for
efficient response. The basic problem facing the planner is how to allocate resources to
upgrade the links considering the randomness in the network state so as to optimize the
post-disaster network performance. For example, in earthquake management, the
vulnerability of a highway transportation network is reduced by retrofitting the bridges.
However, due to significant monetary implications, it is critical to develop cost-effective
methods to select which links to improve. The associated cost-benefit trade-off is a
common issue for the design of most systems that are governed by randomness and risk.

In this paper we focus on the case where the performance criterion is the
connectivity of a single O-D node pair through a shortest path. We refer to this problem
as the single commodity problem. The problem formulation given here can be easily
extended to the more general case where the connectivity of a set of O-D nodes (via
shortest paths) is the criterion. It is also possible to consider other criteria at the same
time, such as maximizing the population that is accessible in the surviving network. One
can also consider several likely disaster scenarios and specify link failure probabilities
under each disaster scenario. We plan to extend the solution procedure proposed here to
these more general problems in subsequent studies.

We model the single commodity problem as a two-stage discrete stochastic
program. In the first stage, we determine whether to invest and upgrade the structures on
each link to reduce vulnerability. There is a budget limitation for the investments, and the
objective is to minimize the expected shortest-path length between the O-D nodes over

all network realizations. In the second stage, the link survival probabilities are determined



by the given investment plan, and a surviving network (induced by the operational links)
is realized based on this decision-dependent probability distribution. In a given network
realization, if the O-D pair is connected, then the value function for the corresponding
second stage problem equals the shortest path length between the O-D nodes; otherwise,
it equals a large penalty cost.

We propose a solution procedure based on optimizing the expected shortest path
over the connected network realizations, subject to a bound on the probability of
disconnected realizations. Our solution procedure is iterative. Given a feasible investment
decision, by means of a path-based approach, we characterize the benefit from investing

in a particular link by measuring the improvement in the expected shortest path.

2. Literature Review

The design and analysis of networks that are subject to random component
failures have been studied in the network reliability literature (Ball, Colbourn, and
Provan, 1995). Most work in this area concentrates on measuring the reliability and
performance of the network, rather than designing the network to reduce vulnerability
and to improve network performance. Since explicit expressions for network reliability
are complex to compute, even in the case of independent link failures, typical design
models use surrogates in place of explicit reliability expressions, such as the number of
node- and/or edge-disjoint paths or maximum number of links in a path, (Colbourn,
1999). In particular, for telecommunication networks, the design of survivable networks
studied in Grotschel et al. (1995a) and Soni et al. (1999) aim to design networks with
built-in redundancy without modeling random failures and performance under
uncertainty. Alevras et al. (1997) require the network to have additional capacity to re-
route demand under single node or edge failures. Grotschel et al. (1995b) provide a
detailed survey of survivable network design addressing these issues.

Problems of recourse in a stochastic network typically arise in various
transportation planning problems. Wollmer [1980] presented a two-stage stochastic linear
program with random supply of commodities to determine the optimal investment that
minimizes the expected total cost in a multi-commodity flow network. In his work, the

initial supply of commodities are increased by investing in them, and the total cost is



defined as the sum of the investment used to increase the resources at the nodes and the
minimum flow cost corresponding to the realizations of the random supply variables.
Wollmer [1991] considered the problem of capacity expansion by investing in the arcs of
a network whose initial capacities are random variables. The increase in arc capacity is a
linear function of the investment. The objective was to maximize the linear combination
of the expected maximum flow and negative of the total investment cost. The problem
was formulated as a two stage linear program under uncertainty with recourse. A
constraint generation based solution algorithm that takes advantage of problem structure
was presented. More general version of the problem in which the increase in capacity due
to investment is also treated as a random variable is discussed. The restriction they
impose is that the capacity increase of an arc is a concave stochastic function of the
investment. Wallace [1987] formulated the problem of investing a given budget in a
network with arcs subject to random failure to increase expected maximum flow as a two
stage stochastic program with network recourse. The investing is for increasing the
capacity of existing arcs or building new arcs. The properties of the recourse problem
were characterized. Upper and lower bounds are provided for the recourse problem using
Jensen’s inequality and the results of Aneja and Nair [1980], Carey and Hendrickson
[1984] as evaluating the exact solution is computationally intractable. Wallace [1987]
developed a piecewise linear upper bound on the recourse function for a minimum cost
network flow problem in which the supply, demand and arc capacities are stochastic.
Computational results illustrated that these bounds are a bit weaker than the standard
Madansky bound but much faster to evaluate.

The feature of the model presented in this work that is different from those
aforementioned is that the probability distribution of the second stage random variables is
affected by the first-stage decision variables. To the best of our knowledge, all existing
studies in the stochastic programming literature with recourse consider randomness to be
exogenous to first-stage decision variables.

In the following sections we formulate our problem, discuss some properties and

propose a solution procedure.



3. Problem Formulation

We are given an undirected network G = (N, E) with node set N and edge set E,
where [i, j] € E denotes an undirected link between nodes i and j. Let O and D be the
origin and destination nodes in G.

Each link of the network will exist in either the operational or the non-operational
state after the occurrence of a disaster event. A non-operational state corresponds to the
failure of the link and reduces the capacity of the link from one to zero. An operational
link is said to survive the disaster event. The probability that link [, j] survives is pj.
However, if the link is upgraded for a positive cost cj;, its probability of survival increases
to g;j. There is a limited budget B allocated for the upgrading activities.

We define deterministic binary decision variables to indicate whether each link is
upgraded. We refer to the vector y = (y;), y C {0, 1} as the “investment vector”, where

yij is defined as follows.

L,if link [7, j]is upgraded
Yij = .
0, otherwise

We represent the post-disaster state of link [i,j] by a random variable &; defined as
follows.

L, if link [i,j]is operationa | after the disaster event
i = {O, if link [i,j]is non - operationa | after the disaster event

The vector of the random variables &;over all links [i, j] in E, denoted by £=(&;),
Ec{o, 1}|E|, defined on the probability space (=, A, P), that induces a subnetwork of G,

which we refer to as the “surviving network™. Let E(&) = {[i, j] € E : & = 1} denote the

surviving edges, and G(&) = (N, E({)) denote the surviving network. Let Zj be a

realization of & and ¢ be a realization of & The support of & denoted by == {&,

~ ~

& 2,...,5 I“:I} is a finite and discrete set.

Let 7; be the unit transportation cost on edge [i, j]. One unit of flow must be
transported in G(&) from the origin O to the destination D with minimum cost. If there
exists no path between the O-D nodes in G(&), then a penalty cost M is incurred. We can

assume that M is sufficiently large, e.g. larger than the sum of #;’s over all [i, j] in E. To



differentiate the direction of flow, we consider two directed links (i, j) and (j, i)
corresponding to each original undirected link [i, j]. Let A({) denote the set of
(uncapacitated) arcs corresponding to E(£). We define flow variables x,-j(fl-j) for each arc
(i, 7) € A(&) and define the flow vector x(&) = (x;(&)),V (i, )) € A($).

The problem of investing in links so as to minimize the expected shortest path
between the O-D nodes can be formulated as a two-stage stochastic program with

recourse as below.

Problem P
F = min f(y) = min EAf(y, §] (D
subject to
Z cyj < B (2)
[i,jl €E
1,if i=0
> xi(&) - D xi(&) =1-Lif i=D Vie N,V ée 5 3)
JeN JeN 0, otherwise
xi(&) <& VI[ijle E,V e = 4)
X&) < & V[i,jle E,VY e = (5)
xi( &), xji (&) 20 V[ijle EVY e E (6)
yi=0orl V[ijle E (7)
Ei=0orl Vi jle E,V e = (8)
l
where,
Mif X(§) =¢
f(y, 9 = ~ o (E 4t (E )
, Min “;]e E tiXii( &) + tiXi(E5) )

and X(&) = { x($) | subject to constraints (3), (4), (5) and (6) } is defined as the set of all
feasible solutions corresponding to the O-D paths in G(<).

The first stage decisions are 0-1 binary decision variables and the second stage variables
are continuous variables in [0, 1]. The function f(y, ) denotes the recourse function due
to a given first stage decision y and a network realization & Its value is equal to the least
transportation cost in the surviving network G(¢), if such a path exists; or a penalty cost
M, if O and D are disconnected in G(&). This helps to ensure complete recourse for the

problem. For a given y;; the conditional probability of &; is given as follows.



P(&= & |y = (&1 Uyppy+ yugy] + (1-E)T (1-yp)(L-py) +yy(1-gi) 1 ) (10)
As the link failures are independent of each other, the conditional probability of ¢ for a
given first stage y vector is simply the product of the individual probabilities for the links

in the network.

P(é=¢ly)= [] P&=&lw)

V0i,jle E

= [T (&1 ypps+ysas] +A-EDL A-yyp) Apy+yi(l-g]1} (11

V0i,jle E
This equation clearly illustrates the nature of dependence of the probability of a network
realization on the first stage decision variables.
The first stage investment decisions are taken in the presence of uncertainty about
future realizations of & The future effects of the investment plan are measured by the
value function f{y), which computes the expected value of taking decision y. We

formulate the first stage problem as follows.

P min f(y)=E[f(y, 1= ) P(£= &[T, &)

ez

subject to
Z Cij Yij < B
li,jleE
yi = Oorl, VIijle E

The first stage problem is a pure binary program with a knapsack-type constraint and a
nonlinear objective function. In the second stage, for a given realization &, the function

f(y, &) can be evaluated easily by finding a shortest path from O to D in G(& ).

If we define the set of feasible investments as

Y={y| > cyyy <B,ye {0,1}"}, (12)

li,jl eE
then the problem P can be conveniently expressed as:

F=min { Ef(. O] |y € Y. £e (0.1} 1) (13)

Technically, it is possible to solve the first stage problem by enumerating all feasible y
vectors, since y takes values from a finite discrete set (of size at most 2fEl ), and by

evaluating the value function for each feasible y. However, this requires exponential



computational time because of the exponential number of the feasible investments and

the network realizations |=Z|.

4. Preliminaries

In this section we justify the need for defining a penalty cost for network
realizations in which the O-D pair is disconnected (infeasible realization) by showing that
ignoring infeasibility in modeling leads to an optimistic appraisal of the true expected
performance. We also show that optimizing the investment decision by incorporating the
penalty cost for infeasible network realizations will yield an investment plan that reduces
the probability of infeasible realizations. We use the following notation. Let S be the set
of network realizations that have O-D connectivity (so that X({) #&), and S = Z'/S, be
the set of network realizations that do not have O-D connectivity. Let fi(y, & = f(y, &
when £e S and let fi(y) = Ee[fi(y, O]
Proposition 1 The optimal solution to the problem which does not consider infeasible
network realizations in evaluating the expectation (the problem that minimizes fi(y))
strictly overestimates the actual expected performance (measured by f(.)).

Proof

Let y* = argmin { E¢[f(y, O] |y € ¥, &€ {0,1} ) (14)
and y,* = argmin { E¢[f;(y, O] |y € ¥, £€ {0,1} 1} (15)
Now f(y1*) = Ec[f(1*, & | £€ S P(S | yi*) + Ec[f(ni*, | € STPES | yi%) (16)

=E¢[f(1*, | &€ SIPS | yi*) + M P(S" | yi*) (17)

Since we assume M is sufficiently large, that is larger than the sum of #;’s over all [i, j] in

E, the following holds: M > max { fi(y, & } > E¢[fi(y, ] for any ye Y. Hence,

f1*) > E¢[f(ni*, §) | £€ SIP(S | y1*) + Ee[f(n*, &) | S€ SIP(S | yi*) (18)
>E¢[f(n*, 9| € S] =fi(yi™) (20)

The inequality f(y;*) > f;(y,*) proves the proposition.

Proposition 2 The following always holds. P(S* | y*) = P(S | y*).
Proof



We know that f(y*) < f(y,*) from (14).
=>Eqf(*, § | £e SIP(S|y*) + ELf(*, | € STPES | y*)
<Edf(n*, 9| &e SIPS | yi*) + ELf0n*, O | &€ STP(S | yi™)
=>EJf(*, O | S€ SIP(S [ y*) + M P(S | y*)
SEdf(i*, | S€ SIP(S | y1*) + M P(S" | y1*)
=>M.P(S"| y*) = M P(S* | y1*)
SEdf(yi*, & | £€ SIP(S | yi*) - EAf(y*, &) | £€ SIP(S|y*)
=>M [P(S" | y*) - P(S" | 1%) ]
SEdf(yi*, &) | € SIPS [»1*) - ELIO*, O [ g€ SIP(S | y*) = fin™) - [i(p)
From (15) f(y,*) < f1(y*), and M is finite and positive. Hence, P(S | y*) < P(S“ | yi¥*).

5. Solution by Restricting the Probability of Infeasibility

Propositions 1 and 2 justify minimizing f(y) in problem P (using the penalty cost
M as defined in (9)). However, for solution purposes we focus on the problem that
optimizes f;(y), subject to a constraint that bounds the probability of infeasible network
realizations. In this section we describe this problem and obtain bounds for the expected
performance of the optimal investment decision for problem P.

Lemma 1 If P(§* | y) <a, forsome 0<a<1andy € Y, then
1) f(y) £ fi(y) + Mo,
i )= H0) (-0,

Proof

f(y) = E4f(y, & | € SIP(S|y) + EAf(y, & | £ STPS | y) VyeY (24)
=Edf(y, & | £€ SIP(S|y) + MP(S |y) Vyevy (25)
SEAf(y, | e SIP(S |y) + Ma VyeY (26)
<EAf(Q, & | e S] + Ma VyeY (27)
=fi(y) + Ma VyeY (28)

Since P(S | y) = 1-P(S° | y) > 1-a, from (25), we get
f(y) 2 fi(y) (1-a) + M P(S° | y) VyeY (29)
> £,(y) (1-a) Vyer (30)

Hence proved.



Let us define Y(a) = {y| Y. cyyj SB,P(S|y)<a, ye {0,1}}.

[i,j] €E

Lemma 2 For any a € [0, 1], {(*) < min { fi(y) } + Ma.

Y€ Y(u)
Proof
From lemma 1i), f(y) <fi(y) + Ma, ¥V y € Y(a). Since Y(a) C Y, f(*) < f1(y) + Ma, V y
€ Y(a). .. For a given a € [0, 1], the best value for the upper bound on the optimal

objective function value, f(y*) for P, is given by the lowest value of the rhs.

=> f(y*) = min f) < min { fi(y) } + Ma V a € [0, 1] (31)

yYEY()

Hence proved.

Lemma 3 If a; < a; then Y(a;) C Y(a).

The proof follows easily, hence it is omitted.

We now propose an approach to obtain bounds on the optimal expected
performance. This can be developed from lemma 2 as follows. Observe from equation
(31) that by searching over the a’s we can obtain a lower value for the upper bound. We

define

g@)= min { fi(y) } +Ma V a€ [0, ITand let y(a) = min { fi(¥) }.) (32)

ye Y(a) yeY(a)

From lemma 2 we have

f(y*) < g(a) Vae [0,1] (33)
= f(y*) < VE‘!(‘I') ) g(a) (34)

Let a* = argmin g(a), therefore
Y oae (0,1)

f(y*) < g(a*) = min { fi(y) } + Ma* (35)

yeY(a)
g(a*) would therefore be the best known upper bound on the optimal expected
performance for problem P. The best set of investment decisions known would be y(a*).
The search over the a’s can be made efficient using the following proposition.
Proposition 3 Let 0 and 1 denote the vector of 0’s and 1’s with dimension |E| then the

following condition is true, P(S° |y =1) <P(S°|y) <P(S°|y=0)V ye Y.

10



Thus o* € (Ctmin, Gmax) Where amin = P(S° |y = 1) and omax = P(S° |y = 0).
The problem that needs to be solved can be expressed as:

P1 min {min { i()) } + Ma } (36)

VA€ (O pinGhy ) YE V(@)
The first step towards solving this problem would be to solve the inner minimization
problem, which is the expected performance over feasible network realizations with a
constraint on the probability of infeasibility due to any investment decision in addition to

the budget limitation. For sake of understanding, the problem formulation is shown

below.
SP(a)
F(a) = min fi(y) = min E¢[fi0, 9l = min E4f0", 9| <€ 8] @37
subject to
z ciyij < B (38)
fijleE
PSS |y)<a (39)
yij=0orl VI[i,jle E (40)
&i=0orl V(i e A,VEe & (4])
here fi(y, &= Min Y. (x()+1:%:(&)) (42)

Vx(&)e X(Lf)ll- Tl E

The above 2™ stage recourse problem is a linear program for a feasible first stage
investment vector and a realization of the vector of random variablesé, as the constraint
set is totally unimodular and the objective function is linear in x(&). The following

theorem concerns the property of the objective function value of SP(a).

Theorem 1 F(a) is a piecewise constant function of a.

Proof Let Y = { yV, y®, y®_.. P } be the set of feasible investment decisions such that,
P |y ) = P(s | y?) > ... =2 P(5° | yP). Obviously y'V = 0. Represent P (S| y) as a,.
=> Y(an) = { y™, y™, .y} (43)
Let y,* be the optimal solution to SP(a,,) with optimal objective function value of F(a,,).
Consider a € (@, ans) then Y(a) = Y(a,,) and therefore y,* be the optimal solution to

SP(a) with an objective function value of F(a) (from lemma 3 and (43)).

11



.. F(a,,) is optimal objective function value in (o, a+;). In fact we can do better than

this, in fact y,* is optimal ¥ a € (a, a,) where r = argmin | y"” = y,*. (again from

m

lemma 3 and (43)). Note that r > m+1.

Corollary 1 F(a) + Ma is a piecewise linear function of a.
The proof follows from Theorem 1 and is omitted.

This is a useful result as it is sufficient to search for a’s that causes discontinuity.

6. A Path-based Approach to Solve SP(a)

We now proceed to discuss the solution procedure for SP(a) using a path based approach.
We require the following extended notation. Let 7 represents a path from O to D G(N, E)
and 7 be the k™ shortest path from O to D in G and T(7) be the distance corresponding

to path 7. Also let K be the set of paths from O to D in G. We define an indicator

variable I(k, &, ) as,

_{1, if the shortest path in the realized network Eis the KN shortest path in G(N, E)

0, otherwise

from (37), F(@) = min Ee[fi(y, &)

min > P(E=E ) i, &

min 3, PE=E W Min 3 (@& + i) } (44)

li.jleE

min 3 P(f=5|y){§ Ik, &)T(m) }=i > P(£=E ) Ik, &)T(m)

k=1 Ze§

|K - ~
min S (3 1k Z)P(E=E ) )T(m)

YEY =l s
= min i P(7z= | y)T(m) = i P(m| y)T(7) (45)
Yer s k=1
=> Ee[fi(y, 9] = i P(7{ y)T(7) (46)
k=1

12



Equation (45) simply states that the objective function value, the expected value
of the shortest distance over the set of feasible network realizations is equal to summation
over all O-D paths in G, the product of the likelihood of the k™ shortest path in G being
the shortest path in G’ and the distance of the k™ shortest path in G. This makes intuitive
sense. In effect this transformation saves us from solving the inner optimization problem
of identifying the shortest path in the realized network. For practical considerations the
evaluation of |K| probabilities and distance corresponding to the routes in equation (46)
may not be required as longer routes may not be used in the operational context vis-a-vis
emergency response.

Even though in a strict sense gradient for the expected value with respect to the
investment decisions does not exist we consider a gradient like direction based on finite-
difference approximation taken from the discrete points of the feasible region. We now
treat the y variables to be continuous in order to evaluate the effect of investing in a link

on the objective function approximately.

IELfi(y,8)] & JP(m, y)
= - = T(]z‘)—————i‘—— (47
9y, 2 Yoy, :
=> b;(y) = 3E_[§(_y_§] - T(m)m (48)
Y, o 9y,

i
We use b;(y) to quantify the as the marginal effect of investment in link [7, j] on the
objective function. From (48) this requires evaluation of the derivative of a likelihood

function with respect to an investment variable. This is done as below.

P(m|y) =3 1. &) PE= Ely) (49)
dP(m, y) ~ 8P(~f=g|)’)
—k = Ik, &)—————=
T 2 e B (50)
Note: L-_—Ely)z
8yij
M [T PCEmn=Cun | Yom) } N
V [m,nle I ap(a:éjlyl)
it | [ AR T 1)
ay-- vlm,ln]—e[Eum,nMi,j] 9Yi

1y

13



Now IP(E;=E; |yy)

9,
= % (&1 Wypi+ yigs ] + (1-EDI Ly (L-py) + yy(1-qy) 1 }
= & [-py+ a5 ] + (1-EDL-(Lpy) + (1-gy) 1 = & [Apy ] + (1-&) [ -Apy] (52)
%:y‘:'” = Elﬁ(f,ffmn|ym> { & [Api]+(1-&)[ -Apy] }
=p(¢=Ely) m (& [8py1+ (1-€)[ -Apy 1} (53)
(here Apii=pij- qij)

The results below can be obtained from substitution in equation (53).

ap%f'y)l y-0gy0=PE= E T (54)

a—P(—%f'—”ly,,.:o,;,:l: P(E=E) % (55)

a—‘?—(%| Y120 = PE= 5ly)£L (56)
Yoo ‘fu

Some insights can be obtained from above and make intuitive sense. Comparing (54) and

(56) the following can be concluded. The marginal effect of an additional investment in a

failed link reduces the probability of the network realization, Ftoa greater extent when

the level of investment is higher (i.e. IAPg < lAp’7 ). From (55) and (57), the marginal
-p; _

i

effect of an additional investment in a survived link increases the probability of the

network realization, ¢ to a greater when the level of investment is lower (i.e. —éL >
i

AD..
—=L). The result from (53) can be incorporated into (50).

i

14



dP(my)

o =Y Ik &) P(E=Ely)

1 ~ ~
————{ & [Apy ]+ (1-¢)[ -Apy ] } (58)

Tex P(¢&= fulyu : !

Now use (58) in (48) and we get,

by(y) = ﬁf () Y, 1k, &) (&= &) (& 1apy1+(1-&)[ -Api] } (59)

P(&=& )
LS It > &.)J [Ap;] + (1- ‘t:n -Api]
= P(E= & ly) T(m) Ik, &) (60)
zesé g |y ¢ ’ P(&i= E.leylj
& [Apil+ (1-&)[-Aps]
= b= PE=EMY T Ik &) 61)
j(y Tez 5 |y i ¢ P(éu %lelj
> by(y) = Eﬂi T 1k, )B4+ (-G Ap”']|fe S] 62)

P(&;= &u' Yi)

A closer look at (62) shows that b;(y) is the change in expected shortest distance between
O and D taken over the set of feasible realizations, S due to an unit investment in link [i,
7]. The total change in the expected shortest distance is simply the sum of the marginal

effects across all links in the network.

- dE4f(, = D) M Vi (63)
li,jle E Y
=> Eelfi(y, 1= Y. b0y (64)
li,jle E

SP(a) can be re-expressed as follows.

F(a)= minfi() = Y by(»)yi (65)
y lijle E
subject to
Z CijYij < B (66)
li,jleE
P(S‘|y) < a 67)
yi=0orl VI[i,jle E (68)
&i=0orl V(i )e A,V Ee £ (69)

7. Conclusions and Future Work
We are still working on developing a solution procedure to SP(a). Potential solution

approach would be based on a sample average approximation method. For a given y,

15



bii(y) can be approximated statistically using a Monte Carlo simulation, moreover this is
perhaps the only possible practical approach especially when the number of outcomes of
the random vector § is large. This approximate problem can be considered to be a
knapsack problem with the addition of the probabilistic constraint. The important issue to
address would be to find the optimal solution y*(a) and also b;(y*(a)) simultaneously

using an iterative scheme. The convergence of such a method also merits investigation.
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