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ABSTRACT

We consider a network whose links are subject to independent, random failures due to a
disruptive event. The survival probability of a link is increased, if it is strengthened by
investment. A given budget is to be allocated among the links with the objective of optimizing the
post-event performance of the network. Specifically, we seek to minimize the expected shortest
path length between a specified origin node and destination node in the network. This criterion is
defined through the use of a fixed penalty cost for those network realizations in the expectation,
that do not have a path connecting the origin node to the destination node. This problem type
arises in the pre-disaster planning phase, where a decision-maker seeks to reduce the vulnerability
of a transportation network to disasters, by upgrading its weakest elements. We model the
problem as a two-stage stochastic program in which the underlying probability distribution of the
random variables is dependent on the first stage decision variables. Using a path-based approach
we construct its equivalent deterministic program and derive structural results for the objective
function. We then propose an approximate solution procedure based on a first order
approximation to the objective function. The procedure is tested by numerical experiments on a
small-size network. The test results show that it yields very good performance on the instances
solved.

Keywords: network vulnerability, decision dependent probability distribution, two-stage stochastic

program, multilinear function
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1 INTRODUCTION

This paper investigates the problem of allocating a given budget among the links
of a network that are subject to independent, random failures caused by a disruptive
event. The purpose of investing in a link is to increase its survival probability. The
performance criterion that we seek to optimize is the expected shortest distance (or least
travel cost) from a specified origin node to a specified destination node in the network.
This criterion is defined through the use of a fixed penalty cost for those network
realizations in the expectation, that do not have a path connecting the origin node to the
destination node.

The motivation for this problem stems from a planning context for managing natural
disasters, but the modeling framework to be presented, is also applicable for devising
protection plans against terrorist attacks. Transportation networks are vulnerable to
natural disasters such as earthquakes, hurricanes, floods etc. The functionality of the
network following the disaster event is a critical determinant of the effectiveness of
emergency response. To illustrate this point we cite Nicholson and Du [1997] — “Clearly,
restoration of virtually all other lifeline systems is very dependent upon people and equipment being able ro
move to the sites where damage has occurred, and damage to the transportation system inhibits repairs to
the other lifeline systems.” The functionality of the network has implications for the
operations of business, as well. Companies that adopt the just in time paradigm to reduce
the inventory carrying costs rely on the availability of an efficient and reliable
transportation system. Any disruption in the scheduling of goods or services due to a
disaster event causes losses to the business parties involved. Until the restoration of the
transportation network to its completely functional state, the losses or the additional costs
incurred during the disrupted state would depend on the additional travel time required
for transportation.

Herein arises the importance of pre-disaster planning, which seeks to mitigate the
effect of a disaster on the network as a whole. The most common approach adopted to
reduce the vulnerability of a transportation network is to strengthen its weakest elements,
by increasing its survival probability. In the current context, it refers to retrofitting of
bridges. However, the retrofitting process is costly and time-consuming, and hence it is

impractical to retrofit all the bridges in the network. Therefore the budget available serves



as a constraint in the determination of the set of links that are to be invested for
retrofitting. Also the investment decisions need to be made under uncertainty with the
view of optimizing a suitable, post-event network performance criterion.

The specific problem setting we address in this paper concerns a network with a
single origin-destination (O-D) pair, where the performance criterion relates to the path
length/travel cost from O to D. Without loss of generality we shall use the term path
length to refer to the cost incurred by travel. The sequence of events for this problem can
be described as follows. Investment decisions for the links must be made a priori without
the knowledge of the actual network that would survive a disruptive event, from hereon
referred as network realization. When the event occurs, links fail independent of each
other with specified probabilities depending on whether they were invested in or not.
Once a link fails, it becomes impassable and is in a non-operational state. Now, complete
information on the state of the links is available to the decision-maker, subsequently the
path with the shortest path length in the network realization is chosen for travel from the
origin node (O) to the destination node (D), if such a path exists. If the network
realization is infeasible i.e. does not have connectivity from O to D, then the shortest path
length is equal to a fixed penalty cost pre-determined by the decision-maker. The
performance criterion of interest is the expected value of the shortest path length. Our
objective is to determine the investment decision for the links of the network that
minimizes this value.

This problem is formulated as a two-stage stochastic program, in which the first stage
corresponds to making investment decisions for links under a budget constraint, and the
second stage corresponds to selecting the path with the shortest length for travel from O
to D, in the network realization.

The remainder of the paper is structured as follows. In Subsection 1.1, we motivate
the performance criterion using an example. Subsection 1.2, discusses related previous
research. In Section 2, the mathematical model is developed. Subsection 2.1 introduces
the preliminary notation and necessary assumptions, used in the paper. In Subsection 2.2,
we present the two-stage stochastic program. In Section 3, we derive its equivalent
deterministic program. In Section 4, we present structural results for the objective

function. In Subsection 4.1, we derive the multilinear functional form of F(y). In



Subsection 4.2, we characterize the coefficients of this function. In Subsection 4.3, we
prove the monotone decreasing property of F(y). In Section 5, we develop a solution
approach to the problem. In Subsection 5.1, we propose and justify the first order
approximation to the objective function. In Subsection 5.2, the first order approximation
idea is extended to an iterative scheme, stochastic subgradient method. In Section 6, we
present results from a computational study on a small-size network and discuss some of

insights, based on sensitivity analysis of problem parameters. Finally, in Section 7 we

have our concluding comments.

1.1 The Expected Shortest Path Length Objective: A Motivating Example

Consider a two link network as shown in Figure 1. The length of link e is denoted by
t., for e = 1, 2. The probability of survival of link e due to a disruptive event, with and
without strengthening the link is denoted by p. and q. respectively, for e = 1, 2. The
investment required for strengthening link e is denoted by c., for e = I, 2. Upon the
occurrence of the event, the network that survives will be either connected between O
and D, or not. Without any investment, the O-D reliability, that is the probability that O
and D is connected, is 0.88 and the expected value of the shortest path length evaluated

over feasible network realizations is 3.27273.

(p1, q1) = (0.6, 0.7)

link 1

[]:2
C1:]

(P2, q2) = (0.7, 0.8)

link 2

t,=6
cr=1
Figure 1 Two link network
Now, a decision-maker seeks to strengthen a transportation network under a
budget restriction.
Suppose the given budget is one unit. Therefore, only one of the links can be
strengthened. Moreover, let us assume the decision-maker is interested just in

maximizing the O-D reliability. Then, the optimal choice is to invest in link 2 as seen



from Table 1 and this increases the reliability to 0.92, an increase of 4.55%. However, the
implementation of this decision would worsen the expected value of the shortest path
length from O to D over feasible network realizations to a value of 3.392 (see Table 1).
This is an increase of 3.62%. Intuitively this means, in the event that the surviving
network remains connected, there is a greater likelihood that the path with the higher

travel time would have to be used to travel from O to D in comparison with the case

without investment.

9% decrease in the
Link . . Expected value of the expected value of the
. O0-D % increase in
invested N N shortest path length over shortest path length
. reliability reliability o LS ST
n feasible realizations over feasible
realizations
1 091 3.4001 2.92308 10.6837
2 0.92 4.5455 3.3913 -3.623
Table 1

Also from Table 1, it can be seen that investing in link | not only increases the O-
D reliability to 0.91, an increase of 3.41%, but also decreases the expected value of the
shortest distance over feasible realizations to 2.923, a decrease of 10.68%. Observe that
the increase in reliability due to either investment choice is comparable and, also
investing in link 1 alone improves the expected shortest path length over feasible
realizations. In other words, investing in link 1 guarantees a higher probability of lower
travel time under the conditioning event, that the network realization is connected. Since
path length is an important determinant of effectiveness of earthquake response, it is
perhaps judicious choice is to invest in link 1.

This example clearly brings out the issue of considering a tradeoff between path
length and connectivity in making the investment decision. More precisely, it suggests
two objectives that are of interest to the decision-maker, namely, the expected value of
the shortest path length over feasible network realizations and the O-D reliability. This is
because, connectivity is necessary, but is not sufficient to ensure effective response, as
the latter criterion does not consider the quality of service vis-a-vis travel time, in the
event of a disaster. This paper seeks to develop a model towards this end. The single

objective of interest is defined to be the expected shortest path length. We accomplish



this by combining the two objectives through the use of a penalty cost as the weight
factor for unreliability. In this example, for 7 < penalty cost <46, it is optimal to invest in

link 1, for penalty cost > 46, it is optimal to invest in link 2.

1.2 Overview of Past work

In this section we overview the past work, which consists of two parts. The first
part reviews work that has focused on the problem of investing in the links of a stochastic
network. The second part discusses selected models of network interdiction that serve as
a comparison for our modeling approach.

The literature on the problem of investing in a stochastic network to optimize a
performance criterion is sparse. Wollmer [1980] first studied the problem of transporting
commodities from its source nodes to its demand nodes in which flow of the commodities
in the arcs consumes a resource (viz arc capacity) whose initial supply is random. The
objective was to identify an investment policy, which increases the resource of the arcs in
the network so as to minimize the expected total cost. The total cost was defined as the
sum of the investment used to increase the supply of resources and the minimum cost for
the generalized multicommodity network flow problem after the realization of the
random variables. A two-stage stochastic program under uncertainty was formulated in
which the first-stage variables represented the amount to be invested in each resource and
the second stage variables corresponded to arc flows of the different commodities. A
procedure based on a cutting plane technique that exploits network structure was also
proposed.

Wallace [1987] studied the problem of investing in the arcs of a network to
maximize expected maximum flow from a source node to a sink node. The initial
capacity of each arc of the given network is a random variable. Additional arc capacity
can be achieved by investing in it; the increase in capacity being a linear function of the
investment. The problem was formulated as a two-stage linear program under
uncertainty. A solution procedure and bounds for the second stage program were
proposed. Later, Wollmer [1991] studied a variation of the problem of investing in
maximum flow networks under uncertainty. The objective was to maximize a linear

combination of the expected maximum flow between two specified nodes and the



negative of the investment cost. Here as well, the problem was formulated as a two-stage
linear program under uncertainty and its solution procedure uses a cutting plane
technique that exploits the formulation structure.

The work described here concern with investing in a stochastic network to
improve network performance by increasing capacity. Like in many stochastic
programming applications, the models developed, concern with problems in which
randomness is not affected by decisions [Sen, 2001]. In this study we present a class of
stochastic programs in which the probability distribution of the random variables is
dependent on the decisions, thereby influencing the expected performance. The only
other paper, to our knowledge, which has explicitly stated it as a feature in their model, is
by Karaesmen and van Ryzin [2003]. Their problem is in the area of revenue
management, where they seek to determine overbooking levels with the option of using
substitutes to satisfy the demand of a certain reservation class.

From a modeling perspective, we now overview studies in a related area, namely,
network interdiction, which has seen a surge in research. Cormican et al. [1998]
investigate a stochastic version of the problem where an interdictor using limited budget
attempts to destroy the arcs of a capacitated network, through which a network user
subsequently maximizes flow from a source node to a sink node. The randomness arises
due to the uncertainty in the interdiction success for the links, and are assumed to be
independent, binary-valued random variables. The objective was to determine the set of
arcs to interdict so as to minimize the expected maximum flow between the two nodes.
Other model variants were formulated, including one with random arc capacities. Israeli
and Wood [2002] address the problem of interdicting a network under a limited budget,
so as to maximize the shortest path length between two specified nodes, for a network
user. The problem setting is deterministic and a link interdiction either makes it
impassable or increases its travel cost. Recently, Hemmecke et al. [2003], Held et al.
[2003] address the problem of interdicting the flow of information or goods between two
specified nodes in a network whose configuration is random but the realization
probability of each configuration is known. The objective of interest is to maximize the
probability that the minimum path length between the two nodes exceeds a certain value

by using the available budget to interdict the arcs. A link interdiction increases its travel



cost and there is no uncertainty in the interdiction success. Potential applications of the
models discussed, include interdicting the supply network of enemy troops, drug
trafficking and disrupting the functioning of an adversary’s economy. Salmeron et al.
[2003] sought to identify the critical components of an electric grid for hardening, against
a terrorist attack in a deterministic setting. They developed a mathematical program to
determine the optimal attack plan that terrorists would employ under resource constraints
to maximize the power loss to the system being served. They propose that the method
would help in understanding the strategy of the adversaries while developing a protection
plan.

Our study contrasts to the earlier models in network interdiction in that these
models address the budget allocation problem from the perspective of the interdictor
whereas ours addresses it from the network user’s perspective. The study that is close to
the problem we address here is the one by Salmeron et al., although it does not consider
explicitly the budget constraint for the network user. Furthermore, it does not consider
uncertainty in the disruption that could be caused to the grid. The other key difference is

that in our case, the associated probability distribution is a function of the investment

decisions.

2 MATHEMATICAL MODEL
This section develops the mathematical model for the problem addressed in this
paper. Subsection 2.1 introduces the notation, and assumptions used in the model

development. Subsection 2.2 presents the two-stage stochastic program as our

mathematical model.

2.1 Notation and Assumptions

We are given a directed network G = (N, E) with node set N and arc set E, where
the index i denotes a node and the index e denotes an arc in G. Let O represent the origin
node and D the destination node in G. From here on, we will use the terms arc and link
interchangeably without any distinction.

Assumption 1 Each link in G appears in at least in one of the paths from O to D.



If there is any link which does not appear in any path from O to D then it can be dropped
from G as it is not useful for consideration for investment. Thus the network G consists
only of links that can be potentially invested in.

Associated with each arc is a non-negative transportation cost t,. Let p, (0 < p, <
1) denote a non-negative survival probability of link e. This probability can be increased
to g. by expending a positive cost ¢,. We are given a limited budget B for investment in
the links to increase their survival probabilities. Since after the occurrence of a disaster
each link would be either operational or non-operational, we use a binary-valued random
variable & to denote the state of the link e. That is, & = 1, if link e is operational after the
disaster event; and & = 0, otherwise. The vector of the random variables ¢ for all links e
in E is denoted by &= (&, ), representing the state of the network, and takes values in its
support, = < {0, 1 VE according to the decision-dependent probability distribution,
P(-1y). A unit flow must be sent from O to D in the network realization. If there does not
exist a path connecting O to D in the network realization, a fixed penalty cost M is
incurred. We let the random variable 7 represent the shortest path in the network
realization that is used to travel from O to D, let the set K = { 7, m, ..., Zix } be the set
of paths from O to D in G with T(7) being the path length (travel cost) corresponding to
path m such that O < T, =T(m) < T(m) < ... < T(7mik1) = T
Assumption 2 M > T,,,..
Formally M is the opportunity cost of an infeasible network realization. It can be viewed
as using an external path (outside G) which has a higher travel cost than T, to travel
from O to D. This also means that any path in G is preferred over this external path or
equivalently any path is preferred over the choice no path available. By adopting a finite
value for penalty cost, complete recourse is achieved. A similar type of assumption is a
commonly used in the context of inventory management to handle backorders and lost
sales.

We now state the decision variables used. We denote the investment vector by y =
(ye), where the binary variable y, = 1, if there is an investment in link e; and y, = 0,
otherwise. We denote the flow vector by x(&) = (x.(&)), where x.(&) = 1, if there is a unit

flow through link e in the network realization ¢&; and x.(&) = 0, otherwise.



The problem of investing in links to minimize the expected shortest path length
from O to D is formulated as a two-stage stochastic program. The first-stage decisions are
the investment decisions for the links which need to be decided here and now without the
knowledge of the random vectoré. The second-stage decisions are the flow variables that

need to be determined to minimize the path length from O to D, under the outcome of the

network realization & We denote the outcome by E = (gte ).

2.2 Two-stage Stochastic Program

The two-stage stochastic program P is given by the expressions from (1) to (6).
Problem P

Z = min F(y) = min E;.y[f(f)] (hH
subject to
Z ¢y < B (2)
¢ceEE

ve=0or 1 VeeE (3)

1,ifi=0
D oxdd - D xld =4-Lifi=D VieN (4)

cnet cunet | 0, otherwise
x(& <& VeeE (5)
x(&=0orl VeecFE (6)
where,

{ M,if X(&) = ¢

f($) =ﬁ min Ztyx((f),otherwise (7

Lvﬂ;)e X =

and X(&) = { x(&) | subject to constraints (4), (5) and (6) }, is the set of paths from O to D

in the network realization & E, ['] is the expectation of the argument with respect to the

random variable & for a given investment vector y. For notational compactness we denote
it as F(y). The function f(&) is the second-stage objective function. Note, it does not
depend on y but its probability distribution is dependent on y. Its value is equal to the

least transportation cost in the surviving network, if such a path exists; or the penalty cost

M, if O and D are disconnected.
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Constraint (2) is the budget restriction on the total investment. Constraint set (3) is
the integrality restrictions on the first-stage decision variables. Constraint set (4) is the
usual flow conservation constraint with source node O and destination node D. Constraint
set (5) acts as capacity constraints for flow. It precludes flow in those links that are non-
operational in & Constraint set (6) is the integrality restrictions on the second-stage
decision variables.

In general, two-stage stochastic programs in the literature treat the second-stage

objective function as dependent on the first-stage decisions and the outcome of the
random variable. These programs employ a notation similar toE[] and f(y, &) for the

expectation function and the second stage objective function respectively. It is here that
our study departs from the existing research direction. It is the distribution of the random
variable & which is affected by the first stage decisions and hence the expectation of f(-) .
P belongs to a class of stochastic programs in which the probability measure depends on
the first-stage decisions.

The expectation can be expanded as below,

Fly) =E[f()] = Y P(&= 1y (&) (8)

ez
Where P(& = l y) is the probability that & assumes the particular realization & , for a
given investment vector y. Due to the independence of link states the probability of a

network state can be expressed in a product form as shown below,

PE=Cly =[] PE=E1y)

Vee E

= H { ge [ (l'ye)pe"' yeqe] + (l'g( )[ (l’ye) (l’pe) + yé(l’qc)] } (9)

Vee £
in which y, takes the value 0 or 1. The above equation clearly illustrates the nature of
dependence of the probability of a network realization on the first-stage decision

variables. If we denote the set of feasible investments as

Y={y1> cy. <B.ye {0,1}"")

¢eE

then P can be expressed as:

Z=min{ FQ)lye Y} (10)

11



The level of difficulty of P can be gauged by the fact that even the computation of F(y) is
#P Complete [Ball et al., 1995] i.e. the counting analogue of NP Complete. Its exact
computation would be nearly impossible for large size network problems. The difficulty
is compounded by the discrete nature of the feasible solutions. Employing the trivial
brute force technique that evaluates F(y) for all feasible solutions in order to select the
optimal solution would be computationally prohibitive even for moderate size problems.
Any alternative solution method for P that attempts to solve both the stages
simultaneously would encounter the difficulty of solving an optimization problem within
the expectation. This is because F(y) in its current form does not possess a closed-form

expression in terms of the components of y. In the next section we overcome this.

3 THE EQUIVALENT DETERMINISTIC PROGRAM

We use a path-based approach to derive a closed-form expression for F(y) in
terms of the components of y which subsequently yields the equivalent deterministic
program of P. Specifically we treat the shortest path in a network realization to be in the

sample space of paths instead of being a solution to a network flow problem on the

network realization.
Firstly, we introduce the additional notation. Let S be the set of network
realizations that have O-D connectivity viz. X(&) #J V e S, and let S° = Z/S be the set

of network realizations that do not have O-D connectivity. Let f(&) = f(&) when € §

and let F(y) = E [fi()]. Let I{k,¢ } be the indicator function which assumes the value 1

if the shortest path in the network realization E (e 5) is the k™ shortest path in G and O
otherwise. Conditioning F(y) over feasible and infeasible network realizations from

equation (8), we have

Foy)= Y P(E= Sy f(E)+ D P(E=E1y) ()

Ees Ee s¢

z{z P(i=C1y)

f(E)P(S1y) + MP(Sly) (usingP(S1y)=P(e Sly)) (1)
fes  P(Sly)

12



Now, Fi(y) = E;w[f(fﬂ feS] =

reS
1
= = | X,
FSY) ;S P(E=¢In(, min gEx(é»
1K1 -
= 5ely )Z P({= fly)(Z I{k.& }T(m))

Interchanging the order of summation over ¢ and k and observing that I{k,gt }=0Vke

{1,2,...,1Kl} and € € S, we get

1 a > z = >
Fi(y) = S O HkCIPE=Ely+ Y, Tk EP(E= S 1y))T(m)
PSly) ‘& = fesC
& P(”k')’)
——=T(m)
2 sy

Here P(7m. | y) = P(r=m | y) = denotes the probability that the shortest path in a network
realization is 7 given that the investment decision is y.

The above equation merely states that the expected value of the shortest path distance
from O to D over feasible realizations is simply equal to the summation over the set of
paths from O to D, of the product of, the likelihood of a path having the minimum length
given that the network realization is feasible, and the corresponding path length.

Substituting the above expression in (11) we get
1K1
F(y)= Y. P(mly)T(m)+MP(S 1y) (12)
k=1
This alternate expression is dependent only on the first stage decision variables y
and it obviates the need to solve the second stage network flow problem. Both P(7l y)
and P(S° | y) can be expressed in closed form in terms of the components of y.

Substituting (12) in (10), problem P becomes,

IK|

Z=min{ Y, P yT(m)+MPES 1y lye Y} (13)
y k=1

which is the equivalent deterministic program [see Wets, 1974] of the original two-stage
program, as F(y) has been expressed as an explicit analytical function of y. It is an integer

nonlinear program as its objective function F(y) has product form expressions in terms of

13



the components of y. As it will be seen in the next section, the advantage of expression
(12) for F(y) is that, it enables direct evaluation of the marginal improvement in the

objective function due to investment in link(s).

4 STRUCTURAL RESULTS

This section investigates the structure of the objective function, F(y). In
Subsection 4.1 we derive the multilinear functional form of F(y). In Subsection 4.2, we
characterize the coefficients of this function by providing expressions for them. In
Subsection 4.3 we prove the monotone decreasing property of F(y). In Subsection 4.4 we

present sufficient conditions for establishing the sign of the second order coefficients.

4.1 Multilinear Functional Form of F(y)

The structure of F(y) in equation (12) is complicated by the summation, of
product form expressions, P(& = gl y), as given in equation (9). Evaluating the function
involves collecting the coefficients of the product of every possible combination of
variables. We develop an alternate way to expand expression (12) that has intuition

behind it and is more useful from the viewpoint of developing a solution procedure for P.

Recalling expression (12) and substituting for P(7l y) by Z I{k,g }P(E= EI)7), and for

Ees

P(S“1y) by Z P(£= &1y). We note that F(y) is a discrete function defined only at the

e st
vertices of the unit hypercube, H={ y e R 10 <y, <1, e = 1.IEl } in the space, R and
therefore it is not differentiable. Given this discontinuous nature of the function, we
temporarily relax the integrality restrictions on the y components or equivalently we
permit partial investment in the links. Later, we show why this does not affect our
derivation. This allows F(y) to be continuously differentiable in the domain H and

enables us to consider its Taylor expansion in the neighborhood of some yp € Y C H.

14



oF (v) azF(}’)
F(y) = F(yo) + o, (- M)+—— (%, Yoe ) Yoy = Ney)
)= Foo ZE a9, e; Zg 8y8>e e
allle(y) Y ) N ' ) v
I El! e@ZE &EZE %EE ayelayez a .aye,,;‘ |"'= ,"o( Yo = diey X Yey = ey )+ ( Yo y“'nm)

(14)
To provide an understanding of the above expression let y, = 0 (the vector of zeroes),
thus no investment in any of the links. The partial derivative of F(y) with respect to a set
of link investment decisions represents the marginal improvement in the objective
function just due to the effect of joint investment in those links alone. The first order
derivative with respect to a link decision variable represents the improvement in the
objective function due to a unit investment in that link alone, and a second order partial
derivative with respect to investment decisions for two distinct links, represents the
improvement in the objective function beyond their first-order effects due to
simultaneously investment in both these links and so on for the rest of the partial
derivatives.

It is sufficient to limit the number of terms in the Taylor series expansion, we use
terms till the order of the derivative equals the maximum number of links that can be
invested with the given budget. Denote the maximum number of links as R, it can be
figured by investing in the ascending order of the link investment costs until the budget

restriction is satisfied. Now, using yy = 0 as a feasible solution, we can express F(y) as

equal to
aF(,V) a F(y)
F0) + oo e Yoy b
c; aye 2! zltZE L,czﬂ ay a)L \ =0 b
9" F(y)
) "IEZE t»EZE e[;f a\/ aV a I‘:u 1 7€ ® ( )

If all the derivatives obtained are unbiased, then the above expression for F(y) is precise,
despite the assumption that y be continuous. Again, to be shown later, it turns out that the

expansion is in fact precise when yo = 0. For notational convenience we denote
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IF(y) 3'F(y)
L ,
3y, 1n e EW 3y, 9y, "=

as g,.(y) and so on. Problem P can be reexpressed

as,
R
1
Z=min{ FO)+) (— o0 Y Y, )lyeY 16
min { F(0) +2 ,; Zg ©0) ) lyeY) (16)
The above expression illustrates the multilinear functional form of F(y). It is linear in
each of the components of y indivdiually but is not linear in more than one component

simultaneously. Its coefficients measure the effect on the objective function due to

interactions between the investment decisions.

4.2 Charecterization of the Coefficients
Firstly we make a couple of observations. There are no self-interactions i.e. ge.(y)
=0V ee E Vye Yand the interactions are symmetric i.e. & .(¥)= & () Ve, e € E

with e # ¢>, V y € Y. For convenience let Ap, as ¢, — p..

K]

A 2P YT )

Proposition 1 g.(y) = - - M8P(S y) Ve e E, Vye Hwhere,
ady, dy,
ﬁ
o ZP(m ! y)Timy) } 1K E (AP + (1-E)[-Ap.]
k=1 - E T(m) I(k, e LT ¢ =3 SJP(S |
a) ™ /Z (m) Itk &) 2—p T §e SIP(S 1Y)
py SPEIN g & [ARIH (LSIEARY,) 2 ) prsy )

dy, P(E,1y)

Proof: Differentiating expression (12) w.r.t. y. we have

OF(y) & 9P(r,y) IP(Sly)
()= L5 I gy 4 g OEE0 1Y) Vee EVyeH (17
&) 9y, ; 9y, () + dy, ‘< e (7

From the theorem of total probability we know that
PSS 1y)+P(Sly) =1 VyeH
Differentiating both sides w.r.t. y, we have
dP(Sly) . IP(S1y)

9y, 9y,

Vee EEVye H

Substituting the above in equation (17) we have
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1K1
ge(y)zz MT(M)-MM VCEE,V})GH (18)
k=1 9y, 8ye

This proves the main statement of the proposition. Now, we separately expand the two

terms in the above expression, for the first term we have

K P(7.v K] ~ OP(E=Ely
§ AP 1oy 8 T 3 1, F)2PE=ED (19)
=1 aye k=1 ieS aye
_zy OIPE=E10)
Now, OPe=E1 _ gigy T 7
dy, dy,
. OP(E=E 1y
= [IP&=E1y) %
VieEll#¢ yt

= []P&=¢1y %{[fc(l‘}’c)pe'i'yeqc]*'(1-5,)[(1'}’L_)(1-H)+y¢(1-qc)]}

VieEll#e ¢

= [IPc=E1y) (& 1ap 1+ 1-E) -Ap.] )
VieEll#¢
= EAT+ (1-E)-An]
= P({= Cly)2e———
= S e eIy

Substituting the expression obtained from (20) in equation (19) the first term becomes

IK|

= Z T(fz‘k)z I(k, E)P(Rf: Ely) ¢.[Ar.] + (1:6")[—&)"] which can be simplified as
k=1 Tes P(¢, = Ci,l){,)

(20)

Sy Pe=e DS g g, &) SlOIH (e JEAR

_ IP(S 1y)
~ Tpsly) & P(E,=E1y) Y

K|

k=1 P( éeIX*)

This completes the proof of part (a). An identical derivation is valid for part (b).[]

The following lemma proves that the continuous assumption does not affect the
evaluation of the first order derivative under a certain condition. Define u, as the unit
vector having the 1 at component e and O at the remaining components.

Lemmal Ve e Eand Vy € Ywithy, =0 gJy) = F(y +u,) - F(y).

Proof: Following proposition 1, g,(y) =

17



IK|

B Tm 1. 6) S5 075 1 e SIS 1y
P( &1y Y,

P(fl I«feS]P(SIy)}

IK|

Now, {£e€ S} = Z I(k, &), which takes the value 1 or 0 depending whether or not O is
k=1
connected to D. Unconditioning the second term in the previous expression, we have

IKI|
1
g(MW=Ap{ E (D T nnwaé—Lihg SIP(S1y)
k=1 P( 5 |

IK|

& -U-¢)
PSly
p<§| ;<§>P(§ o )]( v )

K1
= 87 By [, 0w Ik, 5)%%—) | e SIP(STy)

5 ( f ) K|
ME, [(2——=2= > 1(k.©) ]
P(S.1y) kZ‘
Since the events & =0 or | is mutually exclusive, we have

K|

I
E,[Y T(m) k&) ———
{ sy[k:l (m) I( f)P(ft,:ll_v‘,

K|

I =11} -
WZ<§>P(€,_” 1&=1])

e S, E=11P(Sy)

K|

1
AP, { Ey Y. T(m)lk.&)
k=1

P(&,=01y)

K| 1

SMEY k&) ——————
) [kZT ( ﬁ)P(é‘e:OI,ve)

1$e S, &=01P(Sy)

|§()=O]}

K| 1K1

(E Y T k&) IEe S, &=11PS1y) - ME,Y 1kE)I&E=1])-

1K1 K|

{a.ylz T(m) Ik, &)1 &€ S, &=01P(S1y) - ME,[ Z k&) 1&=01)

K|

= Ape{ Eﬁly[z T(ﬂ;() I(kaf) l fe S’ 5g = 1] P(S ly) - Mrel(G*e) } -

k=1

18



IK|

AP L E 1Y, T(m) Ik, $)1Ee S, &=01P(S1y) - Mrel(G-e) }
k=1

Here G*e represents the network in which link e is made perfectly reliable in G. G-e
represents the network in which link e is made perfectly unreliable in G.
= AP, {Fi(yl &=1DP(S1y) - Mrel(G¥e) } - AP, { Fi(y | & =0)P(S1y) - Mrel(G-e) }
=AM {Fyl&=1-Fyl&=0)) 21
={(Pe +AP)F(y 1 & =1+ (1- (p. +AP,)) F(y 1 & = 0)}

-{pe E(y1 & =D+ (1-p) F(yl & =0))
=F(y+u,)-F(y) Vye Ywithy, =01
The term F(y 1 & = 1) - F(y | & = 0) in expression (21) represents the importance of link e
to the objective function F(y). Observe that this importance as well as g.(y) is
independent of the link survival probability without and with investment, p., or ¢.
respectively, and the investment decision variable y,. It is a function of only the
remaining components of y. This is because of the multilinear functional form of F(y).
Proposition 2V ye H g, ,(v)

IK]

¢, -(U-8) ¢, -(-E,)
=Ap, Ap. {E [ ) T(m)I(k ¢ )= = 1 EeSIP(Sy)
1 _{ -1y ; k 5 P(éll)‘)’)) P(éll)()z) 5 y

gt‘ B (l-gf' ) gm - (1_61'1) s
M, o) st Ut e gy ps :
%JP@J%) PEIy) CeSIPSly) }ife #e

=0 zfe, =€

dg.(Y)
0,

e,

Proof: Now g, ,(y) =

- s & -(1-£,) 0P($=E1Y)
= A T I(k, &) 24 '
&{Z; (m)gé( é)]%él%) .

> & -(1-£,) OP(E=E1y)
-M Ik, ¢ L !
kz ZS ( C)P(él'w dy,, }

Ve,e e Ewithey2e;andVye H



K| 5 e 1-E [
=ap > Tm) Y 1k &) S -(-6) & (AP 1 +(1-6. )[R,
k=1 eS

] =
P(&= Cly
PE, 1Y) P& 1Y) (&=<¢hy)

IK| - _ ) i )
—MZ Z Ik, &) £ -(-E) & [Ap,1+(1-E.) AR,

] =
P(&c= ¢y
o P&,y ) PE 1Y) (=<}

& -(1-L) & -(-¢,)
= eA (2 E“| T Ik, = ! = = | S PS|
P, AP, { ,y[; (7m) I( 5)1’(5«,'};) TEER Ee SIP(S1y)

&, U6 & - (1)
ML TP L1 e SIP(STy
: [P(é.lxl) P(é:vzl)ﬁz) Ee S]P(S1y) )

When ¢ = ¢e» gt»,e,(.\’) =0as g,(yisindependentof y, . '
Lemma2 Ve, e; € Ewithe, #e;and Vy e Ywith y, = y,=0 g . (»=F(y+u, +u,)
-F(y+u,)-F(y +u, )+ F(y).
Proof: From Proposition 2 g, ,(v) can be further simplified along similar lines as in the
previous lemma to yield g, (v)as
= Ap, Ap. { Fi(y 16, = 1.6, = DP(S1y) - Mrel(G¥e *e) }
- AP AP { Fi(y16,=0,8, = ) P(S1y) - Mrel(G-e *ey) )
- AP, AP { Fi(y18,= 1,6, =0)P(S1y) - Mrel(G*ej-ez) }
+AP, Ap. { Fi(y1&,=0.5, =0)P(S1y) - Mrel(G-ei-e2) )
= AP, AP { F(y 16, = 1,6, =) -Fy1E,=0,5,= 1)
-Fy1,=1,§,=0)+F(y1§,=0,5, =0) ) (22)
Adding and subtracting appropriate terms the above expression becomes
=F(y +u, +u,)-FQy+u,) - F(y +u, ) + F(y) V e, e; € Ewithe; #e;and V
y€ Ywith y, = y,=0[]
The term F(y 1S, = l,éfezz )-F(ylg, = 0a§e1= ) -Fylg, = Léﬁ 0)+F(y 1S, = vaq:

0) in expression (22) measures the joint importance of links e; and e> in F(y). Also

observe that g, (y)is independent of y, andy,,, it is a function of only the remaining



components of y. Again, this is because of the multilinear functional form of F(y). For
proving the similar lemma for higher order derivatives we require an intermediate result.

Lemma3 VyeHg, ()=, Ap, Zl?ww%(\'é é ‘fe—é)

vw et

ifemli €m2 Veml: €2 € { en em}

if Fews, emz € { €1, -+, en} such that e, = e,

where 2 <m < Rande;, -+, e, € E.

Proof: The proof is by induction. From equation (22) the expression is valid for m = 2.

Now hypothesize that the expression is valid for m (> 2). Now,

8. (V)
ay

Oy

8e e, (V)=

CEaetE _F _F
g, LA AR L )
v:;]. .7;.,”1:,{111;"' a){

20

Now we apply the steps of Lemma 1 from beginning until step (21) to the network G

modified according to the conditioning of the states,

/ml -) Iél é,,f é‘: > " "é’,,,zéi,,’g"m-lz
Fyl&=E &=E . E=E & =0))

Substituting the above in the expression derived for g, ., . (¥) we have

8o, epen V)=
(1+'%+ +§) - - - ~ - -
N AD MDA, Z( 1) (Ryl&=¢, &=¢.,...6=6 & =D -Rylé=¢, £=E N )
V(yl% t»“'e(“l)
(my]) - (§ +:,‘j2+
:ApglApe:-‘-ApAP“, Z(l F(\Ig‘ =£ E=E .. E=E & =€)

The proof when the other condition is satisfied is trivial and is therefore omitted.
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We note from the previous result that only the cross-partial derivative terms can be non-
zero. So from hereon when we use ej, e, -+, e, it suffices that they are distinct links.

m-(il +- +§m) - . .
The term Z(-l) Fyl&E =&, é:é )y measures the joint importance of the links

e, et
es, e, -+, e, in F(y). Like before g, . (y) isindependent of y, , ---, y, and is dependent
only on {y, -, ye\{ y.,» ==, %, } ¥y € H. The following corollary is obvious.
Corollary 1 g, . (y) is linear in A, ---Ap, where | <m < R Ve e -, en € Ewith

eml# €m2 Vé’,”/, €n2 € { €, € -, em} and Vy € H
Lemmad Ve, ¢ -, en € Ewithe, +e,n Ve, eo€fe, ey - eand VyeY

with y, = y, =y, =08, .= Z:(—I)”'““’l“*‘:+ o F(y+v) where I <m < R.

vev,
Proof: The proof is by induction and is omitted. The approach is to add appropriate terms
to the result of Lemma 3. In fact for the cases m = 1 and m = 2 the expression is valid
from Lemma | and Lemma 2 respectively. | |
We now have the following theorem.

Lemma5 Vye H Ve, --,en€ E g, .(v)=0where m=>R.

Proof: The proof is by induction and is omitted. In fact for the cases m = I and m = 2 the
expression is valid from Lemma | and Lemma 2 respectively. ||
We now have the following theorem.
R
Theorem 1 The multilinear function, F(0)+Z(]—' Z Z 8 of0) Vo X)
m=1 1. qeE g€ E
interpolates through (y, F(y))V'y € Y in the space R™R.
Proof: The proof is by letting yo = 0 and applying Lemma 4 and Lemma 5. g,/(0)

quantifies the effect on the objective function due to investment in link e alone, g, ,(0)

quantifies the interaction effect on the objective function due to simultaneous investment
in links e, and e, and so on. Thus the derivatives are precise. The theorem now follows. [
Thus Theorem 1 establishes the equivalence between Problem P and the

optimization problem given in (16) and this forms the basis of our proposed solution

procedure to be presented in Section 5.
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4.3 Monotone Decreasing Property of F(y)

Before we describe the variation of F(y) with y, we have the following proposition
on the sign of the first order derivative coefficients. But first we introduce the necessary
notation. Let = ,denote the set of network realizations of the network (N, E\{e}) =
G\{e}, 1.e. the network G in which link e is made non-operational. Let @ . and @ .

respectively denote the random variable for the network realization, and a particular

network realization, of the network G\{e}.

Proposition 3 V'y e Hwithy, =0 g.(y) <0 Ve € E.

Proof : From equation (21) we know that g.(y)
=Ap{Fy1&=1)-F(y1&=0)} ec EVye H

Simplifying the above becomes

=Ap{ D> P(E=Cly, E=DIE) - Y P(E=Cly, E=0)((E) )

EezIg= EeZIE=0
With slight abuse of notation we let @ .\U{e} be the network realization @ .to which
link e is added and made operational, we have

=AM D) Plw.=d. . &=11y, &=DI(d.Ufe))

W, €=,

- Po.=0.6=01y,&=01)d.))

Applying the assumption on independence of link states we have

=Ap, Y Plw.=@ Ay {f(@.Ofe)-f(d.)) (23)

@,e% .

Note that f(@ .): = . — R" is a monotone decreasing set function, that is f( @ . U{e}) <
flw.)Vaw.eZ .and V e € E or equivalently an addition of a link to @ . will never
worsen the value of shortest distance from O to D. But this fact would prove only the
non-positivity of g.(y), to prove that the inequality is strict we partition of = . into two
sets. The first set consists of network realizations in which, @ .is infeasible but
w..U{e} is feasible and the second set is the complement of the first. Due to

Assumption 1 there exists at least one @..belonging to the first set and due to
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Assumption 2 f(@_, U{e}) - f(&_.) < 0 for this realization. Since P(®w_.= @..1y) >0V
@ .€ = ., the right hand side of (23) is < 0. T

The following theorem describes the variation of F(y) with y.

Theorem 2 The function F(y) is strictly decreasing with y.

Proof : Let y; and y, be two investment decision vectors such that y; < y». The basic idea
of the proof is to apply Proposition 3 sequentially by treating one investment component
at a time instead of considering the vector y, — yy, in order to evaluate the effect of the
additional investment. Applying Lemma 1 to the first component position that has unity,
calling it as e, in y> — y; and using Proposition 3 we have F(y, +u, ) < F(y;). Now apply
this procedure component wise until the additional investment y, — y; has been made and
the statement follows. |

Due to the monotone decreasing property of F(y), additional investment in the network
always improves the performance criterion, which is consistent with intuition. If there 1s
no budget restriction, then the optimal solution is to invest in all the links. We point out
that this property may not be valid if M < T,,.x and hence there is a possibility where it is

not optimal to utilize the entire budget.

4.4 Additional Results for the Second Order Coefficients
Here we seek to understand the interaction between investment decisions in two
links, through the sign of the second order derivatives. Specifically, we establish

conditions, which when satisfied would give us the sign of the derivative. Lemma 6 is
useful in this regard, it provides us an alternate expression for g,.(y). But first we
introduce the necessary notation. Let =", . denote the set of network realizations of the
network (N, E\{ey, e2}) = G\{ey, €3}, i.e. the network G in which the links e, and e, are
made non-operational. Let @ ., and @.,.,, respectively denote the random variable for

the network realization, and a particular network realization, of the network G\{e|, e,}.

Lemma 6 V e, e2c ¢ E Vy € H with y,= 0 and Y,= 0 8, (Yis

AP, AP Y P@a=@0)Y) Mo@e.), where Af,(0,.)= i@, U (e e)) -

(aely:e )

f0 . Ulei))-fld . Ule)) +fld.,.,).
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Proof : The proof is to apply to equation (22), steps similar to that in the proof of

Proposition 3 once w.r.t. ¢; and then w.r.t. e;. [

Like before, in order to evaluate the sign of the second order derivatives we partition
Z_,.,in a way that is useful in concluding the sign of Af, (@, ..). This corresponds to
different possible ways of classifying the values that can be taken by f(@..),
f(@..HAe), (@, Je)and f(@..Ule,e}). The functions (@, . Ufe}),
f(@ .. Ue,}) and f(@ .. Ufe,e}) respectively, help to measure the effect of adding to
the network @ ., .., link ey, link e,, and links e, and e, simultaneously. So it is possible
that each of them independent of each other may or may not improve (@ .). Hence we
need to consider 8 (23) subsets. We further classity @ ., ., whether or not it is a feasible
network realization we have 16 subsets. So we let E o=
E L DUE . (2) - UE . (16), where the sixteen subsets are mutually exclusive. The
following proposition specifies a sufficient condition for g, . (y) to be greater than zero.
Proposition 4 [f there does not exist any path in G that contains both ¢; and e; then V'y
€ Hwith y, =0and y,=0g,,(y)>0.

Proof: We use Table 2 in proving the proposition. The first column of the table indicates
the set to which @ . belongs. The rest of the column headings are self-explanatory. Sets

I and 9 correspond to the case when either adding e, or e, or both e, and e, does not

improve f(@..). Sets 2 and 10 correspond to the case when adding e, alone improves
f(@..). Sets 3 and 11 correspond to the case when adding e, alone improves f(@...).
Sets 4 and 12 correspond to the case when adding either e, or e, improves f(@., .)but the

simultaneous addition of e, and e, does not improve it any further. Sets 5 and 13
correspond to the case when only the simultaneous addition of e; and e, improves

f(w..). Sets 6 and 14 correspond to the case when the addition of e, and the
simultaneous addition of e, and e, improves f(® ,, ¢). Sets 7 and 15 correspond to the

case when the addition of e; and the simultaneous addition of e; and e, improves

f(@..). Sets 8 and 16 correspond to the case when the addition of e; or e, improves
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f(@...)and so also does the simultaneous addition of e, and e, but its effect being

different from the earlier 2 cases.

ST @) | 1@t | H@ole) | (@ coleal) | A@.0)
1 >0 T Ti(=Tn) Ti;(=Tn) T (=Tn) 0
2 =20 Ty Ty (< Ty) Ty (=Tw) Tou(=Tx) 0
3 =0 Ty Ty, (=Ty) Ty (< Tyy) Ta(=Ts) 0
4 >0 Ty Ty, (<Ty) T3 (<Ty) Tyy=min{Ty,, T3} >0
5 0 Ts Ts; (=Ts) Ts;(=Tsy) Tsy (< Ts)) <0
6 0 T Tor (< To1) To3 (=Tor) Toy (<Te2) <0
7 0 T T (=Ty) T53 (< Toy) 77, (<Ty3) <0
8 0 Ty, Tx (< Tgy) Ty (< Tgy) Ty < {Tsa, Tia}

9 >0 M M M M 0

10 >0 M T M Tios (=T02) 0
11 >0 M M T3 Ty (=Ths) 0
12 >0 M T\ Ty Tiog=min{T 5, T3} >0
3 0 M M M Tiu <0
14 0 M T4 M T4 (<T\42) <0
15 0 M M Tis3 Tis4 (<T53) <0
16 0 M Te2 T Tioa < {Tie2, Tie3}

Table 2

The entries in columns 3, 4, 5 and 6 are possible values for the shortest path length from

OtoDin @ ¢ ¢, - Since there is no path that contains e and e», the effect of simultaneous

addition of e, and e; to @, ., cannot be better than the best of effects due to addition of,

e) or e,. This explains the zero entry for sets, 5 to 8 and 13 to 16 under column 2. The

greater than zero entry for sets 10, 11 and 12 under column 2 is due to Assumption 1 and

the same is valid for set 12 under column 7 due to Assumption 2.

the proof of the proposition is complete. [

Applying Lemma 6

8.y >0V ye Hwith y,=0 and ),,= 0 means that the interaction between

simultaneous investment in the links e; and e,, is not complementary for any investment
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decision in the remaining links. The following proposition specifies a sufficient condition

for g, .(y) to be lesser than zero.

Proposition 5 If e; and e are consecutive links in a path from O to D in G then Vy € H

with ., =0and ¥, =0 g, (y)<0.

Proof: The proof is by employing the same tabular approach as in Proposition 4, as
reported in Table 3. We only justify the entries in column 2 for the sets 4, 12 and 13, and
for those in column 7 for sets 8 and 16. The remaining entries are straightforward. The
probability that set 13 is strictly greater than zero is due to Assumption 1. The
justification is similar for the entries in column 2 for the sets 4 and 12, and so too in

column 7 for sets 8 and 16. Hence we are required to justify only for the sets, 4 and 8

separately.
Set | Probability | f(@..) | f(@..Uie) | (@, . SAe}) f(@ .. UAe,e)) | Af, (@)
No. of the set
| >0 T T (=T Ty (=Tyy) T(=Th) 0
2 >0 15 Ty (< Tyy) T3 (=Ty) Toy(=Ty) 0
3 >0 Ty T (=Ty) T35 (< Ty) T34(=Ts3) 0
4 0 Ty Typ(<Ty) Ty (<Ty) Tyy=min{Ty,, Ty} >0
5 =0 Ts, Tsy (=Ts)) Ts3 (=Ts)) Tsy (< Tsy) <0
6 >0 Te Te> (< Tg1) Tz (= Tgy) Toy (<Ty) <0
7 >0 17 T7: (= T7) T7; (< Tq) 17y (<T73) <0
8 >0 Ty Ts> (< Tyy) Ty (< Tyy) Tgy < {Tso, Ty3) <0
9 >0 M M M M 0
10 > M Ti0> M Tios (= T2) 0
11 >0 M M T3 T4 (=Ths) 0
12 0 M T2 T2 Ty29=min{T) 2, T123} >0
13 >0 M M M T34 <0
14 >0 M T4 M T\44 (<T142) <0
15 >0 M M Tis3 Tysq (<Ts3) <0
16 >0 M Ty62 T\e3 Ti6s <{T162 Tr63} <0
Table 3

(1) Justification that P(Z" ,.(4)) =0
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Assume on the contrary that =", .(4) # ¢. So there exists a @., e, € Z_4(4). Let ng be
the node which e; enters and e, leaves (see Figure 2). Let T(O, n;) and T(O, n3) be the

shortest distance in @, ., from O to, n; and n3 respectively. Let T(n, D) and T(ng, D) be

the shortest distance in @.,,.,, to D, n, and n4 respectively. We then have the following
expressions.

Ty <T(O, n3) + ley+ le,+ T(na, D)

Ty =T(O, my) + le,+ le, + T(ny, D)

Ty =T(O, n3) + ley+ Ly + T(na, D)

Assume w.l.o.g. that min { Ty, Ty3} = Tyr so that Tyy = T(O, ny) + lo,+ I.,+ T(ny, D).
Using the fact that Ty3 < Ty we have L.+ T(n,, D) < I, + T(ny, D) we find that there is a
path in @ .. U{e;,e:} from O to D with distance T(O, ny) + L+ L, + T(ny, D) < Tyy. This

is a contradiction.

Figure 2

(i) Justification thatAf, (@ ,.,)<SO0V @ ., € = . .(8)

Using the same notation as introduced in the previous part we have the following
expressions.

Ty <T(O, n3) + ley+ le,+ T(na, D)

Ty =T(O, ny) + le,+ le,+ T(ny, D)

Ti3 =T(O, n3) + leo+ Lo, + T(ny, D)

Tas = T(O, ny) + le,+ le,+ T(ny, D)

We now have T4y — Tyr — Tz + T4 < 0.
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Applying Lemma 6 the proof of the proposition is complete. [

8.y <0V ye H with ),= 0 and Y,= 0 means that the interaction between

simultaneous investment in the links e; and e, is complementary for any investment

decision in the remaining links. The sign of the coefficient g, , (y) for links e; and e; that

do not satisfy the condition in Proposition 4 nor that in Proposition 5 depend on the
network structure and the parameters of its links. Establishing the sign of higher order (>
3) coefficients is complicated as the number of partitions required to analyze it would be
exponential in the order being analyzed. Also the number of effects that needs to be

considered is also combinatorial in nature, hence we do not consider any higher order

degree.

5 APPROXIMATE SOLUTION PROCEDURE

In this section we discuss an approximate solution procedure to P. In Subsection
5.1 we discuss the approach and basis for the procedure, in which we minimize a first
order approximation of the multilinear function for F(y). It also includes Theorem 3
which is the principal reult of this paper. Subsequently we illustrate how this is useful in
deriving a lower bound as well. In Subsection 5.2, we employ this approach in an

iterative scheme akin to methods using stochastic subgradients.

5.1 First Order Approximation for F(y)

Problem P can be shown to be NP complete by transforming a |EI-SAT problem
to an equivalent problem given by (16). Given the complex nature of the problem, the
key idea in our solution procedure to P is to approximate F(y) using the first order terms

of the multilinear function given by expression (15) and solve the resulting problem.

FO) =F (y1y0) =Fyo) + Y, &30 ( % - %) (24)

ee £
By disregarding the second and other higher order terms we do not capture the effect of
interactions, arising due to simultaneous investment in more than one link. The first order
approximation makes the decision variables separable, thereby easing the complexity of

P. The resulting objective function is linear in the components of y. Now let yo = 0 and
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denote F(”(y I yo = 0) by F“)(y). Also let y = argmin F“)(y) = argmin Z g.(0) y,. Thus

vyey VYEY cE

y is easily obtainable by solving a 0-1 knapsack problem. Now we have the following
property of y .

Proposition 6 y is a strict local optima of F(y).

Proof : yis an extreme point of the unit hypercube H. On the contrary assume that this
solution is not a local optima of P, then there is a feasible extreme point solution, y*
neighboring ¥, such that F(y") < F( ¥ ). The Hamming distance between y and any of its
neighboring solutions is 1 viz. Iy" - v 1 = 1. Since F(y) is monotone decreasing with y, we
can conclude that y* >y . Since , g(0) <0 V ¢ € E following Proposition 3, it then leads
us to the conclusion that y* is the optimal solution to the first order approximation
problem as FYoY < F”(#). This is a contradiction and the assumption that y" is a
feasible solution is incorrect. [

As a consequence of this proposition any traditional local search procedures starting with
y cannot be applied. In next section we show how this approximation idea can be

extended to an iterative scheme to improve upon the solution, if possible.

5.2 Extension Using Stochastic Subgradients

Here we describe an iterative solution method to solve P by extending the first
order approximation idea to the concept of stochastic subgradient. The assumption made
is that the multilinear function can be extrapolated beyond H, even though it could be
physically inappropriate. A stochastic subgradient of a function (stochastic and
nondifferentiable) at a point provides a first order approximation to the function in a
neighborhood of that point. The stochastic quasigradient (SQG) method is not applicable
here as it requires that the feasible solution set be convex and compact, so as to solve the
projection problem [Ermoliev, 1988]. The solution set Y, is compact but not convex. A
continuous relaxation of the variables is also not useful as the solutions are not in the
space of general integer variables. Using a rounding procedure to obtain a solution in the
state space of binary variables from a fractional solution during the iterations may not

even be feasible to the problem. We develop a solution by building upon the first order

30



approximation for F(y), developed in Section 5.1. Our solution strategy is to use the first
order derivative information in a search procedure. This method is quite similar to the
stochastic linearization method which replaces a nonlinear stochastic objective function
with a linear one.

The basic algorithm is outlined below.
Step 1. Set j = 1, y = yy, a feasible solution and set V = {@D}.
Step 2. Obtain g(y/).
Step 3. Solve for y*' = argmin F"(y 1Y)

VyeY
Step4.Ify ¢ Vthenset V=VuU {y/} and, set j = j + 1, goto step 2.

Step 5. Output y = argmin F(y)

VyeV
The final solution obtained from the algorithm is to a large extent dependent on

the initial solution y,. Again as before, it suffices to solve argmin Z gc(yJ) Y, to solve
VYyeY

cek
for y*', which is a knapsack problem. It is important to note that the final solution of this
algorithm may bear no relation to even a local solution of the original objective function,
F(y).

It is likely, that the exact evaluation of g(yk) in step 2 and F(y) in step 5 is
computationally impractical due to the possibility of a large number of network
realizations. So an alternative approach is to estimate these values by their sample mean.
Now, let &' V ne {1,2, .., N}, be independent realizations of the random vector, & and
sampled from the probability distribution associated with investment decision y i.e. with
probability P(& = &' | y). If N is reasonably large, we then have from the law of large

numbers

— 1 & ENAPT+ (1-EDARY 1T
" =g, Ve  —k8 I n T o 3 (3 ¢ I n
g2.(y) = g») {N(S)?:‘ (ET(7myen,) A }{—N _5_] ("}

I L EMART+ (1-ED-ART 1L
-M{— ) I(5")=——= < — I(&" d
{N,,Z:,@) P Ty }{NZ(§>}an

n=|

N
F(y) = F(y)= %Zf (£"). Here I(£") is an indicator function that assumes the

n=1

value 1, if X(&") # &, 0 otherwise and k(") = arg { I(k, &) = 1}.

ke K
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The iterates y, obtained could be fluctuating and could change abruptly from

iteration to iteration as we do not use any smoothing scheme for the stochastic

subgradient.

6 COMPUTATIONAL STUDY AND INSIGHTS

In this section, we report our computational study and discuss the insights
obtained. The goal of this study is two-fold 1) to evaluate the performance of the
proposed solution procedure using a numerical example 2) gain insights based on
sensitivity analysis with respect to problem parameters. The stochastic subgradient
method is used because as mentioned before, the solution from this method is at least as
good as the solution obtained from merely solving a single step of the first order
approximation. Our study is based on a five link network as depicted in Figure 3.
Instances were generated by varying the different problem parameters, such as link
lengths, the link survival probabilities with and without investment, the value of the
penalty cost, M. The parameters were chosen so as to reflect representative cases. The
results of the study are reported in Tables 4a, 4b, 5a and 5b. The performance of the
solution procedure is compared with the optimal solution obtained using brute force
technique.

In the Tables the problem instance is described by the B, the p., ¢., ¢, t. values V
e=1,2,3,4,5 and the M value. The number of the problem instance is indicated by the
first column. The following columns are also shown. y,,,, the optimal investment solution
vector, F(y,,) is the optimal objective function value which is the minimum expected
shortest path length, F\(y,,) is the expected shortest path length over feasible realizations,
corresponding to the optimal investment y,,, and Rel(y,,) is the O-D reliability
corresponding to the optimal solution y,,,. Finally, the last four columns show the items
just described, for the proposed solution procedure, indexed by s. For Tables 4a and 4b
the initial survival probability vector, (p; p2 p3 ps ps)=(0.7,0.7,0.7, 0.7, 0.7). The
following discussion pertains to Tables 4a and 4b, a similar discussion holds good when
the initial survival probability vector, (p; p2 p3 ps ps)is (0.6, 0.6, 0.6, 0.6, 0.6) whose

results are reported in Tables 5a and 5b. We set M as Ty + 1 in all of the instances
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except for those that are used for analyzing sensitivity w.r.t. the parameter M. As seen
from the tables for all of the instances except two the solution procedure yielded the
optimal solution. In fact, for almost all of the cases, the optimal solution was obtained in
the first step of the stochastic subgradient method. This seems to suggest that the first

order approximation can be used to obtain good solutions. Now we derive some insights

based on the sensitivity analysis.

Figure 3 Five link test network

The general observation is that the optimal investment tended to make the paths
of shorter length more reliable. Also links | and 5 appear in the optimal solution for most
cases, this is because there are two paths that use them as opposed to just one path for the
other 3 links. The remaining links appear in exactly 1 path.

(1) Effect of changing B
To understand this effect, we compare the results of No. 1 and No.2, which differ only by
the parameter B. When the B is increased from 2 to 3, F(yop) decreased by 0.2806, in

accordance with Theorem 2. Reliability increased by 0.0286 and F;(yop) increased by
0.029s.

(ii) Effect of changing ¢,

To understand this effect we compare the optimal solutions of No. 3 and No. 4. Let y(3) =
(11001)and y(4)=(01 10 1) respectively. This is because the increase in g3 from 0.9
from 0.8 made link 3 more beneficial for investing in comparison with link 1. Note here

that c3 is unchanged. Using expression (15), F(y(4)) - F(»(3)) = { 22(0) + g3(0) + g5(0) +
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223(0) + 225(0) + g35(0) + g2.35(0) } - { 21(0) + g2(0) + g5(0) + g1.2(0) + g1.5(0) + g2,5(0) +
2125(00) } = G Ap3— G> (from Corollary 1), where G, (<0) and G, (<0) are appropriate

constants. So when Ap, = 0.2 F(y(4)) - F(y(3)) >0 and Ap,=0.3 F(y(4)) - F(y(3)) <0.

(111) Effect of changing c,

To understand this effect we compare No. 3 with Nos. 5, 6, 7, 8 and 9. For each of these
instances ¢, has been increased from 1 to 2 for e = 1, 2, 3, 4 and 5 respectively. As
expected, increasing ¢, for e = 3 or 4 does not alter the optimality of the original solution.
For the remaining instances the optimal solution is different from that of No. 3 and this is
because the original optimal solution would be infeasible, as it requires a budget of 4. We
can conclude that link 2 and link 5 are very important as they have invested in, for all the
cases. The reason being, these two links constitute the path with the least length and also
because link 5 appears in two paths.

(iv) Effect of changing M

To understand this effect we compare No. 10 with No. 11 and No. 12. For 31 <M <43.9,
the stochastic subgradient method outputs the optimal solution. For 43.9 <M < 57.3, the
solution from the stochastic subgradient method differs from the optimal solution, which
stays the same. For M > 57.3, the optimal solution is altered and is now the same as that
of the solution from the stochastic subgradient method. This solution maximizes the
reliability for the given budget. As M is increased, the importance for minimizing
unreliability is greater and hence investment decisions tend to maximize reliability. The
transition in solution occurs in a discrete manner and occurs at breakpoint(s), as discussed
above. This is valid for both the optimal solution as well as the solution from the
subgradient method, although breakpoint could be different as seen here. In certain cases
no such breakpoint might exist because the current M value yields a solution that already
maximizes reliability.

(v) Effect of changing 7,

To understand this effect we compare No. 13 with No. 14. When #; is decreased from 5 to
1, effectively the investment of link 2 has been transferred to link 3. This is because with
lower path length is usually favored for investment. Note that while the reliability
worsened from 0.86848 to 0.85248, Fi(yop) improved from 25 to 22.5976, which means

that the worsening of the former is outweighed by the improvement in the latter.
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7 CONCLUDING COMMENTS

In this paper, we introduced the problem of investing in the links of a stochastic
network in order to minimize the expected shortest path length for an O-D pair. A penalty
cost was introduced to handle network realizations in the expectation, where the O-D pair
is disconnected. Thus connectivity is considered in the objective function in addition to
path length. The analysis of the problem was enabled by the explicit closed-form
expression for the probability distribution of the network states in terms of the investment
decisions (equation (9)).The problem is modeled as a two-stage stochastic program. The
notable feature of the model being, the probability distribution of the random variables is
dependent on the first-stage decision variables. The network structure was exploited to
reformulate the problem as an equivalent deterministic program. By temporarily relaxing
the investment decision variables and applying Taylor series expansion we are able to
evaluate the coefficients of the multilinear objective function in an efficient manner. We
illustrate some of the properties of these coefficients. We have also illustrated the
monotone decreasing property of F(y). Our proposed solution procedure approximates the
objective function using only the first order terms of the multilinear function. Numerical
experiments on a small-sized network show good performance on the problem instances
solved.

Potential applications domains for the framework presented in this paper apart
from disaster management for transportation networks, include network protection

against potential terrorist attacks. The network could be a rail network, power network or

oil/gas pipeline network.
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