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1 Introduction

A large segment of the economic literature is concerned with the study of allocations that
arise when markets are not well functioning. A defining characteristic of this literature is
its focus on informational and spatial frictions, and the desire to make them explicit by
assuming that economic interactions occur in small coalitions. To this end, the literature
has traditionally relied on pairwise random matching frameworks. This basic modeling
tool has found use in a wide variety of settings, from the study of social norms (as in
Ellison [5]), to unemployment (as in Mortensen and Pissarides [11]), to business cycles
(as in Diamond and Fudenberg [4]), and to the foundations of monetary theory (as in
Kiyotaki and Wright [7]).

A limitation of this literature is the treatment of matching—as a technology-—is mostly
descriptive and hazily formalized. For example, the mechanics of the economic interactions
are generally not made explicit or the map between matching and the frictions assumed
to be in place is vague. This tends to prevent a clear understanding of how the matching

*The research of C. D. Aliprantis was supported in part by the NSF Grants EIA-0075506, SES-
0128039, and ACI-0325846. The research of D. Puzzello was supported in part by the NSF Grant
SES-0128039.



technology impairs market functioning, and consequently the possible allocations. These
limitations must be overcome to better formulate models of economies with frictions. An
objective economic analysis is thought of as one that focuses on the allocations predicted
using a carefully specified physical environment (preferences, technologies, etc.). Thus,
a comprehensive theory of exchange cannot be derived by simply assuming that certain
economic interactions may or may not take place. Ideally, the theory should clarify how
the trading or institutional constraints assumed to be in place originate in the underlying
economic environment.

The purpose of this study is to build a solid foundation for random matching models,
by means of a fully integrated set-theoretic approach. There are two major contributions.
First, the paper provides a rigorous formalization of the mechanics of random pairwise
matching. To do so, it uses as a starting point the approach to deterministic matching
provided by Aliprantis, Camera and Puzzello [1]. By focusing on the technological aspects
of meeting processes, this study adds to a research discourse focused on advancing our
understanding of the inner workings of matching models as done in Ioannides [9] and
Gilboa and Matsui [6], for example.

A second contribution of this investigation is it spells out how different matching tech-
nologies may facilitate (or obstacle) the exchange of economic resources and information
among agents. Particular emphasis is paid to formalizing how the matching technology’s
properties affect the level of informational isolation that exists in economies where agents
are randomly paired over time. Research that has taken into consideration these con-
cerns has appeared in the works of Kocherlakota [8], Corbae and Ritter [2] and Corbae,
Temzelides, and Wright [3].

The technical procedure that we use to construct any random matching process in-
volves three basic steps. The first step is to specify how to divide the population in each
period into spatially separated clusters of agents. To do so, we use partitional corre-
spondences. Then, one must define and calculate all possible ways to form pairs in each
cluster. In this case, we resort to using a class of permutation functions—the so-called in-
volutions. Finally, for each period one must specify a probability measure over all possible
pairings, for each cluster. This gives us the desired random matching rule for a cluster,
and a well-defined random matching process for the entire population in each period. A
pairwise random matching framework can then be formalized as a sequence of partitional
correspondences, involutions and probability measures. Given these sequences, we can
then explicitly specify matching histories, and therefore we can rigorously formalize the
degree of informational isolation that exists among agents.

The paper is organized as follows. Section 2 introduces the mathematical preliminaries
needed for this study. Sections 3 and 4 discuss pairwise random matching in a single
period and over time, and characterize matching mechanisms according to the degree
of informational isolation they can sustain. In Section 5 we demonstrate how random
matching economies can be constructed in which traders are completely anonymous. We



then present in Section 6 an application of our theoretical construct to random matching
models of money. We offer some final remarks in Section 7.

2 Mathematical Background

This section contains the mathematical notions that will be used extensively in this work.
Since our objective is to explain how to match sets of agents, we start by discussing several
set-theoretic notions.

If A is an arbitrary set, then |A| denotes its cardinality. As usual, |A| = Mo means
that A is countable and |A| = ¢ indicates that the cardinality of A is the continuum. If A
is a union of a pairwise disjoint family of sets {4;}ics, then we denote it by A =|Jier Air
That is, A = (J;c; Ai and 4;NA4; = @ whenever i # j. If A =|;c; Ai, then we say that
the family {A;};c; partitions the set A.

Definition 1. A correspondence v from a set X to a set’Y assigns to each x in X a
subset ¥(z) of Y. We write p: X —»Y to distinguish a correspondence from a function.

We use the correspondence concept since we intend to divide a population X into
separate clusters of agents. To do so, we focus on correspondences with X =Y, that
is ¥ : X — X. Furthermore, to formalize the notion of spatial separation of clusters, we
consider a special class of correspondences.

Definition 2. A correspondence v: X — X is partitional whenever it satisfies the fol-
lowing two properties:

(a) = € Y (z) for every x € X, and
(b) if y € Y(x), then Y(y) = ¥(z).
If, in addition, | (z)| = k for all x € X, then we say that ¥ is k-partitional.

This definition mirrors the one in [12, p. 68]. It states that an agent x always belongs
to the cluster v (z) and any two clusters either coincide or are disjoint.! One can interpret
this as meaning that there is spatial separation among clusters. To see this note that, by
(b), if some agent y belongs to ¢ (x), then 2 and y must be in the same cluster.

In short, we can use a correspondence 1 to partition the population into subsets of
agents called clusters. These clusters can be interpreted as spatially separated groups of
agents. Whether and how agents in a cluster can interact with each other, depends on the
matching rule in place. To formalize matching rules, we will draw from the mathematical
concept of a permutation.

If z € (z) N (y), then ¥ (z) = ¢ (x) since z € ¥ (z) and ¥ (z) = ¢ (y) since z € P (y). Thus,
Y (z) =9 (y)



A permutation of a non-empty set X is a one-to-one function ¢ from X onto X. If
X is a finite set, say X = {x1,Z2,...,Zx}, then a permutation ¢ on X can be represented

by a matrix
1 I N Tk
o= ).
Yvi Y2 - Yk

where y; = ¢(z;) € X and y; # yi if i #j. L o is such that ¢? = ¢po¢p =T on X,
that is, if the function ¢ composed with itself is the identity function, then ¢ is called
an involution; see [14]. It turns out that involutions formalize the economic concept of
bilateral matchings.

3 Random Matching in a Period

In this section, we discuss how to match agents randomly in any representative period.
Thus, we omit the time subscript.

We adopt a procedure that involves three separate steps. The first step is to specify
how to divide the population into spatially separated clusters of agents. This will require
the use of partitional correspondences. Then, we will define and calculate all possible
ways to form pairs in each cluster. To do so, we will use involutions. Finally, we will
specify a probability measure over all possible pairings for each cluster. This will give us
the desired random matching rule for a cluster and a random matching process for the
entire population.

3.1 Step 1: Spatial Separation Using Clustering Rules

Since we want to deal with matches that are separated in space, we start by taking steps
in order to formalize the notion of spatial separation. To this end, we need to introduce
the concept of a k-clustering rule. This is a mathematical device that allows us to divide
the population X into clusters of k individuals each. Later, we will formalize a notion of
spatial separation for these clusters.

Definition 3. A k-clustering rule for a population X is a k-partitional correspondence
P: X — X. We call Y(z) the cluster of x.

Clearly every k-clustering rule ¢ induces a partition on the population X by selecting
k agents at a time that are placed in separate groups. That is, 1 partitions X into
‘slices’ or equivalence classes.? The family of equivalence classes will be denoted {X;}cg,

2We note that given any partition, there is exactly one equivalence relation on X from which it is
derived. An equivalence relation on a set X is a binary relation ~ on X satisfying the following three
properties: (1) (Reflexivity) = ~ « for every ¢ € X; (2) (Symmetry) If  ~ y, then y ~ z; and (3)
(Transitivity) If z ~ y and y ~ z, then  ~ z. Given an equivalence relation ~ on a set X and an element
¢ € X, the equivalence class of = is the subset of X defined by [z] = {y € X: y~z}. Notethat z € [z]
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where S is the index set of all slices. In other words, for each s € S there exists some
z € X such that ¢(z) = X,. For instance, if X = {a,b,c} and ¢ generates the clusters
¥(a) = ¥(b) = {a,b} and ¥(c) = {c}, then S = {1,2} where X; = {a,b} and X3 = {c}.

The natural question at this point is whether we can construct clustering rules on any
set. It turns out that not all populations can be partitioned according to a k-clustering
rule. The next lemma establishes a basic condition under which this can be done: it
requires to partition the population X into k subsets of identical cardinality.

Theorem 4 (Existence of clustering rules). If A;, Ay, ... , Ay are pairwise disjoint
sets having the same cardinality and X = Llle A;, then there exists a k-partitional corre-
spondence ¢¥: X — X.

In particular, there exists a k-partitional correspondence ¥: X —» X such that for each
z € X the set 1(x) consists of k-elements one from each set A;.

Proof. Since the sets A; have the same cardinality, for eachi=1,...,k—1, wecanfind a
function f;: A; — A;41 which is one-to-one and surjective (onto). We claim the following:
If 2 <j<kand z € Aj, then there exists a unique element r; € A; (called the root of
z) such that © = fj_1fj—2--- fi(rz). Indeed, note that the element r; = (fl'l e ff_ll)(a:)
satisfies the desired property. That is:

If z= fj_.lfj_Q v fl(acl), where xr) € A1 and 2 S] S k), then Ty =1 (*)

The uniqueness of 7, should be obvious. If z € A;, then we let rp; = x.

Next, define : X —» X by % (x) = {re, fi(re), fof1(ra), o feoafiz - fulro)}. Tt
should be clear that 1 () contains k elements such that ¢ (z) N A4; is a singleton for each
j =1,2,...,k. That is, ¥(z) consists of all elements of X that have r; as their root.
(Clearly, z € 9(z) and () consists exactly of one element from each A;.) To prove
that v is a k-partitional correspondence, it remains to be shown that if y € ¥ (z), then
¥ (y) = ¥ (z). There are two cases to consider:

(1) y=ry € Ay.
In this case, we have ry = r, and so

V) = {ry filry), o fe—1fo—2 - filry)}
{Tx,fl(rx)w‘-7fk—1fk—2"'f1(rx)} = Iﬁ(w) .

(2) y# e

for all z € X, and any two equivalence classes are either disjoint or equal. Given an equivalence relation on
X, the collection of all equivalence classes determined by ~ is a partition of X. Thus, studying equivalence
relations is equivalent to studying partitions.




Here we have y = fj_1fj—2- - fi(rz) for some 2 < j < k. This, in conjunction with
(%), yields r, = r5. Thus, as above, ¥ (y) = ¥ (z), and the proof is finished. ®

An illustration of the clustering rule described in Theorem 4 is shown in Figure 1.

/fl-\\ /fg\ fk-l

o
A 4 e ®

A A Ay A

Figure 1: The k-clustering rule of Theorem 4

We note that k-clustering rules, if they exist, are not necessarily unique. This is due to
the flexibility in the selection of agents from each of the k sets which define the partition.
Clearly, we have many choices over the functions f;, 1 <i < k—1, as long as they are
one-to-one and onto. A different k-partitional correspondence is generated by a different
choice of any of the f;.

What if the population X cannot admit k-clustering rules? Then, we can ‘normalize’
X (as long as it has at least k agents) in such a way that a k-clustering rule can be

constructed on a subset of X. The remaining agents will be assigned to clusters of one
agent each.

Corollary 5. Let X = ([_]f=1 A,-) Ao = Y || Ao, where Ao, A1, ..., Ax are nonempty
pairwise disjoint sets and Ay, ..., Ax have the same cardinality. Then we can construct a
partitional correspondence ¥: X — X such that

(i) ¥ onY is k-partitional, and
(i) ¥ on Ag is 1-partitional.

Now that we know how to group a population X into clusters of agents, we study
how to pair agents in each cluster. In this way, we can also formalize a notion of spatial
separation for any economy.

3.2 Step 2: Bilateral Matching Using Involutions

Suppose we have divided the population X according to ¢ into the clusters {Xs},cg-
We want to pair agents only in each cluster X;. To do so, we exploit the mathematical
concept of a special class of permutations called involutions. These define the bilateral
matching rules on any set.

Definition 6. A bilateral matching rule for a set of agents Q0 is an involution of Q.



Recall that a permutation of {2 is any one-to-one and onto function ¢ on 2. This means
that any permutation can assign an agent to himself. However, such a permutation need
not be consistent with the idea of bilateral matching. For example, if = {a,b,c}, then
a permutation may assign a to b, b to ¢, and ¢ to a, which clearly is not a matching.
Therefore, we need the “involution” restriction: the inverse of the permutation ¢ must
coincide with itself or ¢? = I.

Now that we know what is a bilateral matching rule, we have a very natural way to
formalize the notion of spatial separation in the economy.

Definition 7. A spatially separated economy is a triplet (X,,$) such that:
(a) ¥: X — X is a k-clustering rule on X, and

(b) ¢: X — X is a bilateral matching rule that leaves each cluster X invariant, that is,
d(Xs) C X, for each s € S.

In other words, in our economy clusters of agents are spatially separated if an agent y
belonging to a cluster 1(x) can only meet an agent who also belongs to the cluster P(x).
We emphasize that a bilateral matching rule necessarily matches every agent to someone
else, in his own cluster. Thus, in what follows, we say that a bilateral matching rule on §2
is exhaustive if no agent in 2 is unmatched, that is if ¢(w) # w for all w € . Of course,
several different bilateral matching rules exist—exhaustive or not. Thus, it is natural to
ask how many possible pairings of the k agents in Q can be accomplished. To answer this
question, we need to introduce some notation.

Definition 8. If Q is a population set, then we shall denote by B () the collection of all
bilateral matching rules on .

For the rest of our discussion in this paper, @ = {wi,...,wx} will denote a finite
set of k agents. Notice that B ({wi,...,wx}) consists of all possible ways in which the
k agents in Q can be bilaterally arranged—either by pairing them with someone else or
with themselves. Since the cardinality of the set of all possible permutations of €} is k!
and B(Q) is a subset of the set of all permutations, it follows that B () is also a finite
set whose cardinality is less than k!. The number of possible bilateral matching rules in
Q can be determined recursively as follows.

Lemma 9. If &, = |B ()| is the number of all possible bilateral matching rules on a set
Q with k agents, then ¢ =1, £, =2, and

lpyy = Lk + kly—y for k>2.

Proof. It is obvious there is only one way to arrange one agent and two ways to arrange
two agents. Thus ¢; = 1 and ¢, = 2. Now, suppose we have k +1 > 3 agents in a cluster.
There are two possibilities: (1) agent k + 1 is matched to himself, and (2) agent k + 1



is matched to someone else. In case (1), according to the definition of possible bilateral
matching rules, the remaining & agents can be matched in ¢ different ways. In case (2)
agent k + 1 can be matched to any one of the other k agents. The remaining k — 1 agents
can be matched in #_; different possible ways. Therefore i1 = & + klg_1. W

We can also calculate the number of possible exhaustive bilateral matching rules for
a cluster of k agents.

Lemma 10. Let ny and ej, denote the number of possible non-exhaustive and ezhaustive
bilateral matching rules on a set 0 of k > 2 agents. Then:

(a) nm=1, no=1 and mgyy =Ly + kng—y for k>2.
(b) e1=0, eg=1 and exy1 = kex1 for k>2.
Furthermore, ear11 = 0 and egp, = %% fork=1,23,....

Proof. It is obvious that n; = ny = 1 since in both cases only the identity is non-
exhaustive. If k > 2, then there are two possibilities: agent k + 1 is matched to himself
or to someone else. In the first case the remaining k agents can be paired in ¢ different
ways. Otherwise, agent k + 1 can be paired to any of the k agents and the remaining
k — 1 agents can be paired in nj_; different possible non-exhaustive ways. Therefore
Ng+1 = lk + kng—1.

Now notice that the number of possible exhaustive pairings is just the difference be-
tween the total number of possible pairings and the number of all possible non-exhaustive
pairings. Thus, we have e; = ¢; —n; =0 and ez = fy —ng = 1. Also,

ek+1 = bkt1 — Nk1 = k(lk—1 — nk—1) = keg—1.

The latter, in conjunction with e; = 0, implies that egxy1 = 0 for & = 1,2,3,... . By
induction, it is easy to see that eq = %Qk% If £ = 1, then clearly e; = -2% = 1. For

the induction step, assume that egr = %’% is true for k > 1, then we have to show it

is true for k + 1. To see this, note that using the recursive formula for exy; we have
2k)! 2k+2)!
extern) = (2k+ ek = (26 + 1) G = grerry

An example may be helpful. Suppose k = 3 and Q = {a,b,c}. Then the number of all

possible pairings (i.e., bilateral matching rules) is 3 = n3 = 4. The set consisting of all
possible bilateral matching rules is B({a,b,c}) = {¢1, ¢2, ¢3, ¢4}, where

a b c a b ¢ a b ¢ a b ¢
¢1:<b a c>’¢2:<a c b>’¢3=<c b a>’¢4:(a b c>'
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That is, there are four possible ways to pair the agents a,b and c¢. We can leave them
unmatched, which is the permutation ¢4 or we can form pairs leaving one agent unmatched
according to ¢1, ¢o and ¢3. What is interesting is that (as the next table demonstrates)
even for relatively small clusters of agents the number of possible pairings is very large.

k fk Nk €k

1 |1 0

2 1

3 |4 0

4 |10 7 3

5 | 26 26 0

6 |76 61 15

7 | 232 232 0

8 | 764 659 105

20 | 23,758,664,096 | 23,103,935,021 | 654,729,075

An immediate consequence is that we can generate a very large number of possible
pairings despite the use of finite clusters of agents. This is very convenient, since it allows
us to construct bilateral matches that are random by selecting randomly one out of many
possible pairings in each cluster. The mechanics of this are described in the sequel.

3.3 Step 3: Random Pairings Using Probability Measures

We start by formalizing a notion of a random matching.

Definition 11. A stochastic bilateral matching rule on Q = {wi,...,wr} (or a
stochastic Tule) is simply a probability measure f on B (2).

Using this formalization we now show how to construct random pairings on 2 in a
quite natural way.

Lemma 12. Every stochastic rule f on a set @ = {wi,...,wk} induces a probability
measure F: Q x Q@ — [0,1] via the formula
F(wi,wh) = > f(@)=f({peB(Q): wi=dwn)}) -

{¢€B(Q): wi=¢(wn)}
Moreover, the measure F' satisfies the following properties:
(i) For all i and h we have F(w;,wp) = F(wh,wi).
(ii) For each fized wy € ) we have Zle F(wi,wp) = 1.

9



(iii) If k is odd, then F(w;,w;) > 0 for some 1.

Moreover, F defines a doubly stochastic matriz®

w1 w9 Wik
wi | Flwi,w) | F(wi,we) F(w,wg)
we | Fwg,w1) | Flwa,w2) F(wa, wy)
wr | Flwg,wi) | Fwg,w2) F(wr, wk)

Proof. Part (i) follows from the fact that w; = ¢(wp) if and only if wy = ¢(w;). In order

to prove part (ii), fix wy, € £ and note that [__Ii.czl {¢p € B(Q): w;y =¢(wn)} = B(Q) . This
implies

k k
S F(wiwn) =Y f({o € B(Q): wi=o(wn)}) =f(B(@) =1
=1 =1

To see (iii), observe that if k& is odd, then for all ¢ € B (§2) there exists some w; € Q
such that w; = ¢(w;) and so B(Q) = Ui;l{qﬁ € B(Q): w; = ¢(w;)}. This implies that
F(w;,w;) > 0 holds true for some ;. =

In short, a stochastic rule on 2 selects with probability f(¢) the pairings specified by
the bilateral matching rule ¢ € B (). Since each ¢ assigns every agent w; € ) to someone
in Q, then we can calculate the probability that w; meets wp. To do so, we must notice
that each ¢ in B () can be considered as an independent outcome. Thus, we can define
the probability of a match between w; and wy, as F (wi,wp). The latter is computed by
adding the probabilities f(¢) associated to those outcomes in which w; meets wp. Looking
across all possible pairings, this gives rise to the doubly stochastic matrix exhibited in
the statement of Lemma 12. Clearly, from such a matrix we can always reconstruct the
probability measure f.

Now that we know how to construct random pairings on any finite set of agents §2, we
can formalize a notion of random matching for the entire population.

Definition 13. A stochastic bilateral matching process over a population X relative
to a k-clustering rule ¥: X — X is a family F ={fs},cs of probability measures, where
f5 is a stochastic rule over B (X;) and {Xs},cg is the collection of clusters induced by .

Briefly, here is how we randomly pair agents in our framework. To start with, we use
a clustering rule 1 to partition the population X into spatially separated clusters X, of

3Recall that a non-negative real matrix is said to be doubly stochastic if each row and each column
of the matrix sums up to one; see [10].
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k agents each.* Once this is done, we must find all possible ways to pair agents within
each cluster X, which gives rise to the set B(X,). Given this, we can then specify a
probability measure over B (X,), which is what we call a stochastic rule. The collection
of all such rules for {B (X;)},cg is called the stochastic bilateral matching process F.
Thus, F induces a family of probability measures {Fs}, g satisfying the properties in
Lemma 12. A single realization of this stochastic process generates a unique match of the
population. From our prior discussion, we will say that a stochastic bilateral matching
process F over the population X is exhaustive, if Fi(w,w) =0 for all agents w € X and
all s € S. Clearly, this cannot occur if the k-partitional correspondence ¥ has k odd; see
item (iii) in Lemma 12. We are now ready to discuss how to construct mechanisms that
pair agents randomly over time.

4 Random Matching Over Time

Consider discrete time t = 0,1,2, ... . We start the economy by having agents unmatched
(period t = 0). Then, we say that a sequence ¥ = {¢¢},2 is a k-clustering mechanism
if ¢, is a k-clustering rule for the population X in every period ¢t > 1. In this way, we
can construct random bilateral matches over time by specifying a sequence of bilateral
stochastic matching processes.

Definition 14. A bilateral stochastic matching mechanism (or a stochastic mechanism)
over a population X is a quadruplet (X, ¥, ®,F), where:

(i) U is a k-clustering mechanism over X,

(i) ® = {¢}2 is a sequence of bilateral matching rules on X such that the triplet
(X, %1, ¢1) is a spatially separated economy for each t, and

(i) F = {F1}52, is a sequence of stochastic bilateral matching processes such that:

(a) Fo satisfies ¢po(z) = x for each x € X, and
(b) F; is a stochastic bilateral matching process for iy for each t > 1.

Essentially, the stochastic mechanism tells us the probability that in each period t # 0
an agent r gets matched to someone in his own cluster Pi(z). Clearly, every agent meets
some other agent at each period t # 0, i.e., matching is exhaustive, if F; is exhaustive
at each period t # 0. We also note that the collection of all deterministic bilateral
matching mechanisms is a subset of all stochastic mechanisms, where F; induces a family
of degenerate probability measures in each period.

4The index set S can be countable or uncountable. For example, if X = [0, 1] then there are infinitely
many clusters of k agents, and S is uncountable. In fact, since a countable union of countable sets is
countable it must be the case that |S| = ¢.

11



It is convenient to call to the agents in v;(a) the clustermates of a in period t.
Among these agents, there is only one agent ¢¢(a) € ¥¢(a) who is the partner of a in
period t. It is useful to introduce the following terminology.

Definition 15. We say that two agents a and b :

(1) Share a direct partner, if there exist periods t1 < ta < t3 and an agent ¢ # a,b
such that:

a:¢t1(b)v b:¢t2(c)7 c=¢t3(a)'

(2) Share an indirect partner, if there exist periods t1 <ty <tz < - <t and agents
ai1,as, ..., ax_o different than a and b, where k > 4, such that:

a=d (b), b=, (a1), a1 =y (a2), ... ,ak-3 = b, (ak—2), ar—2 = ¢y ().

We have to consider the possibility of having common partners, as this affects the
agents’ ability to share information with others across periods. For example, in case (1)
above, ¢ is a direct partner of a and b. Thus, ¢ can transfer information (or objects) from
b to a, after their match is over. In case (2) above, a and b share a succession of indirect
partners a; through ay_s. Therefore b can provide information to a;, which in turn can
be passed on to agent a down the line in period .

To account for the information that may be available in a match, we need to examine
the agents’ matching histories. To do so, one must keep track of the clusters to which
paired agents belong at each date. We denote by Pi(a) the set of all clustermates of a
(including a himself) in periods up to and including ¢. That is,

t
Py(a) = | ¥+(a).

=0

While P;(a) accounts for all agents that belonged to the same clusters to which a
belonged, it excludes agents that were clustermates of a’s clustermates and partners, and
o on. It turns out there is an easy way to keep track of all these ‘indirect’ connections
among agents by means of a recursive process. Specifically, we denote by II;(a) the set of
a’s past and current clusters, the clusters to which a’s current clustermates belonged in
the past, and so on. In other words, we let

. Py(a) fort =0
{9 =9 1, (U [Ubewa)ﬂt_l(b)] for ¢ > 1.

By an inductive argument, we can see that P;(a) C Il¢(a) and, although II;(a) is a very
large set, it is finite since it is a finite union of finite sets. It is also important to emphasize

12



that II,(a) does not include agents that a’s partners (or clustermates) have been spatially
close to after moving away from agent a.

Why do we need all this complex machinery? The reason is now that we know how
to match agents over time, we want to be able to discuss how the matching technology in
place affects the flow of information in the marketplace. That is, we want to make explicit
how different matching mechanisms generate (or remove) obstacles to information flows.

This issue deals with the broadly defined notion of ‘anonymity’ in trade, which is often
seen as a central assumption in several models of matching.® The question we need to
answer at this point is the following: what does it exactly mean for matched agents to
be anonymous? To formalize a notion of anonymity, we need to take two steps. First,
we must know how to look into an agent’s past. This was already done by introducing
the sets P,(a) and II;(a), which essentially trace the matching history of each agent in
the economy. Second, we need to formalize how these matching histories can be used to
define the information that can be available to agent in a match. This will be done next.

Definition 16. A k-clustering mechanism U on the population X is said to be:
(1) Eventually weakly anonymous, if for each a € X there is some t > 1 such that

(i) ¥ (a) NYr(a) = {a} forall 7',7 >, and
(i) Pi(a) [U?=t+1¢‘r(a)] = {a} .

(2) Weakly anonymous, if for alla € X, allt > 1 and all T £t we have
Yi(a) Nr(a) = {a} .

(3) Anonymous, if for alla € X, allt>1 and all b € Yiy1(a) with b # a we have

Pa)NP(b) =D .

(4) Strongly anonymous, if for alla € X, allt >1 and all b € Py1(a) with b # a we
have

Ht(a) N Ht(b) = @ .

We shall say that a stochastic mechanism (X, ¥, ®, F) is eventually weakly anony-
mous, if the k-clustering mechanism ¥ is eventually weakly anonymous. (Analogous
properties can be defined for the other notions of anonymity.)

5For instance, anonymity is a prominent feature in the foundations of the money literature. The reason
is that the information constraints give value to money since traders cannot base current sales on future
repayment; see, e.g., Ostroy [13] and Kocherlakota [8].
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This definition allows us to consistently formalize all possible levels of information
isolation that can exist in the economy. As a rule, stronger degrees of anonymity provide
stricter restrictions on the information flows that can take place among agents; see our
companion paper [1] for a more detailed discussion for the case of deterministic matching.

The eventual weak anonymity notion captures the idea that the matching mechanisms
may allow some agents to repeatedly interact only in the short run. After some period
these agents will move out to different clusters. Under weak anonymity, instead, clusters
cannot be formed with the same agents. It follows that if an agent a is paired to b at
some date, then a and b have never met before and will never meet again. However, the
possibility exists that b might have met either one of a’s past partners or one of a’s former
clustermates. To remove these possibilities of direct or indirect linkages among agents,
we need to add restrictions to the mechanics of matching.

The additional restrictions are progressively formalized in the notions of anonymous
and strongly anonymous matchings. In particular, under strong anonymity we remove
all possible direct and indirect links among agents who belong to the same cluster. This
reflects a suggestion made by Kocherlakota [8].

What’s more, strong anonymity rules out also any future direct and indirect links
among these agents. This is demonstrated in the following result.

Lemma 17. Let (X, ¥, ®,F) be a stochastic mechanism. If ¥ is:

(a) Anonymous, then no matched agents will share a direct partner over their lifetimes.

(b) Strongly anonymous, then no matched agents will share a direct or indirect partner
over their lifetimes.

Proof. (a) Let ¥ be anonymous. Assume by way of contradiction that two agents a and
b share a direct partner. Thus, there exist three periods t1 < t2 < t3 and an agent ¢
different from a and b such that (i) @ = ¢, (b) € ¥y, (b), (i) b= ¢¢, (¢) € Y1, (¢) , and (iii)
c = ¢, (a) € Yy, (a) . Clearly, we have
<ty <ts—1. (*)
Note that (iii) yields @ = ¢, (¢) € ¥, () and so by the anonymity of W, we have
Piy—1(¢) N Py—1(a) =@ . (%)

Using (ii) and (%) we see that b € P,_1(c). Observe that (i) implies b = ¢, (a) € Yy, (a),
and so from (x) we see that b € P;—1(a). Thus b € Pyy—1(c) N Pi,_1(a) contrary to (sx).
This contradiction establishes the validity of (a).

(b) Assume ¥ is strongly anonymous and that a and b share an indirect partner. This
implies there exist t; < to < t3 < -+ < tg and ai,as,...,ak_o different than a and b,
where k > 4, such that:

a=¢y (b), b=, (a1), a1 = P15 (a2), ..., k-3 = Pt (ak—2), ak—2 = ¢1, (a) ,
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where we note that ¢;(z) € ¢; (z) for all t and z € X. Clearly,
t <tp<tg< - <t <tp—1 (1)
From aj_s = ¢, (a) € ¥y, (a) and the strong anonymity of ¥, we have

My —1(a) N Myo1 (ag—2) =D - (1)

Now note ax_o € I, —1(ak—2). It is not difficult to see that ax—2 € I;,—1(a), since ax_2 in
ty_1 met ak_s, who in ty_o met ax_4, until a; in t2 met b (who in t; met a). This implies
ax—s € Ty, —1(a) N1 (ax—2), contrary to (1)

Finally, to establish that no matched agents share a direct partner in their lifetimes,

use (a) and the fact that strong anonymity implies anonymity. (See also the proof of
Lemma 18 below.) m

As expected, stronger degrees of anonymity imply weaker degrees of anonymity.

Lemma 18. We have the following implications:

Strong Anonymity == Anonymity
=  Weak Anonymity
=  FEventual Weak Anonymity.

In general, no reverse implication is true.

Proof. First, we show that strong anonymity implies anonymity. Fix some agent a € X.
Assume that U is strongly anonymous. For any b € ¢;11(a) with b # a, it follows from

Pt(a) N Pt(b) C Ht(a) N Ht(b) = @

that P;(a) N P;(b) = @. This implies that ¥ is anonymous.

Next, we prove that anonymity implies weak anonymity. Suppose ¥ is anonymous but
is not weakly anonymous. Then there exist 1 < ¢t < 7 and some agent a € X such that
Wi(a) N Yr(a) # {a}. Let t* =7 —1,b# a, and (i) b € Y(a), (il) b € Py y1(a) = ¥ (a).
Clearly t < t*. The latter in conjunction with (i) implies that b € P (a). Furthermore, by
(ii) and b € Py« (b) we have b € P (a) N Py« (b), which contradicts anonymity for t =t*.
Thus, anonymity implies weak anonymity. That weak anonymity implies eventual weak
anonymity follows from the definitions. For the fact that no reverse implication holds true,
see [1]. m

The central question at this point is the following: Do random pairings that are
strongly anonymous exist? That is to say, is it possible to construct a class of matching
mechanisms that can insure total information isolation in every meeting? We answer this
challenging question to the positive in the next section.
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5 Constructing Anonymous Random Matches

We start by observing that in order to have anonymous stochastic matching mechanisms
we need an infinite population X. At date t = 0, we partition X in a countable number

of sets Aj, As,... of identical cardinality.5 Thus, we have an initial partition of the
o0

population X =| |>°; A,. Then, in each t > 1 we divide X into clusters building on this
initial partition using k sets at a time.

To do this, we need to describe how to partition the population over time. The con-
struction of these partitions—referred to as a recursive block-partition—is described

by the recursive method illustrated below. (The brackets below indicate the partition
sets.)

Period Block partition of the population X

0 X——‘A1|_|A2UA3"-
1 X =AU UA) U (A U - LAz Lo
2 X = (Al UAge) U (A U LAz L

t X = l_|:o=1 (Apm—yktar L Am-npese U - U Anke)

kt
- UZO=1I-—|J‘=1A<"—1W+J‘
=L|:°=133= (Bt ---UBLY U (Bt U - UBY) U -
L (Bl UL~ LI, 2

where we have defined B, = |_|;€t=1 Ag-nyktyy forn=1,2,... and t > 1. For example, for
t=n=1then B} =i, 4; = (Al... U4

It should be clear that for each t > 1 the sets B, B, ... (called the blocks of the
population in period t) are pairwise disjoint and have the same cardinality. Moreover,
Bl = <B,tm_(k_1) L) |__|B,tm> holds for n = 1,2... and t > 1, so that B5'! is a union
of k pairwise disjoint sets of identical cardinality. By Theorem 4, we can construct for
each n and ¢ > 1 a k-clustering rule ¥, ;: Bt — BSH! such that given any z € Bt
the set 9y, +(x) consists of k agents, one from each of the k blocks B,tm_(k_l), ...,Bt,. In

5This means A, can be countable or uncountable.
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particular, for each t we have a k-clustering rule ¢ : X — X defined for each z € BiH!
by
Pi(z) = Yna(z).

We also let 1§ = I, the identity on X.

Definition 19. Any k-clustering mechanism U* constructed as above is called recursive
block-invariant.

Since spatial separation guarantees that matches at each date occur among agents that
belong to the same cluster at that date, we can show that the recursive block-invariant
mechanisms insure total informational isolation at each date. Here is the result that
formalizes this intuition.

Theorem 20 (Existence of strong anonymity). Every recursive block-invariant mech-
anism is strongly anonymous.

Proof. The proof will be based upon the following two properties. For each n =1,2,...,
each t > 0 and each 0 < 7 <t we have:

(1) ¥x (BLT) = BEF, and
(2) I (z) C B! for all z € BLTL.

The proof of (1) is by induction on t. For t = 0 it is obvious that ¥g (Bl) = B}, for all
n, since by our definition ¢ (z) = {z} for all z € X. Therefore, for the induction step,
assume that for some ¢t > 0 we have 9% (B5) = BL™ for all n and all 0 < 7 < t. We
want to prove that for any given n we have ¢ (B4?) = BLt? for each 7 =0,1,...,t + 1.
Start by observing that by the induction hypothesis ¥7 (By') = Bt+! holds true for
all 7 = 0,1,...,t. Now note that Bi+? = Bltﬂtl_(k_nl_l'” L]B,ij;l. But then for each
T=0,1,...,t we have

kn kn
v = w( UomY)= U wE)
j=kn—(k-1) j=kn—(k-1)
— llj Bt-+l:Bt+2
J LON
j=kn—(k—1)

Also, by definition ¢f, ; (B§?) = BL2. Therefore, ¢7 (B4+?) = BL*? holds true for each
nand all 7 =0,1,...,t+ 1, and the validity of (1) has been established.

The proof of (2) is by induction on 7. For 7 = 0 notice that for each z € B4 we
have Ig(z) = {2} C Bfl“. For the inductive step assume that for some 0 < 7 <t we have
IL,(z) C Bi+! for all € B4, We must show that Tl-41(z) C Bt+1 for all z € BEH.
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Fix z € B!, From (1) we get ¥, (B5™) = B5H, and so 97, (z) © Bi+1. Therefore,
each element y € ¥}, (z) belongs to B*l. But then our induction hypothesis yields
I, (y) € Bt for each y € ¢*, (z), and so I 41 (x) = Ir(2) U[Uyeye, (o) IT, (y)] € B4

T+1
We are now ready to show that U* is strongly anonymous. To this end, assume that

a,b € X satisfy a # b, and b € 7, (a) with t > 1. Since a € X = | |37, B!F! there exists
a unique natural number n such that a € B5™. Since the correspondence 97, restricted
to Bi*? is k-partitional, it follows that there exists some j # n such that b € B;.H. But
then it follows from (2) that II;(b) C B3+1. Using (2) once more we get II;(a) C BT
Finally, taking into account that B;'H N Bt = @ we easily infer that IT;(a) NI1(b) = D,
and the proof is finished.” m

This theorem is fundamental, as it demonstrates that (given any infinite population
X) a simple matching technique exists that insures complete informational isolation in
each match and in each period. The necessary ingredient is an initial partition of the

set X composed of countably many pairwise disjoint sets of identical cardinality. For
example:

x =01=]4 =] (73
n=1 n=1
X zN:IjAn:lj{n}
n=1 n=1
X =N=DAn=|j{2n——1,2n}
n=1 n=1
X =(0,00=|]An=]](n—-1n].
n=1 n=1

An example of how to construct a strongly anonymous mechanism can be helpful.
Suppose we want to construct clusters of k = 3 agents on a population X consisting of
the natural numbers. Thus, we can initially partition the population as follows: X =
L2, {n} = LI?>, An. That is, each A, has cardinality one. According to our recursive-
block partition, in ¢t = 0 we have Bf = A, = {n}. For t =1, we have B2 =B}, _,U
B}, U Bl ={3n—-2,3n—-1, 3n}, and so on. An implementation of the recursive-block
invariant mechanism ¥* is shown in the table below.

"Property (1) is related to the notion of invariance with respect to a function. Given a function
f: X — X, asubset S of X is said to be f-invariant if f(S) C S, ie., f(z) € S for all z € S. According
to this terminology, for each t > 0, each n and all 7 = 0,1,...,1t the sets B! are vi-invariant. This
implies that one can construct strongly anonymous mechanisms as long as Y; (BEH) C Bi*!. The equality
P (BLT) = Bit! is not necessary for strong anonymity.
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t

0 [1] 2] 8] 4] 5] (6] 7]

1 [1,23] [456] [789] [10,11,12] [13,14,15] [16,17,18] [19,20,21]
2 [14,7] [258] [3,6,9] [10,13,16] [11,14,17] [12,15,18] [19,22,25]
3 [1,10,19] [2,11,20] [3,12,21] [4,13,22] [5,14,23]  [6,15,24] [7,16,25]

Table 1

That is, in t = 1, ¥ (1) = ¥} (2) = ¥} (3) = {1,2,3}. Int = 2 we have ¢3 (1) = ¢35 (4) =
P53 (7) = {1,4,7}, and so on. It is easy to see that agents in any cluster have no direct or
indirect links to prior clustermates. That is, this mechanism is strongly anonymous.

6 An Application: Matching Models of Money

Here we demonstrate how the theoretical construction we have developed can be used to
provide an explicit and rigorous foundation to the existing matching literature. To do so,
we focus on the monetary literature, where the desire to make trading frictions explicit is
prominent. This desire explains why a large segment of modern monetary theory is now
based on the so-called “search-theoretic” models of money. These are models in which
infinitely-lived agents are assumed to meet randomly and pairwise over time. In such
economies it is assumed that agents cannot be paired more than once and cannot observe
the trading histories of others. These, as well as additional conditions on preferences and
technologies, make trading frictions explicit and provide a definite medium-of-exchange

role to fiat money. We now look at two representative pairwise-matching models of this
literature.

6.1 A Prototypical Random Matching Model of Money

The seminal paper in this literature is Kiyotaki and Wright [7]. This paper describes a
discrete-time monetary economy with a continuum of infinitely lived agents. The popu-
lation is constant and is assumed to have mass one. Agents can be one of three types,
in equal proportions. It is assumed that these agents are bilaterally matched. While the
matching technology is not formalized, the paper contains the following description of the
outcome of the matching process:

«.., each period, agents are matched randomly in pairs and must decide
whether or not to trade bilaterally, without the benefit of an auctioneer or
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some other outside authority to impose any arrangement. Trade always en-
tails a one-for-one swap of inventories, given the physical environment, and
occurs if and only if mutually agreeable (there is no credit since a given pair
will meet again with probability 0).”

We now show how to formalize a matching process that satisfies such a description and
explain how to insure that matching is done in such a manner that credit trades cannot
take place at all. That is, not only—as described in the original paper—every pair meets
again with probability zero (which we called weak anonymity), but also we show how to
insure that every pair does not share past partners, etc. In brief, we construct matches
in which agents are completely isolated from an informational standpoint.

Here are the steps one needs to take in order to construct a matching a la Kiyotaki-
Wright. The first step is to select a population with infinitely many agents. To do so, let
for instance X = N ={1,2,3,...}. The second step, is to divide the population in three
types of agents in equal “proportions.” Therefore, we let agents {1,4,7,.. .} be of type I,
agents {2,5,8,...} be of type II, and agents {3,6,9,...} be of type I1I.

The third step, is to insure that each agent has probability :—15 to meet an agent of any
type in each period. To do so, we restrict attention to k-clustering rules which include
multiples of three. In this way we can have an equal number of agents of each type in
each cluster. Then we choose a probability measure over the set of ¢, matching rules,
such that each agent has probability % to be matched to any type.

An example may be helpful. Suppose k = 3 and we have formed the cluster Q=
{1,2,3}. Then the number of all possible pairings (i.e., bilateral matching rules) is £3 = 4.
The set which lists all possible bilateral matching rules is B({1,2,3}) = {1, ¢2, ¢3, b4},
where

1 2 3 1 2 3 12 3 1 2 3
d":(z 1 3)’¢2=<1 3 2>’¢’3:<3 2 1>’¢4:(1 2 3)'

If we consider the probability measure f on B(Q) defined by f(¢1) = f(¢2) = f(d3) = i
and f(¢4) = 0, then each type has equal probability of being matched to any of the three
types.

We emphasize, as we did earlier, that the number of bilateral matching rules £ grows
large very quickly. In short, the probability of any given matching rule being chosen drops
rapidly to zero as k grows. That is, the chance of meeting any one agent drops to zero
rapidly as the size of the cluster grows.

To insure matches are anonymous, we use our recursive block-invariant clustering
mechanism. To give an illustration of such a clustering mechanism, consider agent 1 and
the clusters to which he belongs over time as shown in Table 1. In period t = 0 agent
1 is by himself. In period ¢ = 1 he is in a cluster with agents 2 and 3. In period t = 2
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agent 1 is in a cluster with agents 4 and 7, and so on. In general, in date t > 0 agent 1 is
in a cluster with agents 3~! 4+ 1 and 2 x 3!~1 + 1. Therefore, agents in this economy are
matched randomly and once matched they will never meet again.

6.2 A Directed-search Matching Model of Money

Our formulation of stochastic matching mechanisms is quite general. For example, it can
be employed to formalize environments where agents are periodically matched to a specific
type of agent, as in Corbae et al [3]. There, if X = {a,b,c}, parameters exist such that
the following deterministic matching mechanism can endogenously emerge in equilibrium:

=11| ¢(a) =band ¢(c) =c
t=2| ¢(b) =cand ¢(a) =a
t=3| ¢(a) =cand ¢(b) =b
t=4| ¢(a)=band ¢(c) =¢

In short, the authors define in [3] a three-period matching cycle, where every agent
stays unmatched for one period after two consecutive matches. Using our machinery, we
can formalize such a matching mechanism as follows. First, at each date we partition the
population into a single all-encompassing cluster, that is, 1:(a) = P (b) = Pi(c) = X.

Second, we specify a degenerate probability distribution over the set of all possible
matching rules B ({a,b,c}), in each period. The possible matching rules are:

a b ¢ a b ¢ a b ¢ a b ¢
¢1_<b a c>’¢2_<a c b)’d)g—(c b a)’¢4—<a b c)'
Specifically, in every period t we have f(¢4) = 0, whileint =1,4,7,... we have f(¢1) =1,
int=258,.. wehave f(¢2) =1, and in t = 3,6,9,... we have f(¢3) = 1.

Finally, to achieve the desired cyclicality in matching, we specify a time-dependent
stochastic matrix that is defined by

alb]ec alb|ec albl|c
al0]1]0 a|1101]0 al{0]0]|1
0101 01110 11010

Consequently, agents are bilaterally matched in a deterministic way at each point in time
having the same information sets.
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7 Final Remarks

In this paper we have presented a rigorous theoretical formalization of a general class
of technologies that support random pairwise interactions in any population. Especially,
the central focus of the analysis has been to demonstrate how different properties of the
matching technology give rise to different degrees of informational frictions.

By developing a comprehensive theoretical approach to random matching, we con-
tribute to building more solid foundations for a research discourse centered around the
study of allocations in decentralized trading environments. Identifying an exact map
between matching technologies and the frictions impinging on the trading process can im-
prove the formulation of economic models whose main trait is markets that are not well
functioning. In particular, once preferences, production technologies, and a suitable equi-
librium concept are defined, this study is a useful starting point for a deeper understanding
of how informational and spatial constraints might affect the possible allocations.
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