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EQUILIBRIA IN INCOMPLETE ASSETS ECONOMIES WITH
INFINITE DIMENSIONAL SPOT MARKETS

CHARALAMBOS D. ALIPRANTIS AND RABEE TOURKY

ABSTRACT. The paper studies the two period incomplete markets model where assets are claims
on state contingent commodity bundles and there are no bounds on portfolio trading. The
important results on the existence of equilibrium in this model assume that there is a finite
number of commodities traded in each spot market and that preferences are given by smooth
utility functions. With these assumptions an equilibrium exists outside an “exceptional” set of
assets structures and initial endowments. The present paper extends these results by allowing
for general infinite dimensional commodity spaces in each spot market. These include all the
important commodity spaces studied in the literature on the existence of Walrasian equilibrium—
in each spot market the consumption sets are the positive cone of an arbitrary locally solid Riesz
space or of an ordered topological vector space with order unit or of a locally solid Riesz space
with quasi-interior point. The paper establishes that even with our very general commodity
spaces there exists an equilibrium for a “very” dense set of assets structures. Our approach
is in the main convex analytic and the results do not require that preferences be smooth or
complete or transitive. The typical situation in infinite dimensional commodity spaces does not
readily allow for the kind of differential analysis and smoothness assumptions used in the finite
dimensional setting. In the general settings that we study it seems that one is restricted to
convex analytic techniques and assumptions. Therefore, the concepts and techniques studied in
this paper also have important finite dimensional applications.

1. INTRODUCTION

In this paper we investigate the existence of equilibrium in the two period incomplete markets
economy studied by Duffie and Shafer (1985) and Magill and Shafer (1990) allowing for an infinite
number of commodities in each spot market. In this economy there are finitely many assets that
are claims on state contingent commodity bundles and finitely many states of the world. There are
no bounds on portfolio trading and the value of a portfolio depends on the prevailing prices in spot
markets. Our purpose is to establish the existence of equilibrium in sufficiently general infinite
dimensional settings with weak assumptions on agents that are comparable to those typically made
in the study of the existence of Walrasian equilibrium.

It is well understood that when more than one commodity is traded in each spot market and there
are no bounds on portfolio trading an equilibrium may fail to exist even when preferences satisfy
very strong assumptions. The classical counter example is that of Hart (1975), which highlights
the dramatic discontinuity of the budget sets in the incomplete markets model. However, in their
paper Duffie and Shafer (1985) show that outside a negligible set of assets structures and initial
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endowments there exists an equilibrium. In particular, counter examples such as Hart (1975) are
not robust to perturbations of the securities and endowments. Duffie and Shafer assume that there
are finitely many commodities in each spot market and that preferences are given by smooth,
strictly convex, monotone utility functions. For an overview of the literature on the existence of
equilibrium in incomplete markets see for instance Duffie (1996), Geanakoplos (1990), and Magill
and Shafer (1991).

In this paper we consider economies with incomplete markets and infinite dimensional commod-
ity spaces in each spot market. Such a situation arises in a host of economic applications. It arises
in hybrid models of incomplete markets and Arrow-Debreu economies. For instance in models with
commodity differentiation the commodity space in each spot market is naturally infinite dimen-
sional (cf., Mas-Colell (1975)). It also arises in cases where there are infinitely many states of the
world. Though we restrict our attention to finitely many states of the world our model covers the
situation in which there are infinitely many states of the world but dividends are paid in an interim
period according to their expected value over a finite number of events; see the Appendix A.

Infinite dimensional commodity spaces have been well studied in the context of the Arrow-
Debreu economy. The most important results come from the literature that follows the work
of Mas-Colell (1986), where one assumes that preferences satisfy some cone condition typically
termed properness and that the commodity space is a Riesz space. A principal motivation for
these works is to establish fundamental results such as the existence of equilibrium in a general
enough setting that includes all the important applications in economics. For an overview of
this literature see for example Aliprantis, Brown, and Burkinshaw (1990), Aliprantis, Cornet, and
Tourky (2002), Aliprantis, Tourky, and Yannelis (2000), and Mas-Colell and Zame (1991).

We prove in this paper four main theorems on the existence of equilibrium, which cover the most
important commodity spaces in economics. The first is in the finite dimensional setting and extends
the results on the existence of equilibrium in economies with incomplete markets to the case of non-
smooth and unordered preferences. The second is a theorem for ordered topological vector spaces
with order units. This extends the classical result of Bewley (1972) on the existence of Walrasian
equilibrium to the incomplete markets framework. Our third result looks at locally solid Riesz
commodity spaces with strictly positive total endowments. We establish this result with a variant
of the very weak pointwise properness assumption on preferences and extend the works of Araujo
and Monteiro (1989) and Yannelis and Zame (1986) to the incomplete markets framework. Finally,
we look at the very general locally solid Riesz spaces and extend the ideas of Mas-Colell (1986).
This result is established using a variant of the uniform properness assumption of Yannelis and
Zame (1986).

The typical situation in infinite dimensional commodity spaces is that the positive cone of the
commodity space has an empty interior. Therefore, the analysis does not readily allow for the kind
of smoothness assumptions on preferences that are made in the finite dimensional model. Moreover,
in the general commodity spaces that we consider one seems to be restricted to convex analytic
techniques. We do not avoid this restriction and do not mimic smoothness type assumptions
on preferences—noting, however, that the properness of preferences is related to the notion of
subdifferentiability. Rather, we assume that preferences are given by convex valued mappings that
need not be transitive or complete. In this regard the paper also contributes to the literature of
the existence of equilibrium in incomplete markets with finite dimensional spot markets.

In our main theorems we show that for a “very” dense set of assets structures there exists
an equilibrium. That is, for any assets structure there exist directions such that every small
perturbation of the assets structure in those directions gives a structure for which an equilibrium
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exists. This, of course, may not mean that “generically” for assets structures there exists an
equilibrium. However, it is very closely related to the idea of largeness in the intuitive geometric
sense. It implies much more than simple density in the space of assets structures. We establish
that the set of assets structures for which an equilibrium fails to exist is perforated by gaps of fixed
finite codimension.

The idea of looking at the existence of equilibrium in a dense set of assets structures is borrowed
from the work of Magill and Quinzii (1996) who study infinite horizon incomplete markets with
finite dimensional commodity spaces. The common feature with that paper is that in both settings
it is not apparent how the typical finite dimensional arguments can be used to prove genericity.
Our result is also interesting in light of the recent paper of Busch and Govindan (2002) that
gives a counter example on the existence of equilibrium that is robust to small perturbations of
endowments—Dbut, of course, not robust to perturbations of the assets structure.

Our proofs add to, collect, and adapt ideas developed in mathematical economics over the last
three decades. The proofs have four steps. First, we follow Duffie and Shafer (1985) and Magill
and Shafer (1990) and reduce the problem to the existence of a pseudo-equilibrium. Then we
define the notion of an abstract game with subspaces and prove the existence of equilibrium for
such a game using the subspace fixed point theorem of Husseini, Larsy, and Magill (1990). At
this point our analysis faces serious technical difficulties that do not arise in the finite dimensional
incomplete markets literature or in the Arrow-Debreu infinite dimensional literature. A major
problem is that the strict budget correspondence fails to have an open graph and the weak budget
correspondences fail to be lower hemicontinuous.! We solve this problem by defining a market
game whose better response correspondences are constructed using the order structure of the
commodity space. Importantly, a “Nash” equilibrium for this market game both exists and implies
the existence of a pseudo-equilibrium for the economy. So we broadly follow the strategy of Gale
and Mas-Colell (1975) by reducing the problem of pseudo-equilibrium existence to that of the
existence of an equilibrium for an abstract game. Finally, we complete the proofs by extending
ideas pioneered by Aliprantis, Brown, and Burkinshaw (1987), Araujo and Monteiro (1989), Bewley
(1972), Mas-Colell (1986), and Yannelis and Zame (1986).

In the last two decades, perhaps the most spectacular highlights of the literature on mathemati-
cal economics comprise the works on incomplete markets with finite dimensional commodity spaces
and the works on complete markets with infinite dimensional commodity spaces. That is, the works
that follow Duffie and Shafer (1985) and Mas-Colell (1986), respectively. The present paper con-
tributes to both of these literatures by extending the theory of incomplete markets to the general
setting of Aliprantis and Brown’s (1982) Riesz commodity-price duality and extending important
vector lattice theoretic techniques beyond the Arrow-Debreu model of general equilibrium.

There are other areas of investigation that are closely related to the present work. The first
is on existence of equilibrium with a continuum of states of the world and a finite number of
commodities in each spot market, see for instance Hellwig (1996), Monteiro (1996), Mas-Colell and
Monteiro (1996), and Mas-Colell and Zame (1996). The important results in this setting assume
that preferences are given by state-dependent von Neumann-Morgenstern utility functions and
place some restrictions on short sales. A surprise in the present paper is that there is no need
for arbitrary restrictions on portfolio trading even if commodity spaces are infinite dimensional.
The second related area of investigation is the work on incomplete markets with only purely
financial securities. In the finite dimensional setting such models admit theorems on the existence

IThe discontinuities arise even with the budget sets defined in the pseudo-equilibrium setting.



INFINITE DIMENSIONAL SPOT MARKETS 4

of equilibrium that are basically as general as the standard results on the Arrow-Debreu model,
see for instance Werner (1985, 1989). Furthermore, with purely financial assets the technical
difficulties in the infinite dimensional setting are closely related to those that arise in the Arrow-
Debreu model, see for instance Aliprantis, Brown, Polyrakis, and Werner (1998). Finally the work
is related in an obvious way to the study of equilibrium existence in infinite horizon economies and
finite dimensional commodity spaces, see for instance Levine (1989), Magill and Quinzii (1994),
Hernéndez and Santos (1996), Levine and Zame (1996).

The paper is organized as follows. The model is described in the next section. We follow with
a list of our major theorems. We then study a bilinear valuation operator arizing in the theory
of incomplete markets. This is followed with an analysis of pseudo-equilibria and a study of our
market game. We conclude the paper with a mathematical and applications Appendix.

2. THE ECONOMIC MODEL

Our economy is a securities market with two time periods; 0 and 1 or “today” and “tomorrow.”
There is a finite number of states of the world {1,...,S} that can be realized in period 1. For
convenience we incorporate period 0 into the set of states of the world. We denote by s elements of
the set S = {0,1,..., S} and call each of them a state. We emphasize, however, that the number
of period 1 uncertain states of the world is precisely S, i.e., the states 1,...,S.

In each state s there is a spot market where consumers trade commodity bundles represented
by the vectors in a Hausdorff locally convex space (Es,7s). The space Es is also an ordered
vector space with positive cone EF. The commodity space is the Cartesian product £ = Hf:o E,
endowed with its product ordering and product topology. The typical vector z € E will be written
as ¢ = (xg,21,...,Ts), where z;, € E; for each s € S. We shall denote by E the positive cone
of £ (ie., By = Hf:o E}) and by 7 its product topology (i.e., 7 = Hf:o 75). Unless otherwise
indicated, all topological concepts concerning the spaces E and E, will be understood in terms of
the topologies 7 and 7y, respectively. We adapt some notation from game theory. If z € E5 and
z € E, then the expression y = (z,2_s) will denote the vector y € E whose st" coordinate y; is

precisely z and for s’ # s we have y; = z. The tree structure of the two period securities market
is shown in Figure 1.

FIGURE 1. A two period model of uncertainty: states, spot commodity spaces,
spot price spaces
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A spot price system, or simply a spot price, is any nonzero vector p = (po,p1, .. .,Ps) € E',,
where E' = Hsszo E' is the topological dual of E.> As usual, a vector z € E is called strictly
positive (in symbols z > 0 or 0 < z), if 0 < p € E' impliesp-z = Zsszo ps - Ts > 0. The notation
x> y (or y < z) means x — y >> 0. Likewise a spot price p € E’ is said to be strictly positive
(denoted p > 0), if for all z € E satisfying z > 0 we have p-z > 0.3

Our securities market will have m consumers indexed by i. Each consumer i has E, as her
consumption set and her strict preferences are represented by a correspondence P;: By — E..
Also, each consumer i owns an initial endowment w' = (wi,wi,...,ws) € E;. Denoting the
total endowment of the economy by

m m m m
— E T E i i E L) —
w = w _( WO,ZUJTi,..., w}s')_(wO’wla"'s,wS)eE—Fv
i=1 =1 =1 i=1
we shall say that a vector z = (z!,22,...,2™) € ET, where 2* = (z}, z},...,z%) € E, for each

consumer 1, is an allocation if

m m m m
i i i i
E xz(g mo,g wl,...,g xs>=w,
i=1 i=1 i=1 i=1
m

or, equivalently, if 7" 2% = 3" w! for each s=0,1,...,S.

We are now ready to introduce the notion of our portfolio space.

Definition 2.1. A portfolio space is any finite dimensional vector space M of dimension J < S.

Of course, during our study M will be a fixed portfolio space. The number J (the dimension of
M) is interpreted as being the number of (non-redundant) available securities. Here are the usual
pertinent notions associated with the portfolio space.

(1) A portfolio is simply an arbitrary vector of M.

(2) A portfolio trade is any vector @ = (6y,...,0,) € M™ satisfying > 1", 6; = 0.
(3) An assets price is a linear functional ¢ € M’, the dual of the portfolio space M.
(4) An assets structure is a linear operator T: M — Hle E;.

(5) The marketed space induced by T is the range T'(M) of the operator T'.

The collection of all assets structures will be denoted by G. All of our equilibrium results shall
be stated in terms of “generic” subsets of G.

Lemma 2.2. For any fized basis {n1,m2,...,n3} of the portfolio space M, every assets structure T’
can be identified with a vector (T'n1, Tng, ..., Tn3z) of (Hle Es)s. In particular, G can be identified
with the vector space (HSS=1 ES)J.

2As usual, we let E\ = f:O(Eg)+, where (E{)* = {p€ Ej: p(z) >0forallze E{} is the dual cone of the
cone EF. Following the standard notation in economics, we shall write p - z instead of p(z).

3Keep in mind that in a partially ordered set (X, >) the notation > y means ¢ > y and « # y. Also, if a and
b are elements in a partially ordered set (X,>) satisfying a < b, then we shall use the following standard notation
to denote the order intervals associated with a and b: [a,b] = {x € X: a <z < b}, (a,b] ={r € X: a<z < b},
and [a,b) = {x € X: a < z < b}. The “open” order interval (a,b) will have a special meaning for us here. It will
be defined as (a,b) = {z € E: a <z K b}.
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With such an identification, the number J represents the number of the non-redundant securities
Tm,Tna,...,Tny. For the rest of our discussion in this section, T" will denote a fixed assets
structure. As we shall see in the subsequent sections, the important notion for the analysis is the
marketed space T'(M). We shall assume that M has a fixed basis {n1,72,...,73} so that T’ can
be identified with the J-dimensional vector T = (Ty,T3...,T5), where T; = Tn; € Hle E, for
i=12...,3.

Following the standard operator theory notation (see for instance Abramovich and Aliprantis
(2002a,b)), we shall also denote the value T'(f) by T@. Given an arbitrary portfolio 6 the vector
T6 = (TH(1),TH(2),...,TH(S)) is a period 1 contingent claim where T(s) is the commodity
bundle assigned for the portfolio 8 by the assets structure T' at state s. If moreover, the spot price
in state s is p(s), then p(s) - [T'6(s)] is the payoff of the portfolio # in state s.

Having introduced enough notation and terminology above, we can define the general framework
of our economy as follows.

Definition 2.3. An assets economy with spots markets (or simply an economy) is a tuple
£ = (S, ((Es, EL))ses, (W%, (P, M,T), where:

(a) S=1{0,1,...,S} is the states of the world.

(b) (Es, E) represents the spot markets commodity-price duality system in each state s.

(c) m is the number of consumers, where each consumer i is endowed with an initial endowment
wte B, = Hf:o E} and a preference correspondence P;: Ey — E.

(d) M is the J-dimenstonal portfolio space and T: M — Hle E; is the assets structure linear
operator.

We shall assume throughout this work the following:

AL The ordered Hausdorff locally convex space E has T-closed and T-bounded
order intervals and there exists a Hausdorf linear topology p on E for which
each order interval in E is p-compact.®

AIL: For each consumer i and each s we have w} > 0.
AIIL: The preference correspondence P;: E4 — E4 of each consumer i is:
(a) irreflexive, t.e., v ¢ Pi(z) for each z € E,.
(b) strictly monotone, i.e., v +y € Pi(x) for all z,y € Ey with y > 0.
(c) comprehensive, i.e, Pi(z) + E4 C P;(x) for each x € E,.
(d) convex- and open-valued in E, for some Hausdorff linear topology
on E (which might be different than 7).

aNotice that this condition is automatically satisfied if each Es has weakly compact intervals.

The next thing in line is to introduce the budget sets for our consumers. For each consumer ¢,
assets price ¢ € M’, spot price p € E’, and portfolio § € M, we define the following budget sets:
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. _ . po-zo < po-wh—q-0
51(1—"’7(],9) = {IEE+ \V/SZ 1, Ds  Ts < psw;+ps[T9(s)]} )
Bipa) = | Bilp.a.6).
e M

The bundles in 8;(p, q,6) are called the consumer i’s affordable bundles when she purchases
the portfolio @ and the prevailing spot price is p and assets price is ¢. That is, the budget set
Bi(p, q,0) is the set of all commodity bundles in E that are affordable to consumer i if she buys
the portfolio # in period zero when the prevailing spot price is p and the assets price is g. The
budget set §;(p, q) consists of all consumption bundles z € E for which their exists a portfolio 0
so that z is affordable to consumer 1 if she buys the portfolio 6.

The equilibrium concept for our economy is defined as follows.

Definition 2.4. An equilibrium is a 4-tuple (p, q, x,0) such that:

(1) p is a spot price.

(2) q is an assets price.

(3) 0 =(04,...,0,) € M™ is a portfolio trade.

(4) z = (z',2%,...,2™) € ET is an allocation such that for each consumer i the bundle a'
is affordable if she buys the portfolio 8; and no preferred bundle to z* is affordable for all
portfolio purchases. In other words, for each consumer ¢ we have:

(a‘) ‘Ti € /Bi(pv qvei)! and
(b) Pi(z*) N Bi(p,q) = D.

As expected budget equalities hold at equilibria.

Lemma 2.5. If (p,q,z,0) is an equilibrium, then:
(1) p>> 0, i.e., the spot price p is strictly positive, and
(2) for each consumer i we have the budget equalities
(a) po-ah=po-wh—q-b; and
(b) ps-at =pg-wi +ps-[TO:(s)] for s=1,2,...,8S.
Proof. Assume that (p, g, x, @) is an equilibrium.

(1) If p = (po, p1, - - .,Ps) is not strictly positive, then there exists some state s* such that ps-
is not strictly positive. That is, there exists some vector 0 < v € E,~ such that ps.-v = 0. Now if
we let u = (v,0_4+) € Ey, then note that v > 0 and z* +u € B;(p,q,0:) N P;(z*) for each ¢, which
is impossible.

(2) From the definition of equilibrium, we get

m . S m ) m ) S m )
S poah+ DS peal <Y (po-wh—a-0)+ DD (ps-wi+ps [T0:(5)])
i=1 s=14i=1 i=1 s=11i=1

Now note that

m

m S m S m S . m }
Shoah+ YN peai =0 perai=9 Y psrai=) pal=pw,
i=1 =1

s=11i=1 s=01i=1 i=1 s=0
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and taking into account that Z:’;l #; = 0, we see that

m S m
o wh—q-0)+ > D (ps-wi+ps - [T:(5)])
=1 :

s=11i=1

I
NgE
?
&

2
NgE
Qb
+
Mm
NgE
=
£

+
Mm
NgE
?P
5

Il
3
€
+
(]
i
=
—
.MQ
>
N
O

Il
3
€

So, we have shown that

m S m
Zpo ERS D) AT RTINS 3 p S RUAN Y R
s=11i=1 i=1 s=11i=1
and from this we infer that budget equalities must hold true. W

3. THE MAJOR RESULTS

Our results will be stated in terms of a notion of “largeness.” We shall introduce this funda-
mental concept for our study first.

Definition 3.1. Let X be a nonempty subset of a vector space Y. A vector x € X is called an
internal point of X with respect to Y if for everyy € Y there exists some og > 0 (depending on
y) such that x + ay € X holds for all —ap < a < ag.t The nonempty set X is called:
(i) algebraically open in 'Y, if every vector of X is an internal point of X with respect to
Y, and

(ii) algebraically nowhere dense in Y, if X has no internal points with respect to 'Y and
Y \ X is algebraically open in Y.

It should be clear that if X is algebraically nowhere in Y, then X NY # @. Recall that a vector
subspace Z of a vector space Y is said to have codimension n, if there exists an n-dimensional
subspace L of Y such that L ® Z =Y, i.e, Y is the direct sum of L and Z, or equivalently if the
quotient vector space Y/Z has dimension n.

Definition 3.2. Let n be a natural number. A subset X of some vector space Y is said to be
n-strongly dense if there exists a family {Y*}ren of vector subspaces of Y with the following
properties:

1) Each Y has codimension less than or equal ton and Y = Y>.
AEA

4This is equivalent to saying that for each y € Y there exists some 0 < ag < 1 such that (1-a)z+ay € X for
all 0 < a < . This is a very convenient alternate definition that will be employed extensively in our work.
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(2) For each A the set Y\ X is algebraically nowhere dense in Y. That is, each YA\ X has
no internal points with respect to Y> and every vector of X N Y is an internal point of
X NY> with respect to Y.

(3) If y € Y2\ X holds for some A, then there exists some x € Y such that for all0 < a <1
we have ay + (1 —a)z € X.

We shall say that the set X is strongly dense in'Y if it is n-strongly dense for some n.5

We list a simple property of strongly dense sets.

Lemma 3.3. If X is strongly dense in'Y, then X is dense in Y for any topology on'Y for which
line segments are continuous paths.® In particular, X is dense in'Y for any linear topology on'Y .

Proof. Let X be strongly dense in Y and let 7 be a topology on Y for which line segments are
continuous paths. Pick y € Y. For some \ we have y € Y. If y € X, then we are done. So, we
can assume that y ¢ X, i.e., y € Yy \ X. Since Y* \ X has no internal points with respect to Y),
there exist some z € Y* and some 0 < ag < 1 such that z, = (1 — a)y + az ¢ Y*\ X for all
0<a<ay Sozpa€ X foralll <a<ap andfromza-o{—(,»ywegetyEY, e, X=Y. m

With this notion of strong density, we are ready to state our first major result for the finite
dimensional setting.

Theorem 3.4. If E is finite dimensional and for each i we have w' > 0 and P; is lower hemicon-
tinuous, then for a J(S —J)-strongly dense set of assets structures in G there exists an equilibrium.

This theorem extends the work of Duffie and Shafer (1985) to the case of unordered preferences
and the results of Gale and Mas-Colell (1975) and Shafer and Sonnenschein (1975) to the model
of general equilibrium with incomplete markets.

Let us now move to the infinite dimensional case. First we need to make two continuity as-
sumptions on preferences. Recall that the typical assumption used in the study of the infinite
dimensional Arrow-Debreu model is that the sets of the form P! (y) = {z € E4: y € Pi(z)} (the
lower sections of P;) are p-open in E,. Such an assumption is needed to deal with the “dis-
continuity” of the Walrasian budget set when we endow the price space with its weak™ topology
and the commodity space with the topology u; see for example Araujo (1985). In the incomplete
markets setting the budget sets are more “dramatically discontinuous.” Therefore, it seems that

the usual continuity assumption needs strengthening. We shall achieve this goal with the help of
two more conditions.

A1: If F is any finite dimensional subspace of E, then for each i the set
{(2.y) € By x F: y € P(x)}
is open in (Ey,u) x F.

5An example of a strongly dense set is the space of nonsingular m x m matrices. We do not know the exact
relationship between strongly dense and nowhere dense sets. This issue remains open even in R2. However, Yeneng
Sun (oral communication) has indicated to us that he can establish some results in this direction.

6That is, for each z,y € Y the mapping a — az + (1 — a)y, 0 < o < 1, is continuous.
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Now define for each ¢ and each state s the lower section correspondence p;l : E5 — E4 by

P7i(z) = {z € By: (2,3-,) € Pi(a)},

and consider the following condition.

A2: For each i, each s and each z € E, the set Pigl(z) is p-open in E.

Some remarks concerning conditions A1l and A2 are in order.

e Ifu: Ey — R is a quasi-concave and continuous utility function, then the strict preference
correspondence P: E; — Ey with P(z) = {y € E4: u(y) > u(x)} satisfies assumption
Al forp=o(E,E").

To see this, let F' be any vector susbspace of E and suppose that some (z,y) € E; x F satisfies
y € P(z), ie., u(y) > u(x). Let anet (zx,yx) € B4 x F satisfy (zx,yx) 2(B.ENxT, (1 9). We need
to show that eventually for A large enough u(yy) > u(zxy).

To this end, pick z € E4 such that u(y) > u(z) > u(z). Notice that he convex closed set
U={heEy: u(h)>u(z)}is also o(E, E')-closed. Hence, the set E, \ U is o(E, E')-open in
E. and since z € E, \ U, it follows that zy € E; \ U for all X eventually large. This implies
u(zy) < u(z) for all A eventually large. On the other hand, from y) *y, we see that u(yx) > u(z)
holds for all A eventually large. Consequently, for all A eventually large we have u(yx) > u(z).

e A preference correspondence P: E, —» E, satisfies A1 and A2 for p=o(E, E’) if one of
the following holds true:

(a) For each s there exists a continuous quasi-concave utility function us: B — R such
that P(x) = {y € Ey: Zf:o us(ys) > Zf:o us(xs)} holds for each x € Ey.

(b) P is the strict preference correspondence induced by a continuous utility function
u: Ey — R and for each z € Ey the set {zx € E;: u(x) > u(z,x_,)} is T-closed
and convez.

(c) P has a weakly open graph in E4 X E, .

(d) E is finite dimensional and P has an open graph in E4 X E,.

We shall indicate how one can prove the above statements

(a) Defineu: E; — Rbyu(z) = Zle us(z,) and note that u is quasi-concave and continuous.
Therefore, by the previously proven fact, Al holds true.

Fix z € EF and consider the 7-closed convex set U(z) = {z € E: w(z) > u(z,z-5)}
It follows that U(z) is o(E, E')-closed and its complement in E, (which is precisely the
set P !(2)) must be o(E, E')-open in E;. Thus, A2 is satisfied.

(b) Tt follows as in (b).

(c) If (c) is true, the A1 is clearly satisfied. Now let {z)} be a o(E, E')-convergent net
to x € P7'(z). For A large enough it must be the case that (z,(zx)-s) € P(z), since
{(z, (xx)_s)} weakly converges to (z,x_s) and (z,2_5) € P(), it follows that z € P71(z)
for A large enough. This implies that Py !(2) is o(FE, E')-open in E, i.e., A2 is true.

(d) Repeat the arguments in part (c).

We now state the first of our theorems for infinite dimensional commodity spaces.



INFINITE DIMENSIONAL SPOT MARKETS 11

Theorem 3.5. If w is an interior point of E, and conditions Al and A2 are satisfied, then for
a J(S — J)-strongly dense set of assets structures in G there exists an equilibrium.

Theorem 3.5 extends results in the works of Bewley (1972), Florenzano (1983), Khan (1984),
Toussaint (1984) to the incomplete markets framework.

If E, does not have an interior point, then we need to assume some type of properness on
preferences and to strengthen the assumptions on the order structure of E. The following condition
on preferences is related to the very weak pointwise properness assumption studied in the literature.

A3: For each i, each s, and each x € E., there exists an open convex cone®
Cv® C Es such that:
(a) ws € CHT, and
(b) z € (zs + CL®) N ES implies (z,x_,) € Pi(z).

We shall call Ci® the cone of pointwise properness of consumer i in
state s at x.

%A nonempty subset C of a vector space is called an open convex cone if C is an open convex
set and x € C implies ax € C for all a > 0.

Let G, be the set of all assets structures in G such that for every § € M there exists o > 0
satisfying —aw < 76 < aw. In other words,

o0
G, = {T €gG: TIM)CE, = U n[—w,w}} )
n=1
If we recall that the set E, = | oo, n[-w,w] is called the principal ideal generated by w in E,
then G, consists simply of all assets structures having ranges lying in the ideal E,,.

Lemma 3.6. Each G,, is a vector subspace of the space of assets structures G.

The next version of our major result is stated in the Riesz space framework.

Theorem 3.7. If each E is a Hausdorff locally convez-solid Riesz space, w > 0 and conditions
A1, A2, A3 are satisfied, then for a 3(S — 3)-strongly dense set of assets structures in G, there
exists an equilibrium.

Theorem 3.7 extends the works of Araujo and Monteiro (1989) and Yannelis and Zame (1986)
to the incomplete markets framework.

If E, has an interior point, then v > 0 is equivalent to saying that v is an interior point of
E.." If, on the other hand, E is a locally convex-solid Riesz space, then v >0 holds true if and
only if v is a quasi-interior point, i.e., if the principal ideal E, generated by v is 7-dense in E;
see Aliprantis and Burkinshaw (1985, p. 259). Most (but not all) commodity spaces in economics
have a quasi-interior point. These include the important classes of L,-spaces and C(9)-spaces.
The basic limitation of Theorem 3.7 is that some large commodity spaces don’t have quasi-interior
points. For such cases we need a uniform properness type of assumption like the following one.

"Indeed, if v 3> 0 and v does not belong to the nonempty interior of the convex set E, then by the separation
theorem there exists a nonzero =’ € E' satisfying «'(v) < a'(z) for all z € E4. This implies 0 < 2’ € E’ and
z'(v) = 0, a contradiction.
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A4: For eacht and each s, there exists an open convex cone C; C E; such that:
(a) ws € Cy, and .
(b) for every x € Ey if z € (zs + CL) N ES, then (z,2_,) € Pi(z).

We call C¢ the cone of uniform properness of consumer i in state s.

We are now ready to state the fourth version of our major theorem.

Theorem 3.8. If each E, is a Hausdor{f locally convez-solid Riesz space and conditions A1, A2,

A3 are satisfied, then for a J(S — J)-strongly dense set of assets structures in G there exists an
equilibrium.

Theorem 3.8 extends the works of Aliprantis, Brown, and Burkinshaw (1987), Mas-Colell (1986),
Yannelis and Zame (1986), and Jones (1987) on the existence of Walrasian equilibrium to our
incomplete markets framework.

Our task now is to establish these theorems.

4. THE VALUATION BILINEAR OPERATOR

We shall study the bilinear operator known as the valuation operator using the box notation
of Duffie and Shafer (1985). It is the bilinear operator 0: E' x E — R5*! defined

Po - To

P11
pOx =

pPs - Ts

for all p = (po, p1,...,ps) € E and z = (9, 21,...,%s) € E.

Clearly, (p,z) — pOx is indeed a bilinear operator, i.e., it is linear in each variable separately.
Also, this bilinear operator is separately continuous (i.e., continuous in each variable) but is not
in general jointly continuous when E is infinite dimensional. We adhere to the following notation
regarding subsets of E. If X is a subset of E, then the image of X in RS5+1 under the valuation
operator will be denoted pO X, i.e.,

pOX ={p0zx:z€ X}.
Also, if p = (p1,...,ps) and = = (z1,...,xs), then pOx is the vector in RS given by
P11

P2 - T2
pOx =

pPs - Ts

The objective of this section is to present the basic order theoretic properties of the valuation
operator. We start with its positivity properties.

Lemma 4.1. The valuation operator enjoys that following positivity properties.
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(1) If p>0andx >0, then pOx > 0.

(2) For each fized p € E', the operator x — pOx is positive, i.e., pUz > 0 for each z € E,.
(3) If p>> 0, then the operator z — pOx is strictly positive, i.e., x > 0 implies pUz > 0.
(4) For each fized x € E the operator p — pOz is positive.

(5) If x > 0, then the operator p — pOx is strictly positive.

When p > 0 the operator z — pDOx has full range.
Lemma 4.2. Ifp > 0, then z — pOx carries £ onto ]RiJrl (and so it is a surjective operator).

Proof. Let p = (po,p1...,ps) be strictly positive. This is equivalent to saying that each ps is
strictly positive. Let o = (ag, 1, ...,as) € RSTL Put z, = ﬁgj—gw; € Ef for each s and notice
that if z = (zg,x1,...,zs), then pOzx =a. W

Lemma 4.3. If p> 0, then for each J-dimensional subspace L of RS+1 the subspace
H={zeE: pOzelL}.
has codimension S+ 1—J.

Proof. Tt suffices to show that there exists a (S — J + 1)-dimensional vector subspace F' of E such
that E = H® F. To this end, pick a basis {r,...,r;} of L and then select vectors rj11,...,7s+1

such that {ry,...,rs,7y41,...,75+1} is a basis for RS*1. Since the valuation operator z — pOx
is surjective, for each j there exists some z; € E such that pOx; = r;. Clearly, the vectors
Tj41,...,Tse1 are linearly independent and so the vector subspace F = Span{z j41,...,Ts+1} of

F has dimension S — J + 1. We shall finish the proof by showing that E = H @ F.

To this end, note first that if W = Span{rj41,...,7s41} in RS+1 then RSt! = Lo W. Now let
z € E. Picky € L and w € W such that pOx = y + w. Choose some f € F' such that pO f =w
and note that the vector v = z — f satisfies pOv =pOz —p0Of =pOzx—-—w=y€ L,ie, veEH.
Sox=v+ f € H+F. This shows that E=H + F.

To see that H N F = {0}, let z € HNF. Then pOz € LNW = {0}, i.e, p0z = 0. Since
O: F — W is a linear isomoprhism, we see that z = 0. Thus, HNF = {0} and hence E = H & F".
Consequently, H has codimension S —J+1. ®

Lemma 4.4. Assume that {22!, 2%, ... zt} and {y', v, .. -, y%} are collections of vectors in E. If
for some p € E’ the collection of vectors {pOat,pOa?,... ,pOx} is linearly independent, then
there exists 0 < ag < 1 such that for each ap < a <1 the collection

{pO(az' + (1 —a)y'),pO(az® + (1 - @)y?),...,pO(azt + (1 —a)yh)}
18 linearly independent.

Proof. Assume by way of contradiction that this is false. This means that there exists a sequence
{an} with 0 < a;, 1 1 and vectors A, € R™ satisfying |IAn]| =1 for each n, such that

£
Z/\;l [pD (a"a:i + (1 - an)yi)] =0. (*)
=1

We can assume that A, — X\ with ||A|| = 1. Letting n — oo in (%) yields S NpOz] =0,
which is a contradiction. W
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Recall that if R: X — Y is an arbitrary linear operator between two vector spaces and the
vectors Rz!, Rz?, ..., Rz! are linearly independent, then z!',z?,...,z¢ are linearly independent.
From this observation and the preceding result we get the following.

Corollary 4.5. Assume that X = {z',2?,...,2'} and Y = {y',y%,...,y*} are collections of
vectors in E. If X is a linearly independent set, then there exists some 0 < ap <1 such that for
each ag < a <1 the collection

{a:vl + (1 =)yt az? + (1—a)y?,.. Lazt 4+ (1 - a)ye}

18 linearly independent.

The rest of the section is devoted to several important convergence properties of the valuation
operator. These properties will be used in the proofs of the major theorems. To do this, we need
the notion of the Grassmanian manifold G s, which is the manifold of all J-dimensional vector
subspaces of RS*!; for details see the Appendix B.

Lemma 4.6. Regarding the valuation operator and the Grassmanian we have the following.
(a) If E is finite dimensional, then the correspondence (p, L)+ {z € E: pOz € L}, from
E' x Gy to E, has a closed graph.
(b) Let (p*,v*, L") — (p,u, L) hold in (E',a(E',E)) x (E,7*) x Gy, where p> 0 and 77 is
an arbitrary linear topology on E. If pO(x — u) € L for some x € E, then there exists a
net {z*} of E satisfying 2* >z and p*O(z* —u) € L eventually for each A.

Moreover, the net {z*} can be chosen to lie in the linear span of the vectors

{z,u, (wo,0-0), (w1,0-1), ..., (ws,0-5)} U {u*},
where

m m m m
wzg wz(g Wo=§ wl,...,E w5>=(w0,w1,...,,w5)€E+,
i=1 i=1 i=1 i=1

is the total endowment of our economy.

Proof. (a) Notice that all spaces are metrizable. Assume that (p", L™, z™) — (p, L, x) holds true
in E' x G; x E and that p®" 2™ € L™ for all n. Since the valuation operation on any finite
dimensional vector space is jointly continuous, it follows that p" Oz™ — pUz. Now using that the
correspondence F'— F, from G to RS+! has a closed graph (see Lemma B.5 in Appendix B), we
infer that pOz € L.

(b) Since L* — L in G it follows from Lemma B.5 (2) of the Appendix B that there exists a
net {r*} satisfying r* € L for each A and r* —» pO(z —u) =71 = (ro,71,...,7s) € L C RS+,
Since p > 0 it must be the case that pOw > 0. Therefore, by truncating the net, we can assume
that p* Ow > 0 for all A\. Now define the vectors y* € E by

A A A ) A oA
rd —pg - (xo —u rd—pr-(z1—u rd —pa- (zs —u
y’\———< 0 —pg-(@o—uo) TP (21 1)(*)1 s —ps-(zs S)ws).

05
Py - wo P wi P - ws
Clearly, p* Oy* = #* — p* O (z — u). From p* Ow — pOw > 0, it follows that y» — 0 in E with
respect to any linear topology on E.
Letting 2* = y* + = — u + u* € E, we see that z* =z and

p)‘[](:c)‘——u)‘)=p>‘D(y>‘+x—u)=p)‘l:|y)‘+p>‘D(m—u)=1")‘€L’\.

yeeey
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Hence, the net {z*} has the desired properties.

Finally, the net {y*} lies in the finite dimensional space spanned by (ws, 0_5)5_, and therefore
{z*} lies in the linear span of

{113, Uu, (w()ao—o)» (wlao—l)» ey (WS,O_S)} ) {U’A} )
and the proof is finished. W

The lack of joint continuity of the valuation map in infinite dimensional spaces poses a problem.
That is, if (z*,p*) — (,p) holds in E x (E',d(E’, E)), then it does not necessarily follow that
p*0a* — pOz. Fortunately, the situation is better for some well behaved nets.

Lemma 4.7. Assume that a net {(z*,p*)} C E x E' satisfies py -~E~Ebp and p* Oz — 1 in
RS*+! and let e € E. If for every 0 < a < 1 and every state s there exists Ao (depending on a and
s) such that A > Ao implies ) (s + aes) > p) -z}, then pOx > r.

Proof. Fix astate s and 0 < a < 1. Pick Ag such that ) (x5 +aes) > p)-x2, for all A > Xg. Since
p) - (x5 + aes) = ps - (zs + ;) and by assumption p) - x) —o s, we see that p, - (x5 + aes) > 15
for all s and all 0 < & < 1. Letting o | 0, we get ps - ©s > 7, for all s. That is, pOz>r. N

We continue with more convergence properties of the valuation operator.

Lemma 4.8. Assume that ((z**)™,, (u»N)™q, p*, L) — ()™, (u')™y, p, L) holds in the space
(B4, p)™ x (EL)™ % (E,,0(E',E)) x Gy, and let e € E. Suppose also that:
(1) For each A, s, and i, we have p} - ui* > 0.
) For each i the convergence ubr U’ takes place in a finite dimensional vector space.
) There exists some u* € Ey satisfying 1w, u™* < u* for each A.
) For each X and each i we have p* O (> —ubr) € L.
) For each A we have Y i+, gt =" ub?,
) For each i each 0 < a < 1 and all s, there exists some index Ao (depending on « and s)
such that A > Ao implies pg‘ (2l + aey) > pi‘ : z’s>‘
Then p* O (z* — ut?) — pO(2* — u') and pO(z* —u') € L for each i.

Proof. From (5) and the fact that u is a linear topology, we see that Y i, z* = >3i%; w=u€kE.
From (5) and (3) we get S/, @* < u*. Using that p* > 0, it follows that pr Ozt < p*Our for
all X and all 4, i.e., p) - 2i* < p}-ul. Also, from (1) (3) (5) we see that 0 < p - uj. Hence,

-l

0<=—"-<1 ()
Py uj
for all ), i, and s. Now for each A and 4 consider the vector zv* € E, defined by
AL bA A6 A DA
SEA Po " To w P T u* Ps Ts  «
=\ Tx o Yo X s Y TR :
Pp - Up pr Uy Ps - Us

Clearly, p> Oz* = p* Oa**. Moreover, the vectors z"* lie in the finite dimensional vector sub-
space space V of E spanned by the set of vectors

{(UB’O—O)v (UI’O—I), sy (UE,O-S)}.

From (1) and the definition of the 2}, we see that 0 < z** < u*. Now, from 2 e 0u NV
and the fact that order intervals of E are 7-bounded and 7-closed, it follows that {z%*} lies in the
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closed and bounded subset [0,u*] NV of the finite dimensional vector space V. Consequently, for
each i the net {z*} has a cluster vector z* € [0,u*]NV. Clearly, the net {p* 0 2"*} has r = p02*
as a cluster point in RS*1. Since p* 0 2z4* = p* D', we see that r' is also a cluster point of the
net {p* Oz**}. So, using (6), it follows from Lemma 4.7 that for all i we have

pOz; >r'. (%)
Since p* O z4* = p* Oxb?, we see that

m m m
Zp/\[jzz,)\ — Zp/\Dxl,)\ _ ZpADuz,/\
i=1 i=1 =1

holds for all A\. Now according to (2) the convergence u*— u' takes place in a finite dimensional
vector space. This implies Y .-, p*Dut? — S p* Oul = pOu. Therefore,

m m

Zrlzplju:ZpriA (%%)

i=1 i=1
From (x) and (*_*), it follows that pOz; = ri for each i. In particular, rt is a unique cluster point of
the net {p* Dz**} and p* Oz > pOa’ for each i. Finally, since p* 0 (z* — ut*) € L*, it must
be the case by Lemma 4.6 (and the fact that {z5*} and {u**} both converge in finite dimensional
vector spaces and p* 0z = p* D) that pO(2' —u') € L. W

We conclude this section with an important supporting property of the valuation operator.

Lemma 4.9. Assume that Ey has internal points and fir L € G;. Suppose that there exist some
i, some v > 0, and some p > 0 such that:

(a) pOwv e L.

(b) For each internal vector y € E, satisfying y € Pi(x) and pO(y — w') € L we have

py>p-uw.

Ify € Pya) withpO(y —w') €L, then p-y>p-w'.
Proof. Let y € E, satisfy y € P;(x) and p0(y — w') € L. For each 0 < A < 1 define the vector
2 = Ay + (1 = Nw' € E;. Clearly, p0O(2* — w') € L for each . Furthermore, pO2* > 0 since
pOw! > 0. For each 0 < A < 1let h* = Az* + (1 — A)e, where e is an internal point of E. Notice
that each h* is also an internal point of E,. Also, for each A define the vector

)\_(pO'Z())‘h)\ Pl'zi\hA PS'Z§},\)
= AL R )\lS .
po-hy " pi-hy ps *hg
Since pdz* > 0 and pOh* > 0, it follows that the vectors y> are all internal points of E. They
also satisfy y* <y with respect to any linear topology on E. Since y € Pi(x) there is 0 <A™ <1
such that A* < A < 1 implies y* € P;(z). Furthermore, from pO (y* —w') = pO(2* —w') € L and
our hypothesis (b) we get p-y* > p-w' for A* <A < 1. This impliesp-y > p-w". Thus, we have
shown up to this point that:

yeP,-(ac)andpD(y—-wi)eLﬁp~y2p-wi. (o)

Assume by way of contradiction that for some y € P;(x) with p0 (y—w*) € L we have p-y = pwt.
Next, consider the internal point u of E, defined by

Po - wh A D 'U-’i A" Ps 'wfs' A*
u-‘:( /\Qyo, )\‘yl""’ )\,ys)
Po " Yo P11 Y1 Ps " Ys
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Notice that p(J(u — w?) = 0 and that u is an internal point of E,, since y*" is an internal point
of E,. In particular, p0(u —w?) € L and p-u = p- w'. Take v > 0 with pOv € L and for each
0<a<lletg®=ou—(l-a)v+w). Since u is an internal point of E,, there exists some
0 < a* < 1 such that g“' € E,. Furthermore,

pO(g* —wh) =pd(a*u—a*w' — (1 —a*)(v+w' — w))=-p0((Q-a*))eL,
and p- (¢® —w') =p- (1 — a*)(~v) < 0. The latter implies p - g® <p-wt
Finally, for 0 < § < 1 close enough to zero it must be the case g% + (1 — &)y € P;(x). But
then we have p0 (6g%" + (1 —8)y —w') € L and p- (69%" + (1 — §)y) < p-w', contrary to (o). H

5. PSEUDO-EQUILIBRIUM

We start by noticing that the marketed space T(M) need not contain any nonzero vectors in
the Edgeworth box [0,w]. This geometrical deficiency creates several serious technical problems.
Therefore, we need to extend the marketed space by adding to it some nonzero vectors from the
Edgeworth box. We do this in the next definition.

Definition 5.1. An extended marketed space is any vector subspace M of E of dimension
J < S such that there exists a vector v € M satisfying 0 < v < w; i.e., M N (0O,w] # P.°

For the rest of the paper we shall fix an extended marketed space M. We find it convenient to

modify the notion of non-arbitrage equilibrium studied in Husseini, Larsy, and Magill (1990). For
each p € £/, let

| - ‘ pT<p W ifi=1
Bilp) = {$€E+' prx<pw & pO(z—w)epOM i“>1}4

Notice that the preceding definition indicates that for some consumer i (we let i = 1 without loss
of generality) her budget set B;(p) coincides with the Walrasian budget set? and for the remaining
consumers their budget sets are subsets of their Walrasian budget sets.

Definition 5.2. A non-arbitrage equilibrium is a pair (p,z) such that p = (po,p1,-.-,Ps) 18
a nonzero spot price (i.e., 0 <p € E\) and x = (z',22,...,2™) is an allocation satisfying
at € Bi(p) and Pi(z')N Bi(p) =P

for each consumer i. The price p will be referred to as a spot price that supports the allocation
as a non-arbitrage equilibrium.

Spot prices that support allocations as non-arbitrage equilibrium are strictly positive.

Lemma 5.3. If (p,x) is non-arbitrage equilibrium, then:

(1) the supporting spot price p is strictly positive, i.e., p > 0, and
(2) for each consumer i we have p-z' =p-w'.

8The reader should note that we denote the dimension of the portfolio space M by J and the dimension of the
extended marketed space M by J. These dimensions need not be the same, i.e., it may happen that 3 # J.
9We can call this consumer the “Walrasian consumer.”
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Proof. Assume that (p, z) is non-arbitrage equilibrium.

(1) If p = (po,P1,---,Ps) is not strictly positive, then for some state s* the price ps- is not
strictly positive. That is, there exists some vector 0 < v € E,. such that ps--v = 0. Now if we
let w = (v,0_s-) € E4, then note that v > 0 and z* +u € P;(z') N B;(p) for each i, which is
impossible.

(2) From the definition of equilibrium, we get p - ' < p-w? for each i. To see that equality
holds, note that 1" p-a' =Y pw' =p-w. N

Every non-arbitrage equilibrium induces an equilibrium.

Lemma 5.4. If M = Mg x T(M), where My is a subspace of Ey satisfying M NEF # {0}, then
for each non-arbitrage equilibrium (p,z) there exists an assets price ¢ and a portfolio trade 6 such
that (p,q,x, 0) is an equilibrium.

Proof. Let (p,x) be a non-arbitrage equilibrium, where z = (z',...,2™) is an allocation. By
Lemma 5.3 we know that p > 0.

For i = 2,...,m choose some z' € T(M) such that ps - (¢} — w!) = ps - 2} for each s =1,..., S.
Put 2! = — S, z' € T(M). Next, for each i > 2 choose a portfolio §; € M such that TH; = 2*
and let §, = — >, 0;. Clearly, T6; = z' and 31", 6; = 0. In particular, 6 = 61,...,0m) is
portfolio trade. Next, define the assets price g: M — R (i.e,, a linear functional g € M') by letting

S
g-6="3 ps-[T6(s)]
s=1

for each § € M. (Keep in mind that since M is finite dimensional, every linear functional on M is
continuous.) We claim that (z,p, q,8) is an equilibrium. For this, for each ¢ we must show that:
(a) x* € Bi(p,q,6:), and
(b) Pi(a*) N Bi(p,q) = D.
We shall verify the validity of (a) first. Start by observing that for each s =1,... ,S and all
1 > 2 we have

Ps - (Tls - wi) =DPs- Z.i =Ds- [Tei(s)]'

For i =1 and each s = 1,...,m we have
m m
ps - (x5 —wg) = —ps- [Z(xi - wé)} =—ps- (Z ~) =ps -2y = ps - [TO1(s)].
i=2 i=2

Also, for s = 0 and each consumer 4, part (2) of Lemma 5.3 yields

S S
po-(xh—wh) = po-(ah—wh)+ D per (@l —wi) =D ps- (2l —w)
s=1 s=1

Il

S S
po(at —w) =Y pe(ah —wh) == b (@l - w))
s=1 s=1

Il

S
— Zps . [T@l(s)] = —q- 91‘ .
s=1

The above show that i € 8;(p, ¢,6;) and the validity of (a) has been established.
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Now fix z = (20, 21, .., 25) € E; and assume that z € 3;(p,q,0) for some portfolio § € M and
some consumer i. To prove (b), it suffices to show that z ¢ P(z").
To this end, notice first that z € 8;(p, q,8) simply means that for all consumers i we have

po-20<po-wh—q-0 and ps- 2 <ps-wl4ps-[TO(s) foral s=0,1...,5.
Since each pj is strictly positive, for every state s € S there exists some u, € E} such that
Po-z0+Po-uo=po - wh—q-0 and pg-2zs+ps-us =Dps-wy +ps - [TO(s)].
Let y = z+u € E,. From our assumption M N E{ # {0}, we can pick some v € My such that
po-v = —q- 6. Now note that
pO@y—w) = (po-v,p-(z1+ur—wi),....ps (25 + us — ws))
= p0O@,T6) € pO My x T(M)).
In addition, observe that

S S
Py —w)= e (zatus—wl)=—g-n+y_ ps-[T6(s)] = 0.

s=0 s=1

Consequently, y € B;(p) and since P;(z') N Bi(p) = @, it follows that y ¢ P;(z*). Finally, from
y > z and the comprehensiveness property AIII(c), we see that z ¢ P;(z*), and the proof is
finished. ®

Our next goal is to introduce the notion of a pseudo-equilibrium in a general framework. To
achieve this, we need to introduce some new budget sets. For each (p,L) € E/, x G let

Bz(paL) - {‘TGE“" p.xgp.wi&plj(z—wi)eL 1f’l>1}

Again, one of the consumers is “Walrasian” and the rest have budget sets that are subsets of
their Walrasian budget sets.

Definition 5.5. A pseudo-equilibrium is a triplet (p,z, L), where p € E', x is an allocation,
L is a J-dimensional subspace of RS+ (where J is the dimension of M), such that:

(1) For each consumer i we have «* € B;(p, L) and Pi(z") N Bi(p, L) = @.
(2) pOMC L.

A pseudo-equilibrium (p,x, L) is called full if equality holds in (2), e, if pOM = L.
We list an easy result.
Lemma 5.6. If (p,x, L) is a full pseudo-equilibrium, then (p,z) is a non-arbitrage equilibrium.

Proof. If L = pOM, then B;(p) = Bi(p,L). W

The next property of pseudo-equilibria is also simple but very useful.

Lemma 5.7. If (z,p, L) is a pseudo-equilibrium, then z € P;(z*) implies pOz £ pOzt.
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Proof. Suppose by way of contradiction that pO(a* — z) > 0. We know that p > 0 and that
y — p0Oy maps E4 onto Ri”. So we can pick a point y € E, such that pOy = pO(xt — 2).
The monotonicity of preferences yields y + z € P;(z') and we know that pOzt —pO(y+2) =0.
Therefore, pO (y+ z —w') = p0(z' —w') € Land p- (y+2) = p- ', imply y +z € Bi(p, L), which
is impossible. W

The next two lemmas show that our major Theorems 3.4, 3.5, 3.7, and 3.8 hold true if we can
establish the existence of a pseudo-equilibrium.

Lemma 5.8. If (p,z,L) is a pseudo-equilibrium and Y = {y',...,y’} C M (where J is the
dimension of M), then there exists a linearly independent set Z = {z',...,27} of vectors in E
such that for each 0 < o < 1 the triplet (p,x, L) is a full pseudo-equilibrium for the marketed space
M, generated by

{oy' + (1 — )zl . ay’ + (1 - a)z’}.

Moreover, if y' = (v,0_1) with v > 0 and y{ =0 for all j > 1, then Z can be chosen so that
2l =yt

Proof. Since (p,z, L) is a pseudo-equilibrium, it must be the case that p > 0. Therefore, x — pOx
is surjective. Let

K = Span{pOy’,p0y?, ... ,pOy7}.

Note that K C L and if k = dim K, then k < J. If k = J, then we are done since it must be that
K = L (in this case let 27 = y7).

So suppose that k < J. We can assume without loss of generality that {p U] yt,p0Oy?, ..., pOyk}
is a basis of K.

For each j = 1,...,k, let h# = pOyl. Write L = Lk & K and pick J — k linearly independent
points {hF*1, ... h7} in Lk. Clearly, the set of vectors H = {n',... h7} is linearly independent
and is a basis for L. Furthermore, for each 0 < a < 1 the collection of vectors

{(pO(ay’ + (1 —a)h):j=1,...,J}

remains a basis for L.

Forj =1,...,k, let 23 =y, For j > k pick 27 € E such that p02’ = h7 (This is possible since
z +— pOuz is surjective). Clearly, Z = {z',...,27} is linearly independent since x — pOz is linear.
Letting, v = ay’ +(1—a)z?, we see that pOw! = pO (ay’ +(1—a)h?). Thus, {pOu!,...,pOu’}
spans L. This implies that (p,z, L) is a full pseudo-equilibrium for the marketed space My =
Span{u!,...,u’}. For the proof of the last part repeat the arguments in the proof of Lemma 5.4.
|

Lemma 5.9. If for every extended marketed space M there exists a pseudo-equilibrium, then for
a 3(S — J)-strongly dense set of assets structures in G there exists an equilibrium.

Proof. Let T = (T4, ...,T3) be an arbitrary assets structure, where T; € HSS:1 E; see the discus-
sion following Lemma 2.2.

Choose a J-dimensional subspace M; of Hle E, such that T(M) C M. If T(M) is J-
dimensional let T(M) = M;. Let My be the one dimensional subspace spanned by wh > 0in Ey
and consider the extended marketed space M = Mg x M.
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By our assumption there exists a pseudo-equilibrium (p, z, L) for this extended marketed space
M, where L is (J + 1)-dimensional. Write RS*! = R x Hle R and note that L = R x L_g, where
L_g is a J-dimensional subspace of Hle R. Now consider the vector space

Hyp = {ze f[E p_ODxeL_Q}.
s=1

By Lemma 4.3 the space Hrp is of codimension S — J. Therefore, (Hr)® € (IT,—; SE,)% =G is of
codimension J(S — J).
Notice that T € (Hr)’. Now define the set

Fr = {(RLRZ»'“»RJ) € (Hr)®: Span{p_oORy,...,p-0OR;3} = L—o}-

This set is algebraically open in (Hr)’ by Lemma 4.4 and for each (Ri, Ra,.. ., R3) € Fr the
triplet (p, x, L) is a full pseudo-equilibrium for the marketed space
Mo X Span{Rl,Rg, A ,R;]} .

So the economy with assets structure R € Fr has an equilibrium by Lemma 5.4. Now by Lemma 5.8
for any R € Hr, there exists a Q € Fr such that for the assets structure aR + (1 — )@ with
0 < a < 1 there exists an equilibrium. To conclude the proof note that (Hr)3\ Fr is algebraically
nowhere dense in (Hr)? and that Upeg(Hr)Y =G, ®

We continue with the introduction of limit economies.

Definition 5.10. Let {Ej, (W', ... ,w™M} be a net, where {E\} is a net of subspaces of E and

{(W™,...,w™)} is a net in (E4)™, having the following properties:
(1) The net {Ex} of subspaces is increasing and covers E, i.e., A1 > Ay implies Ey, 2 Ey,;
and E = J, Ex.

) Each Ey contains the marketed space, i.e., M C Ey, and w' € Ey for alli.
) Each Ey satisfies condition Al
) For all A\ the cone E;L = E, N E, has an internal point in Ey.
) For all i, each s, and all A\, we have wi? >0 and W' € E).
) For each i we have whr o w' in a finite dimensional vectors space and there exists some
w* € By satisfying S e, wh* <w* for all A
We shall denote by Ex the economy with extended marketed space M, an initial endowment wh
for each consumer i, and preference correspondences that are the restrictions of P; to E:\F
If the net of economies {E\} satisfies the above properties, then we shall say that {€E,} converges
to our original economy &, in symbols Ex — .

The next lemma shows how we can obtain a pseudo-equilibrium as a limit of pseudo-equilibria
for nets of subeconomies—generalizing the limiting procedure of Bewley (1972).

Lemma 5.11. Assume that A1 and A2 are satisfied and {€)} is a net of economies such that
&\ — E. Further, suppose that {(z*,p*, L)} is a net of E4 x E' x G with the same index set as
the net of economies {Ex} such that:

(a) (z*,p* L) — (z,p, L) holds in (E4,p)™ x (E',a(E', E)) x Gy.

(b) prw>0.

(c) For each index X the triplet (>, p*| e, L) is a pseudo-equilibrium for the economy Ex.
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Then (z,p, L) is a pseudo-equilibrium of our economy.

Proof. It must be the case that

m
Z T =w, (%)
i=1
since pu is a Hausdorff linear topology. We know that p* Oz converges to pOx for each z € E.

This is in particular the case for each = € M. So, from part (a) of Lemma 4.6, we get pOM C L.
We claim that for each i we have:

pO(z' —w') €L, p* Oz - pOz', and prt=p-w. (%)

To prove this claim, we shall apply Lemma 4.8. We shall prove that the conditions of that Lemma
are satisfied with u® wh, Ut = Wl and Ut = w*

Notice that condltlons (2), (3) and (5) of that Lemma 4.8 are automatically satisﬁed For
condition (1), observe that for each X it must be the case that px|g, > 0. In particular, ps Wit >0
for all A, all s, and all i. Concerning condition (4), for each )\ and 7 > 2 we have p’\ Oz — l A) e
L* by the pseudo-equilibrium assumption. Since 3 i, (z"* — wt) = zb A — wbA it must be the
case that p* O (z'* — w'*) € L* for every A.

Finally, we show that (6) is satisfied. Choose A large enough such that (ws,0-5) € Ex for
all states s and € (E))™. We know that for each 4, each s, and each 0 < o < 1 we have
(2! + aws, (z')_s) € Ex and (2} + aws, (z')-s) € Pi(z “). By assumption A2, we see that for A
large enough (z¢ + aws, (z*)_,) € Pi(z"*). Therefore, by Lemma 5.7 we get

PO (@ + aws, (¢) ) £ p* Oz

eventually for A large enough. We can now apply Lemma 4.8 and establlsh the validity of the
first two statements of (+*). Note that Y7 o = 37" w™* and p b < pr - wh? imply that
pr-abr = pr - wh for every A and every i. Therefore, p -z = p- w* for each i.

Our next task is to show that p-w! > 0. Since p-w > 0, there exists some i and some s such
that ps - % > 0. Now let 0 < z € E, and fix some 0 < o < 1 such that (azl -I—z (z%) - )eP(x)
By assumption A2 there exists some X large enough such that (a:c + z, (zP) - ) € Pi(z"*) and
(axi 4 2z, (a) ;) € E>\ Therefore by Lemma 5.7, eventually P (azt +2) > p) -zt Since we
have established that p) - 28> —o ps - x%, we see that p, - (az} + z) > ps-at > 0. Thls tells us that
ps - 2 > 0. Since z was arbltrarlly chosen this means that ps > 0. Therefore p-w!>0.

Next, we claim that

zeP(z') = p-2>p- w'.
To prove this claim, take z € Py(z'). We know by A1 that z e Pi(2'*) and z € Ey eventually
for large enough A. This guarantees that eventually pr z>p*-wh and that p-z2 > p- w! > 0.
Since for some 0 < a < 1 we have az € Py(z') it must be the case that p- 2> p- wt

Now we shall show that p > 0. So, take an arbltrary z > 0. We know that z +z! € P(z') and
we have already established that p- (z + 1> p-w! = p-a!, which implies that p- z > 0. Since z
was arbitrarily chosen we have established that p > 0.

To continue our proof, we need to establish that for all 7 > 2 the following holds true:

y € Pi(z)) and pO(y—w') €L = pry>p-w. (1)
To this end, let y € Pi(z) and pO (y — w') € L. Choose, A such that

2y, w* W, (wi,0-1), (W1,0-1), .., (ws, 0-5) € Ex
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for all s, all A > ) and all i. Now let z € P;(z') be an internal point of E/J\r satisfying p 0 (z—w?) € L.
We know from part (d) of Lemma 4.6 (by passing to a subnet if necessary) {z*} C Ej, z* — 2
in a finite dimensional vector space and p* dz* € L*. Eventually, for A large enough 2 € E:\*
and by A1 we have z* € P;(z*). Therefore, eventually p* - 2* > p* - w"* and since z* 2 and

wi* o wi in a finite dimensional space it must be the case that p -z > p-w'. Consequently, we
have established that:

z € Py(x), z an internal point of E;, and pO(z—w) €L = p-z>p-w.

By Lemma 4.9 it must be the case that p-y > p-w* and that (t) holds true. The above show that
(z,p, L) is indeed a pseudo-equilibrium. W

6. GAMES WITH SUBSPACES

Our objective in this section is to extend the ideas of Gale and Mas-Colell (1975) on the existence
of an equilibrium for a market game. Unfortunately, the situation in the incomplete markets setting
is far more complicated than in the Walrasian setting. In this section we use the order structure
of the commodity space to rectify these difficulties.

Recall that S and J are two natural numbers such that J < 5+ 1.

Definition 6.1. An abstract game (with subspaces) is a tuple I' = (I, (Pi)ier, (Xi)ier, ¥),
where:

(1) The set I is a finite index set of players.

(2) Each X; is a nonempty set—called the action (or strategy) set of player i.

(3) Pi: X x Gy —» X, is a correspondence, where X = Hiel X;.

(4) v is a function from X x G to R(S+1J " colled the subspace constrain function.

The equilibrium concept of an abstract game is defined as follows.

Definition 6.2. An equilibrium for the abstract game I' is a point (z,L) € X x Gy satisfying
Pi(z, L) = @ for each i € I and ¢(x,L); € L forj=1,...,J.

We shall also use the following fixed point result established by Husseini, Larsy, and Magill
(1990, Theorem A, p. 50).

Lemma 6.3. Let X be a nonempty compact convex subset of a finite dimensional vector space and
let f: XxGy— X andp: X xGj — RS+DJ pe continuous functions. Then there erists some
(z,L) € X x Gy satisfying f(x,L) =z and Y(x,L); € L forj=1,...,J.

We can extend this fixed point like result to correspondences.

Lemma 6.4. Let X be a nonempty compact conver subset of a finite dimensional vector space,
let f: X x Gy —» X be an upper hemicontinuous nonempty convez-valued correspondence, and let
¥: X xGy — RE+DI be q continuous function. Then there exists some (z,L) € X xG satisfying
z € f(z,L) and Y(x,L); € L forj=1,...,J.

Proof. According to Lemma C.2 in Appendix C, for each ¢ > 0 there exists a continuous function
fe: X x Gy — X such that

sup{d(y,Gr f): ye Grf.} <e,
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where d is a compatible metric on X x G; x X. By Lemma 6.3 there exists a point (z., L) such
that f(xe, Le) = 2. and ¥(xe, Le); € Le for j =1,...,J. Take a sequence {en} such that e, | 0.
By passing to a subsequence if necessary, we can assume that there exists some (z,L) e X xGy
satisfying (z.,, Le,) — (z,L). Since Gr f is closed it must be the case that ((z,L),z) € Gr f.
Therefore, z € f(z,L). Now ¥(z.,, Le,); € Le, for j =1,...,J. Since ¢ is continuous and the
function L — L, from G to RSt! has a closed graph, we get ¥(z,L); € Lfor j=1,...,J. ®

The next lemma presents conditions that guarantee the existence of an equilibrium for an
abstract game. The proof is a straightforward extension of the argument in Gale and Mas-Colell
(1975). We shall say that the correspondence P;: X x Gy — X is irreflexive if for each (z,L) €
X x Gy we have x* ¢ P;(z, L).

Lemma 6.5. Let I' = (I, (P;)ier, (Xi)ier, ¥) be an abstract game. Assume that each X; is a non-
empty compact and convex subset of a finite dimensional vector space and that each correspondence
P; is irreflexive, conver-valued, and lower hemicontinuous. If the subspace constrain function ¢ 1s
continuous, then the game ' has an equilibrium.

Proof. For every i let Y, = {(z,L) € X x G;: Pi(z,L) # @}. Clearly, the restriction Py|y, is
lower hemicontinuous having convex nonempty values and }; is open in X X Gy.

Therefore, by Michael (1956, Theorem 3.1"”") (see also Lemma C.1 in Appendix C) the correspon-
dence P;|y, admits a continuous selection, say fi: V; — X;. Next, we define the correspondence
Fil X x GJ—>+X-L by
filz,L) if (z,L) € Vi,

X otherwise .

Fi(x’ L) = {
This correspondence is convex nonempty-valued and upper hemicontinuous. Letting F' = [Licr Fis
it follows from Lemma 6.4 that there exists some (z,L) € X x Gy such that = € F(z') and

¢(x,L)j € L for j =1,...,J. By construction, this is an equilibrium for the game I'. H

Our next goal is to induce a market game from our economic model. To do this, we need to
introduce some more notation. We define the convex sets:

A = {peE,: p>0andp w=1},
Ay = {p€E,: p>»0and p-w=1},
(0,2) = {yeE): I<y<a},

Eyy = {z€E,: >0}

With this notation in mind, for each i define the correspondences v, 7:: A x Gy — E!, by

<z
Yi(p, L) = ax>0: 3z€0,2w] such that p-(z—w') <0 ,
pO(z—w') €L
T2
ni(p,L) = {x>0: 3z€(0,2w) such that p-(z—w") <0 ,

pO(z—-w') el
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and the correspondences g;,e;: A — E! by
9:i(p) = {x €[0,2w]: p-(z —w') <0} and ei(p) = {ze(0,2w): p-(z-w')< 0}.

Notice that +; is a nonempty-valued correspondence since w® € v;(p, L) for each (p, L) € AxGy.
Now if w' is an interior point of E,, then 2w > w > w' and so each v;(p, L) contains the nonempty
open set (0,w'). However, the correspondence 7; may take some empty-values even if p> 0.

The basic properties of the correspondences ; and 7; are included in the next result.

Lemma 6.6. The following statements hold true:

(1) Both correspondences v; and n; are convez-valued and for each (p,L) € A x Gy we have
ni(p, L) € vi(p, L).

(2) If E is finite dimensional, then ~; has a closed graph in A x G x [0, 2w].

(3) If E is finite dimensional and w is in the interior of Ey, then the (restriction) correspon-
dence n;: Ayt x Gy —(0,2w) has an open graph in Ay4 x Gy x (0,2w).

(4) If w' is an interior point of E4, p> 0, and pOM C L, then

ni(p, L) = vi(p, L).
In particular, in this case n;(p, L) is nonempty.

Proof. (1) & (2) Observe that for each (p,L) € A x G, we have
vi(p, L) = ([{w €E;ip-(x-w)<0}n{ze By :pO(x—w')eL}] - E+> no,2w). (%)

Therefore, for each i the correspondence «; is convex-valued and if E is finite dimensional, then it

has a closed graph (according to Lemma 4.6). Moreover, for each (p, L) € A x G, the following
holds true:

ni(p, L) = ([{J;GE+: p-(x—w)<0}n{zeE;: pD(x—wi)eL}}—E++)ﬂ(0,2w). (k)

Therefore, 7; is a convex-valued correspondence and 7;(p, L) € vi(p, L) for each (p, L) € A xGy.
It is now easy to see that (1) and (2) are true statements.

(3) Since E is finite dimensional and w is an interior point of £, it follows that every € E4
satisfying > 0 is an interior point of E4. In particular, (0,2w) is an open subset of E.

To see that the correspondence n;: A4 x Gy — (0,2w) has an open graph, let (p, L,z) be a
point in the graph of n;. The openness of the graph of n;: A4 x G — (0, 2w) will be established,
if (pn, Loy, 2n) — (p, L, ) in Ay x Gy x (0,2w) implies ,, € 7;(pn, L) for infinitely many n.

So, assume (py, L., zn) — (p, L, a:) in Ay x Gy x (0 2w) From the definition of n; there exists
some z* € (0,2w) satlsfymg p-(z* —wh) <0, pO(z* —w') € L, and 2* > z*. Fix any vector
y* € E, such that 2* > y* > z* and assume without loss of generality that a, < y* for all n.
We know from part (d) of Lemma 4.6 (by passing to a subsequence if necessary) that there exists
a sequence {z,} C Ey with z,, — z* and such that p0 (2n, —w ) € L for all n. Clearly, there exists
some k such that if n > k, then z,, € (0,2w), p- (20 — w') < 0, and y* < 2z,,. Therefore, for all
n > k we have z, < y* < z,. Consequently, for all n > k we have x,, € 7;(pn, Ln), which proves
that correspondence 7;: Ay X G; —» (0, 2w) has an open graph.

(4) Fix any (p, L) such that p > 0 and pOM C L. Let K = {y € E: pO(y—w') € L}. We
first show that there exists y' € (0,2w) N K such that p- y' <p-w'. To this end, fix some v € M
with v > 0. Clearly p- (—v) < 0. Letting y = w® — v, we see that p-y < p-w'. Since pD( v) €L
it must be the case that y € K. Now for 0 < @ < 1 we have p- ((1 - a)y — aw ) < p-w'. Moreover,
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since w' € (0,2w), we can choose 0 < a < 1 that satisfies (1—-a)y — aw' € (0,2w). Clearly,
(1 - a)y — aw' € K since K is convex and w* € K. So, letting y' = (1 — a)y — aw', we see that

v €(0,20)NK, and p-y<p w'. (1)

Now let v;(p, L)° denote the interior of v;(p, L) in E, which is nonempty by (1). Since vi(p, L)
is convex with a nonempty interior, we see that v;(p, L)° = vi(p, L). But n:(p, L) € vi(p, L), and
from this we see that our proof will be finished if we can show that vi(p, L)° C ni(p, L).

To this end, let z € ~i(p, L)°. Since z is an interior point of v;(p, L), it must be the case that
z € (0,2w). We also know from the definition of ; that there exists some z € [z, 2w]N K such that
p- (2 —w') <0. Now, for each 0 < a < 1let w*=(1-a)z+ ay’, where y’ satisfies (f). Clearly,
w® € K, w* € (0,2w) and p-w® < p-w'.

Next, once again, for each 0 < a < 1 let u® = [(1 — a)(z — 2) + a(~w)] + w®. Since z — z <0,
—w < 0 and w® > 0, we see that w® > u®. Furthermore, if o | 0, then w® — 2 and u® — .
Therefore, for a close enough to zero, we have u® € (0,2w). A glance at the definition of n;(p, L)
guarantees that for any such o we have u® € n;(p, L) and from this we get = € ni(p,L). W

We are now ready to introduce an abstract game that is induced by our economy £.

Definition 6.7. The market game T'¢ = (Z,(Pi)iez, (Xi)iez,¥) induced by our economy £ s
the abstract game with the following characteristics.
(1) ZT=1{0,1,...,m}.
(2) Xo= A4y and X; =[0,2w] fori=1,...,m.
(3) The function ¢: [[iry Xi x Gy — RS+ s defined by ¢(p,z, L) = [pOby,...,p0by]
for each (p,x,L) € [[itog Xi x Gy = Ay X 1%, Xi x Gy, where {b1,...,by} is a fized
basis of M.
(4) Fori=0 we define Py: X x Gy —» Xo by
Po(p,a, L) = {q €Myt g (Zwl —w) >p- (Zw' —w)},
i=1 =1
fori =1 we define Py: X x Gy — X by

T
Pi(p,z, L) = €1(1P) if @ %91(1’),
Pi(zt)Ney(p) otherwise,
fori=2,...,m we define P;: X x Gy — X; by
i ’L if «* 1 vL )
Pulp.a. L) = 1i(p, L) if x ¢7(p )
Pi(z*)Nni(p,L) otherwise.
The importance of the market game will be established in the next two results.

Lemma 6.8. If E is finite dimensional, the vector W' is an interior point of E4 for each i, and
(p,x, L) is an equilibrium for the market game I'g, then (z,p, L) is a pseudo-equilibrium for the
economy E.

Proof. Let (p,x, L) be an equilibrium for the market game. That is, P;(p, , L) = @ holds true for
each i and ¥(p,z, L); = pOb; € L for each j. In particular, pOM C L.
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Since p > 0 each w' is an interior point of E, and pOM C L, it follows from Lemma 6.6 (4)
that each 7;(p, L) is nonempty. This implies p-z* < p-w* for each i.

From Py(p, , L) = @, it follows that ¢- (X0, 2" —w) < p- (X2 (2" —w')) < 0 holds for all
g € A4,. Since Ey in this case is closed, it follows that )~ z* < w. In particular, we have
' <w <K 2w for all 7.

Since P;(z")Nn;(p, L) = @ and (by Lemma 6.6) 1;(p, L) = ~i(p, L) hold for each i > 2, it follows
that P;(z') N yi(p, L) = @ (recall that P;(z') is open in E, for the Euclidean topology of E by
AII(d)). By the same argument, we see that P(z') Ngi(p, L) = @.

Next, we shall show that p0 (2! — w') € L for i > 2. Suppose by way of contradiction that this
is not the case for some i > 2. So, according to the definition of +;, there exists some z € [mi, 2w)
satisfying p0(z — w') € L, and p- (z — w') < 0. Clearly, z # ' and thus z € Pi(z'). But
z € v;(p, L), which is a contradiction. Therefore,

pO(at —w) €L fori>2.

We want to show that p-2' = p-w' for i = 1,...,m. Consider a vector v > 0 with v € M. Tt
follows that
pO((w+2') —w') =p0(z' —w) +pOv e L,
for each i = 2,...,m. Furthermore, for i = 2,...,m we have
a(+z)+ (1 —a)z' € P(z') and pO(afv+ )+ (1 —a)zt —w') €L,
for each 0 < a < 1.

Therefore, suppose by way of contradiction that p-z* < p-w* holds true. For a close to zero we
have a(v + z) + (1 — a)a’ € [0,2w] (since ' < 2w) and p- (v + ') + (1 —a)a') < p- w'. This
means a(v+z*) 4 (1 — a)z* € v;(p, L) for some a, which is impossible. Therefore, p -zt =p-w' for
i=2,...,m. A similar argument shows that p-z' = p-w'. The fact that p>> 0 and p-z* = p- w?
for i =1,...,m shows that > " &' = w. Thus, z is an allocation.

Now for i > 2 take any y € P;(z') with pO (y—w') € L. We want to show that p-y > p-w*. Since
' < 2w we have ay+ (1 —a)z < 2w for a close enough to zero. Therefore, ay+(1 —a)z & vi(p, L)
and p- (ay + (1 — a)z') > p-w' = p- 2’, which implies p-y > p-2' = p-w'. A similar argument
shows that if y € Pi(z!), then p-y > p-w!. These facts in connection with the above proven
properties show that (p,z, L) is a pseudo-equilibrium for the economy £. W

Lemma 6.9. If E is finite dimensional, w' is an interior point of E, and each P is lower
hemicontinuous, then there exists an equilibrium for the market game I's.

Proof. Notice that from parts (1), (2), and (3) of Lemma 6.6, we can verify easily that each P;
is lower hemicontinuous, convex-valued, and irreflexive. Now take an increasing sequence {A,} of
nonempty compact subsets of Ay such that J;—; A, = A4y, For each n define the abstract
game I',, which is the restriction of I'e = (T,Ps, Xi, 1) to the set Ay x X1 x - Xpp X Gj. Each
I',, has an equilibrium (p,, Tn, Ly), by Lemma 6.5. By taking a subsequence, we can assume that
(pn, Tn, Ln) — (p,x, L), where p € A. The proof will be completed if we can show that p > 0.

To see this, observe first that 3" 2* < w. Therefore, 2! < w < 2w. One can also verify
that ' € g1(p) and Pi(z') Ngi(p) = @. It follows that z' > 0. Since for some a > 1 we have
az! € [0,2w], it is the case that p-z' = p-w! > 0.

Finally, taking an arbitrary y > 0, we see that for 0 < o < 1 close enough to one we have
az' + (1 — a)(y + ') < 2w, and that for any such a we have p- (az' + (1 — a)(y +z')) > p-al.
This implies p -y > 0 and so p > 0, and the proof is finished. ®
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7. THE EXISTENCE OF PSEUDO-EQUILIBRIUM

We now have enough machinery at our disposal to prove our major results. For completeness,
we state them again in this section and provide their proofs.

Theorem 3.4. If E is finite dimensional and for each i we have w' > 0 and P; is lower hemicon-
tinuous, then for a J(S —3J)-strongly dense set of assets structures in G there exists an equilibrium.

Proof. This result is a consequence of Lemmas 5.9, 6.8, and 6.9. ®

We turn to the case where F is infinite dimensional.

Lemma 7.1. If A1 and A2 are satisfied and each w' is an interior point of E, then there exists
a pseudo-equilibrium.

Proof. Take an increasing net {E,} of finite dimensional subspaces of £ and such that M C Ey
and w! € F), for each A and each i. For each A define the economy £, to be the the economy with
marketed space M, initial endowments the w' and preferences the restrictions of the P; to Ej.

From Lemma 6.9 we know that each £, has a pseudo-equilibrium (z*, p*, L*). Since E; has an
interior point we can assume without loss of generality that pt € E’_ and that p* - w =1 for each
A. Therefore, by passing to a subnet if necessary, we can assume that (z*,p*, L*) — (z,p, L) holds
true in (Ey,pu)™ x (E',0(E', E)) x G, with z being an allocation and p-w = 1. By Lemma 5.11,
(z,p, L) is a pseudo-equilibrium. =

Lemma 7.2. Ifw is an interior point of E4 and conditions A1l and A2 are satisfied, then pseudo-
equilibria exist.

Proof. For each 0 < A < 1 let w™* = Aw' + KI—;&w. Clearly, each w®* is an interior point of E, .
Notice that 37, w* = w for all 0 < A < 1. Therefore, {(w**)jL;} is bounded from above by w
and (by passing to a subnet), we can assume that {(w"*),} is converging to {(w')j%,} in a finite
dimensional space. Let £, be the economy with {w"*} as initial endowments. By Lemma 7.1, each
such economy has a pseudo-equilibrium (2*,p*, L*). We can assume that (*,p*, L) — (2,p, L)
in (B4, )™ x (B, 0(E', E)) xG; with p-w = 1. Once again, Lemma 5.11 guarantees that (z,p, L)
is a pseudo-equilibrium. =

An immediate consequence of the preceding result and Lemma 5.9 is our second major result.

Theorem 3.5. If w is an interior point of E4 and conditions Al and A2 are satisfied, then for
a J(8 — J)-strongly dense set of assets structures in G there exists an equilibrium.

Let us now move to the case where E is a locally convex-solid Riesz space.

Lemma 7.3. If A1, A2, and A3 are satisfied, E is a locally convez-solid Riesz space, and w 18
an internal point of E, then there exists a pseudo-equilibrium (x,p, L). Furthermore, p is strictly
positive on any set of the form muv + Hle Ns, where v € E, and for all s:

(1) Ny is a convezr and T-solid neighborhood of zero in Es, and

(2) for all i, the pointwise properness cone Cy* in state s at z satisfies vy + Ny C CH°.
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Proof. The norm induced by the gauge of [~w,w] generates a linear topology p that is finer than
T, since order intervals are 7-bounded. Therefore, all assumptions of Lemma 7.2 are satisfied and
so there exists a pseudo-equilibrium (z, p, L) with p being p-continuous.

We need to show that p is 7-continuous. To this end, fix s and let N; be a convex and solid
rs-neighborhood of zero in Ej, and let v € E4 be a vector satisfying properties (1) and (2). Such
a neighborhood N, and a vector v always exist. (Indeed, let v = w and choose N, such that
ws + Ns C 07;1 Cé’x~)

Fix a vector z € N;. We know that for r > 0 large enough Z:ll :cfg = wg > }|z| Therefore,
by the Riesz decomposition property, there exist y1,...,ym € E7 satisfying y; < xt for each ¢ and
Y vi = plel

For each i, let u® = (2} + Lv, — y;, (z ) s). Clearly, u; > 0. From ry; < |z| and the solidness of
N, it follows that y; € N and —yi € 1N;. Therefore, y; + 1o, € CL7, since 1IN, + lv, CCY.
By A3, it must be the case that u* € P( ). By Lemma 5.7, we have p; - us > ps -

—z< Zyl Zx —Zu +—vs.

xl. Now

Therefore,

m m
—Ps'ZSZPs'yiI;ps-(mg—u;)+7p-vs<?p5~vs,

and so for all z € Ns we have
mps - vs + ps - (=2) > 0.
Since N, (as being solid) is circled, we see z € N, implies —z € N;. So, for all z € Ny we have

mps Vs +ps-2>0.

This implies that p, is Ts-continuous for each state s, i.e., p is 7-continuous. Finally, since s is
arbitrary, we have verified also that p is strictly positive on mv + Hs 1 Ns. m

In the next theorem E, has an internal point that need not be the total endowment.

Lemma 7.4. If A1, A2, and A4 are satisfied, each Ey is a locally convez-solid Riesz space and
E, has an internal point, then there exists a pseudo-equilibrium (z,p, L). Moreover, p is positive
on any set of the form mw + H‘: 1 Ns, where for all s:

(1) Ny is a conver solid Ts-neighborhood of zero in Es, and
(2) for all i, the uniform properness cone C! in state s satisfies ws + Ng C Ci.

Proof. Let v be an internal point of £ such that mvs € N~ Ct for each s.
For each 0 < A < 1 let w™* = Aw' + (1 — A)v. Clearly, each w®? is an internal point of E..
Moreover, > it wh = dw + (1 — )\)mv forall 0 < A <1andso Y it wi* € ML, C} for each s.
Let £, be the economy with (w®*)™, as initial endowments. Assumptions Al, A2, A4 hold
for each such economy. By Lemma 7.3, each such economy has a pseudo-equilibrium (z A pr LY.
Furthermore, the net {p*} can be chosen to be in the o(E’, E)-compact set

A*:{peE;: p-w=1 and p-(mw+nf=1Ns)gR+},
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where each Nj is a convex solid 7,-neighborhood of zero in Ej satisfying

m
ws+ N, C [ Ci.
i=1
So, we can assume that (z*,p*, L*) » (z,p, L) in (E4,p)™ x (E',0(E', E)) x G, with p € A*. By
Lemma 5.11 the tuple (z,p, L) is a pseudo-equilibrium. ®

Our third major result will be proven next.

Theorem 3.7. If A1, A2, and A3 are satisfied, each E; is a locally convez-solid Riesz space,
w> 0 and M C E,,, then there ezists a pseudo-equilibrium. In particular, for a J(& — J)-strongly
dense set of assets structures in G there exists an equilibrium.

Proof. Notice that the principal ideal E,, = |J;—; n[-w,w] contains M and each w'. Restricting
the economy to E,, it is easy to verify that all conditions of Lemma 7.3 are satisfied. Therefore,
there exists a pseudo-equilibrium (z,p, L) for this restricted economy with p being a 7-continuous
positive functional on E,. Thus p can be extended to a positive continuous linear functional on
all of E, which we shall denote it by p again. We show that (x,p, L) is a pseudo-equilibrium for
the unrestricted economy.

Since (z, p, L) is a pseudo-equilibrium on E,,, it must be the case that p > 0 on F,,. Since w is
a quasi-interior point of E and 7 is locally solid it must be the case that p >0 on E.

Now take any z € E, such that 2 € Pi(z') and pO(z — w?) € L. We shall use Lemma 4.9 to
show that p-z > p-w’ To this end, consider the principal ideal E, .. Clearly, z € E, 4, and
w + z is an internal point of E}, .. Now take an internal point y € E:Jrz such that y € P;(z*) and
pO(y — w') € L. We see that pOy > 0.

There exists a net {y*} of positive vectors in EJ that converges to y. Since p is T-continuous,
it must be the case that p0y* converges to pOy > 0. Therefore, for A large enough pOy* > 0.
For these X define the vectors

A_ (Po-Yo x PL Y1 ps - yYs ,\)
" <p0»y3‘y0’p1~yf‘ b A s

’ Ps - Ys
Clearly, h* € EX and p0 (h* —w') = pO(y —w') € L. Notice also that h* — y, and thus for large
enough A we have h* € P;(z*). This implies that for large enough A we have p - h* > p-w'. This
in turn implies that p-y > p-w'. In view of Lemma 4.9, it must be the case that p-z > p-w".

Therefore, (z,p, L) is a pseudo-equilibrium. Once again, the final claim of the lemma follows from
Lemma 5.9. B

We are now ready to prove fourth and last of our major results.

Theorem 3.8. If Al, A2, and A4 are satisfied, each E; is a locally convez-solid Riesz space,
then there exists a pseudo-equilibrium. In particular, for a J(& — J)-strongly dense set of assets
structures in G there exists an equilibrium.

Proof. Consider the net of principal ideals {E*} directed by inclusion. Truncate this net and
assume that each E* contains each w® and M. For each such ideal consider the economy Ex which
is the restriction of the economy to E*. We know from Lemma 7.4 that each such economy has a
pseudo-equilibrium (z*, p*, L*). Now for each s, let N, be a convex and solid Ts-neighborhood of
zero in Ej such that wy + Ny C (2, Ci.



INFINITE DIMENSIONAL SPOT MARKETS 31

We can assume that p*-w = 1. We see from Lemma 7.4 that each p is positive on (ws+Ns)NE.
This means that each p* can be extended to a 7-continuous linear functional on E that lies in the
o(E', E)-compact set

A*z{peEﬁr: p-w=1 and p~(mw+ﬂf=1Ns)§R+},

Therefore, we can suppose that p* € E’ and that (by moving to a subnet) (z*,p*, L*) converges
in (Ex,p)™ x (E',0(E',E)) xGy to (z,p,L) with p-w = 1. By Lemma 5.11, we see that (z,p, L)
is a pseudo-equilibrium. The proof of the final claim follows from Lemma 5.9. ®

APPENDIX A. INFINITELY MANY STATES

Our theorems have interesting applications to models with infinitely many states of the world.
Consider for instance an economy over three periods ¢t = 0,1,2. In this model the time line is as
follows:

(1) Consumers consume in periods zero and two.
(2) Assets pay in period one according to the expected value of an asset conditional upon the
information in that period.

There are infinitely many final period states of the world. These are given by a probability
space (Q, Fa, 7). We are also given a subalgebra F; denoting the information that is available in
period one. We assume that F is generated by a finite partition S = {S1,...,Ss} of Q with S
elements.

There are ¢ commodities traded in periods zero and two. Thus, the commodity space is

E =R x Ly(R%,Q, Fa, ),
where Lo (R, Q, F, m) is the space of all m-square integrable functions from € to R?. Notice that
E=REx [[2_, Ly(RY,Q,8,,7). Solet Ey = R and Ey = La(R%, Q, S, 7).

There are J assets given by an operator T: M — Hle Ly(R¢,Q,S,, ). So, for each p in
R x HSS=1 Ly (R, Q, S,, ), each portfolio § € M and each assets price ¢ € M’ the budget sets for
this model are as follows:

i po(To — wgi)) —q(0)
Js, p(a1 —wi)dm fSI(Tel)dﬂ'
Bi(p,q,0) = qreE;: , < .

sz plrs — wh)dn fss (T6%) dr
Clearly, our theorems imply the existence of equilibrium for this incomplete markets model with

infinitely many states of the world.

APPENDIX B. THE GRASSMANIAN MANIFOLD

In this appendix, we shall introduce briefly the Grassmanian manifold and list its basic prop-
erties. For our work, the Grassmanian manifold is the collection of all J-dimensional vector
subspaces of RS+1. For simplicity this we shall take the space RS*! as given and denote this
collection by Gy, i.e.,

Gy;={LC RS+!: [ is a J-dimensional vector subspace of RS+1} .
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There is a natural topology on G that makes it a compact metrizable space. For a comprehensive
study of the Grassmanian manifold we refer the reader to the monograph Abraham et al. (1988).

First we discuss the notion of a topological manifold. Let X be an arbitrary set and let £ be a
Banach space. An atlas on X over the Banach space E is a family of pairs (U, %;)ier such that:

(1) Each U; is a non-empty subset of X and the family (U;, ¥i)ier covers X, ie., X = ;Ui
(2) Each 1; is a one-to-one mapping from U; onto an open subset of E.

(3) For each pair of indices i and j the set ¢;(U; N Uj) of E is an open subset of E.

(4) The mapping ; o ¢; ' ¥;(U; NU;) — ¢;(U; NUj) is a homeomorphism.

The basic result regarding atlases is the following.

Lemma B.1. If (U;,v:):er is an atlas of a set X over a Banach space E, then there is a unique
topology 7 on X (called the topology induced by the atlas (Ui, 1i)ier on X) for which each U; 1s
open and each v¥; is a homeomorphism.

If the topology 7 induced on a set X by an atlas is Hausdorff and X is second countable, then
the topological space (X, 7) is called a topological manifold over on E. If E = R", then (X, 7)
is referred to as an n-dimensional topological manifold.

We note the following result whose proof can be found in Conlon (2001, Theorem 1.5.5.).

Lemma B.2. If M is a compact n-dimensional topological manifold, then there is an integer k > n
and a topological embedding i: M — R¥.

From now on E = R5*T! and we are interested in the canonical local “Euclidean” structure on
the Grassmanian manifold G ; that makes it a J(S 4+ 1 — J)-dimensional manifold.
Fix a J-dimensional vector subspace F € G. For each complement G of F (ie., E = F & G)
we define a set UL by
Ul ={HeG,;: E=HaG}.
Notice that F' € UE and that the family of sets

{(UE: FeG,, Ge€Gsi1—y and E=F &G}

is a cover of G.

We now define a one-to-one mapping ¥ c: UL — L(F,G), the vector space of all linear opera-
tors from F to G. Fix aset U5. Let mg: E — G and let mp: ' — F denote the projections induced
by the direct sum decomposition E = F' @ G. Furthermore, for each H € Ug let 7y ¢ = ng|H
and my p = mp|H. Notice that 7y p is a linear isomorphism between H and F. Next, define the
mapping ¢Yrc: UL — L(F,G) via the formula

Yrc(H) =THGonyp.
We have the following.

Lemma B.3. Each mapping Yrc: UE — L(F,G) is one-to-one and its range is an open subset
of L(F,G). Moreover, if H € UL, then ¢p,c(H) as an operator from I’ to G whose graph in F&G
is H. In particular, Yypc(F) = 0.

Identifying (appropriately) £L(F,G) with RJ(S+1=J) e can state now a basic result as follows;
for a proof see Abraham et al. (1988, Chapter 3.).
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Lemma B.4. The family
{(UE: FeEGy, G€Gsy1—y and E=F &G}

is an atlas on G over L(F,G) = R?S*1=7) under which G is a compact metrizable and connected
J(S + 1 — J)-dimenstonal topological manifold.

Convergence in G is characterized as follows.

Lemma B.5. The following statements hold true:
(1) A net {F,} satisfies Fo — F in Gy if and only if:
(a) F, € UL holds for all o eventually large, and
(b) Yrg(Fa) = Yrc(F) =0 1in L(F,G).
(2) If F, — F holds in G, then for each x € F there exists a net {xa} C RS+ satisfying
Ty € Fy for all a and x4 — x in RS*L,
(3) The correspondence \: Gy —» R5*1, defined by A(F) = F, has a closed graph.

Proof. (1) If F, — F in Gy, then eventually F, € UE for each G satisfying E = F @ G since
F € Ug and the set UGF is open. Moreover, since ¥ r ¢ is a homeomorphism, it follows that
VYpc(Fo) = Yrc(F) =0in L(F,G).

Conversely, assume that F, € UZ for all a eventually large and ¢rc(Fa) — Yrc(F) = 0
in L(F,G). Let N be an open neighborhood of F. Pick G satisfying E = F @ G and note
that UL is an open neighborhood of F. Therefore, N N UE is an open neighborhood of F' and
Yrc[N NUE] is an open neighborhood of ¢rc(F) = 0 in L(F,G). Therefore, eventually we have
Vrc(Fa) € YpcINNUE] and Fo = Y51 (Fo) is eventually in N N U&. This implies Fo — F.

(2) Let F, — F in G; and fix z € F. Pick G such that E = F & G. Since U is open and
F € UL, we can assume without loss of generality that Fo € UE for all a.

Clearly, Yr.c(Fs) — Yrc(F) = 0. Let yo = ¥rc(Fa)(x) and note that 2o = 2 +ya € F,.
Then yo — 0 and so z, — x. Therefore, the net {z,} satisfies the desired properties.

(3) Let (Fy,z,) — (F,z) in Gy x RS+! such that z, € F, for all n. We need to show that
z € F. Pick a subspace G such that R%*! = F&G. Since UE is open and F € UE, we can assume
without loss of generality that F,, € UL for all n.

According to part (1) we have ¥rc(Fn) — Yrc(F) = 0 in L(F,G). In particular, it follows
that Yp.c(Fn)(zn) = ¢¥rg(F)(xz) =0. This impliesz =2 +0€ F. ®

APPENDIX C. CONTINUOUS AND APPROXIMATE SELECTIONS

Let S be a metric space and Y a normed space. Define the following sets:
A(Y) = {X CY: X nonempty and convex}.
DY)

{X € R(Y): X is finite dimensional or closed or has an interior point} .

Recall that a correspondence P: S —Y admits a continuous selection if there exists a
function a continuous f: S — Y such that

f(z) € P(a)

for every x € S.
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Lemma C.1 (Michael (1956)). If Y is a separable Banach space and P: S — D(Y) is lower
hemicontinuous, then P admits a continuous selection.

Let A be a metric space. An open ball of radius € about a subset X of A is denoted by B(X,¢).

The range of a mapping P: S —Y is denoted by R(P) and we denote by co(R(P)) the convex
hull of R(P).

Lemma C.2 (Cellina (1969)). Let S be a compact metric space and d let be the product metric
on SxY. If P: S — R(Y) is an upper hemicontinuous correspondence, then for each € > 0 there
exists a continuous function f: S — B(R(P),e) N co(R(P)) such that

sup{d(y, GrP): y € Grf} <e.

REFERENCES

R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and applications, volume 75
of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1988.

Y. A. Abramovich and C. D. Aliprantis. An invitation to operator theory, volume 50 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2002a.

Y. A. Abramovich and C. D. Aliprantis. Problems in operator theory, volume 51 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2002b.

C. D. Aliprantis and D. J. Brown. Equilibria in markets with a Riesz space of commodities. Journal
of Mathematical Economics, 11:189-207, 1983.

C. D. Aliprantis, D. J. Brown, and O. Burkinshaw. Edgeworth equilibria. Econometrica, 55:
1109-1137, 1987.

C. D. Aliprantis, D. J. Brown, and O. Burkinshaw. Ezistence and optimality of competitive equi-
libria. Springer-Verlag, Berlin, 1990.

C. D. Aliprantis, D. J. Brown, I. A. Polyrakis, and J. Werner. Portfolio dominance and optimality
in infinite security markets. Journal of Mathematical Economics, 30(3):347-366, 1998.

C. D. Aliprantis and O. Burkinshaw. Positive Operators. Academic Press, New-York, 1985.

C. D. Aliprantis, B. Cornet, and R. Tourky. Economic equilibrium: optimality and price decen-
tralization. Positivity, 6(3):205-241, 2002. Special issue of the mathematical economics.

C. D. Aliprantis, R. Tourky, and N. C. Yannelis. Cone conditions in general equilibrium theory.
J. Econom. Theory, 92(1):96-121, 2000.

A. P. Araujo and P. K. Monteiro. Equilibrium without uniform conditions. Journal of Economic
Theory, 48:416-427, 1989.

P. Araujo. Lack of Pareto optimal allocations in economies with infinitely many commodities: The
need for impatience. Econometrica, 53:455-462, 1985.

T. F. Bewley. Existence of equilibria in economies with infinitely many commodities. Journal of
Economic Theory, 4:514-540, 1972.

L.-A. Busch and S. Govindan. Robust nonexistence of equilibrium with incomplete markets, 2002.

Arrigo Cellina. Approximation of set valued functions and fixed point theorems. Ann. Mat. Pura
Appl. (4), 82:17-24, 1969.

L. Conlon. Differentiable manifolds. Birkhiuser Advanced Texts: Basler Lehrbiicher. [Birkhauser
Advanced Texts: Basel Textbooks|. Birkh&user Boston Inc., Boston, MA, second edition, 2001.

D. Duffie. In complete securities markets with infinitely many states: An introduction. Journal
of Mathematical Economics, 26:1-8, 1996. Equilibrium with incomplete markets and an infinite
state space.



INFINITE DIMENSIONAL SPOT MARKETS 35

D. Duffie and W. Shafer. Equilibrium in incomplete markets. I. A basic model of generic existence.
Journal of Mathematical Economics, 14(3):285-300, 1985. ISSN 0304-4068.

M. Florenzano. On the existence of equilibria in economies with an infinite dimensional space.
Journal of Mathematical Economics, 12:207-220, 1983.

D. Gale and A. Mas-Colell. An equilibrium existence theorem for a general model without ordered
preferences. Journal of Mathematical Economics, 2:9-15, 1975.

J. Geanakoplos. An introduction to general equilibrium with incomplete asset markets. Journal
of Mathematical Economics, 19:1-38, 1990.

0. D. Hart. On the optimality of equilibrium when the market structure is incomplete. J. Econom.
Theory, 11(3):418-443, 1975.

M. Hellwig. Rational expectations equilibria in sequence economies with symmetric information:
the two-period case. Journal of Mathematical Economics, 26(1):9-49, 1996. Equilibrium with
incomplete markets and an infinite state space.

A. D. Hernéndez and M. S. Santos. Competitive equilibria for infinite-horizon economies with
incomplete markets. J. Econom. Theory, 71:102-130, 1996.

S.Y. Husseini, J.-M Larsy, and M. J. P. Magill. Existence of equilibrium with incomplete markets.
J. Math. Econom., 19(1/2):39-68, 1990.

L. E. Jones. Existence of equilibria with infinitely many commodities: Banach lattices reconsidered.
Journal of Mathematical Economics, 16:89-104, 1987.

M. A. Khan. A remark on the existence of equilibria in markets without ordered preferences and
a Riesz space of commodities. Journal of Mathematical Economics, 13:165-169, 1984.

D. K. Levine. Infinite horizon equilibrium with incomplete markets. J. Math. Econom., 18(4):
357-376, 1989.

D. K. Levine and W. R. Zame. Debt constraints and equilibrium in infinite horizon economies
with incomplete markets. J. Math. Econom., 26:103-131, 1996.

M. Magill and W. Shafer. Incomplete markets. In Handbook of mathematical economics, Vol. IV,
volume 1 of Handbooks in Econom., pages 1523-1614. North-Holland, Amsterdam, 1991.

M. J. P Magill and M. Quinzii. Infinite horizon incomplete markets. Econometrica, 62:853-880,
1994.

M. J. P Magill and M. Quinzii. Incomplete markets over an infinite horizon: Long-lived securities
and speculative bubbles. J. Math. Econom., 26(1):133-170, 1996.

M. J. P Magill and W. J. Shafer. Charachterisation of generically complete real asset structures.
Journal of Mathematical Economics, 19:167-194, 1990.

A. Mas-Colell. A model of equilibrium with differentiated commodities. Journal of Mathematical
Economics, 2:263-296, 1975.

A. Mas-Colell. The price equilibrium existence problem in topological vector lattices. Econometrica,
54:1039-1053, 1986.

A. Mas-Colell and P. K. Monteiro. Self-fulfilling equilibria: an existence theorem for a general state
space. Journal of Mathematical Economics, 26(1):51-62, 1996. Equilibrium with incomplete
markets and an infinite state space.

A. Mas-Colell and W. R. Zame. Equilibrium theory in infinite-dimensional spaces. In Handbook of
mathematical economics, Vol. IV, volume 1 of Handbooks in Econom., pages 1835-1898. North-
Holland, Amsterdam, 1991.

A. Mas-Colell and W. R. Zame. The existence of security market equilibrium with a non-atomic
state space. Journal of Mathematical Economics, 26(1):63-84, 1996. Equilibrium with incomplete
markets and an infinite state space.



INFINITE DIMENSIONAL SPOT MARKETS 36

E. Michael. Continuous selections. I. Ann. of Math. (2), 63:361-382, 1956.

P. K. Monteiro. A new proof of the existence of equilibrium in incomplete market economies.
Journal of Mathematical Economics, 26(1):85-101, 1996. Equilibrium with incomplete markets
and an infinite state space.

W. J. Shafer and H. F. Sonnenschein. Equilibrium in abstract economies without ordered prefer-
ences. Journal of Mathematical Economics, 2:345-348, 1975.

S. Toussaint. On the existence of equilibrium in economies with infinitely many commodities and
without ordered preferences. Journal of Economic Theory, 33:98-115, 1984.

J. Werner. Equilibrium in economies with incomplete financial markets. Journal of Economic
Theory, 36(1):110-119, 1985.

J. Werner. Equilibrium with incomplete markets without ordered preferences. Journal of Economic
Theory, 49(2):379-382, 1989.

N. C. Yannelis and W. R. Zame. Equilibria in Banach lattices without ordered preferences. Journal
of Mathematical Economics, 15:85-110, 1986.

C. D. ALIPRANTIS, DEPARTMENT OF EcONOMICS, KRANNERT SCHOOL OF MANAGEMENT, PURDUE UNIVERSITY,W.
LAFAYETTE IN 47907-1310, USA
E-mail address: aliprantis@mgmt.purdue.edu

R. TOURKY, DEPARTMENT OF EcONOMICS, UNIVERSITY OF MELBOURNE, MELBOURNE, VicToria 3010, AUS-
TRALIA

E-mail address: rtourky@unimelb.edu.au





