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RIESZ ESTIMATORS

CHARALAMBOS D. ALIPRANTIS, DAVID HARRIS, AND RABEE TOURKY

ABSTRACT. We consider properties of estimators that can be written as vector lattice (Riesz
space) operations. Using techniques widely used in economic theory, we study the approximation
properties of these estimators. We also provide two algorithms RIESZVAR(i-1ii) for the consistent
parametric estimation of continuous multivariate piecewise linear functions.

1. INTRODUCTION

Envisage a situation where we seek to estimate a random variable Y based on some observed

random vector X = (X1, Xo,...,X,,). This paper studies estimators of the conjunctive Boolean
form: R
Y=\ A\@+rXi+rXo++r"Xp), (R)
jEJI€E;

where {E;};jcy is a finite family of finite sets and V and A are the vector lattice operations almost
sure supremum and almost sure infimum, respectively. We dub these estimators Riesz estima-
tors.

We are motivated in this paper by the desire to estimate multivariate continuous piecewise linear
regressions, by the close relation between Riesz estimators and multivariate threshold models and
spline regressions, and because the methods and techniques used to study these estimators have
over the past two decades become important tools in economic theory. Moreover, we were drawn
to consider Riesz estimators by their close relation to financial derivatives, and our thinking in this
paper was initially influenced by the work of Brown, Huijsmans, and de Pagter (1991) on the span
of call options with a single underlying security. Recall that if X is the random payoff of a security,
then its call option with strike price k is (X — k) vV 0 and its put option is (k — X) v 0. Therefore,
the Riesz estimators in (R) can be thought of as generalized options (recursively, they are options
on options—and so they are special cases of derivatives). This identification of Riesz estimators
indicates that they could be useful as parametric estimators in some financial models. Further,
the relation between Riesz estimators and generalized options also points to the usefulness of the
estimators in a non-parametric setting. Indeed, an important question in theoretical finance is the
type of options that one needs to add to complete an incomplete market; see Ross (1976) and Brown
and Ross (1991). The basic result is that if the available securities are (X1, Xa,..., X;,) and this
set of securities resolves fully revealing information, then adding all the derivatives of the form (R)
approximately completes the market. That is, each contingent claim is uniformly approximated
by one of these derivatives.
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The main application of Riesz estimators in this paper is to the parametric estimation of mul-
tivariate continuous piecewise linear functions. Many models in economic theory give rise to
continuous piecewise linear functions. Examples include better response functions in finite games,
reaction functions in Cournot and Bertrand models, kinked demand, and specialized models of
multi-market price equilibrium arising from the work of Samuelson (1952). Furthermore, piecewise
linear functions arise in a multitude of settings in computational economics, for instance in the com-
putation of competitive equilibrium (Wilson, 1978), the approximation of equilibrium prices (Scarf,
1967), the computation of the equilibria of finite games (Lemke and Howson, 1964), quadratic pro-
gramming problems in economics, as well as the optimal invariant capital stock problem (Dantzig
and Manne, 1974).

We consider the parametric setting in which we know that E(Y|X) = f o X, where f: R™ =R
is a continuous piecewise linear function. How can we estimate such a function? In the univariate
case, where m = 1, this is relatively easy and is a (continuous) threshold regression model where the
threshold variable is X. The situation is much more complicated in the multivariate case m > 1.
A basic problem in the multivariate case is finding an appropriate parameterization of continuous
piecewise linear functions. This problem arises in two ways. First, in the multivariate setting the
regions of a piecewise linear function can be very complicated. Second, even if we have a parametric
representation of these regions, the continuity of the function places additional restrictions on the
affine components of the piecewise linear function. Therefore, listing the regions of the function
and associating each region with an affine function does not usually result in a continuous piecewise
linear function. The continuity of the function provides useful additional structure to piecewise
linear models which in turn complicates the parameterization of the regression. We shall see in
this paper that this problem is solved by considering the Riesz estimators in (R).

In computation theory the basic method has been to parameterize continuous piecewise linear
functions using simplicial methods in algebraic topology. The idea is to define a simplicial subdi-
vision of the domain of the function and associate each vertex of this subdivision with a point in
the codomain of the function. Any point in the domain that is not a vertex is a unique convex
combination of the vertices and its value is calculated accordingly. This approach was employed for
instance by Eaves and Scarf (1976) and Eaves and Lemke (1981, 1983) to study solutions to piece-
wise linear equations—a study motivated by the economic problems of approximating equilibrium
price systems and computing the equilibria of finite games.

This homotopy approach was recently used for estimating continuous piecewise linear functions
from data in Groff, Khargonekar, and Koditschek (2003) and the Ph.D. dissertation of Groff (2003).
In these works, the authors introduce a novel non-linear parametric algorithm called Minvar for
estimating piecewise linear functions from data and prove a convergence result for this algorithm. It
appears that Minvar is the only specialized algorithm available in the literature for the parametric
estimation of piecewise linear functions.

The main idea in Minvar is to estimate the best fitting simplicial subdivision of the data. For
a fixed sample size, Minvar is divided into two steps. The first one partitions the data using
a simplicial subdivision of the support of the independent variable and obtains a discontinuous
estimator of the continuous piecewise linear function f. The second stage of the algorithm adjusts
the subdivision defining a continuous piecewise linear function that is close to the discontinuous
approximation of the first stage. This is done by minimization of a piecewise quadratic function.
The two stages are then iterated until the continuous estimator converges.

In this paper we provide two alternative algorithms based on Riesz estimators, RIESZVAR(1)
and RIESZVAR (ii), for estimating continuous piecewise linear functions. Following the recent work
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of Ovchinnikov (2002), we observe that the Riesz estimators in (R) give parsimonious Boolean
representations of continuous piecewise linear regressions. The underlying idea in our paper is that
it ' ={f1,f2,..., fp} is a finite set of affine functions, then there is only a finite number of ways
that these functions can be “glued” together to make a continuous piecewise linear function. For
instance, the three affine functions shown in Figure 1 generate thirteen continuous piecewise linear
functions. Now each one of these functions is a “level” in the hyperplane arrangement induced by
the graphs of the functions in F and these levels are precisely the vector lattice operations on the
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FIGURE 1. The graphs of the functions in f1, f2, f3 and the continuous piecewise
linear functions they generate.

Like Minvar, the first algorithm, RIESZVAR(i), comprises two steps:

(a) Ordinary least squares on appropriate divisions of the data gives a set of affine functions
which contains a subset of functions that estimate the affine components of f.
(b) A finite minimization problem chooses the appropriate Boolean sup-inf representation.

In the second algorithm, RIESZVAR(ii), we construct a piecewise quadratic programming problem
whose solution gives both the affine estimates of the components of f as well as the Boolean sup-
inf representation. We establish that both algorithms consistently estimate continuous piecewise
linear functions, and provide some examples of the implementation of the algorithms.

We can see from the discussion above that the Riesz estimator is a generalized continuous
threshold regression model. These generalized thresholds are not taken to be known, which is a
generalization from the usual case where the threshold variable is a known element of the set of
regressors. Although, for instance, Hansen (1996) discusses the possibility of selecting a thresh-
old variable from a finite set. Threshold autoregressive models are well known in the univariate
time series literature having been popularized by Tong (1983) and subsequently widely analyzed.
Threshold models also have considerable current interest in econometrics, often where there is a
single threshold. For example Hansen and Seo (2002) discuss testing for threshold cointegration
and provide a range of references to recent applications, and Hansen (1999) considers thresholds in
static panel data models. A continuous version of the multiple threshold model considered by Gon-
zalo and Pitarakis (2002) is also included in (R) provided the threshold variable is an element of
the set of regressors.

In this paper, we also study the space of Riesz estimators and their relation to other estimators
in the literature. We observe that the space of Riesz estimators is a linear space and is precisely
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the lattice hull of the space of affine estimators. In particular, Riesz estimators give rise to series
estimators of the form:
U] 'UJ

_a+2ﬁ1X +Z%[\/ A (P + e X+ 3 Xa o4 X )] (SR)

J=1 k=12£=1

where «, §;, and 7; are the parameters we seek to estimate and T;‘ke are constants. It is shown
that the Riesz series estimators approximate all estimators based on X. The series estimator
(SR) is closely related to the usual multivariate regression models using splines (Friedman, 1991).
Basically, a spline is a piecewise polynomial continuous function. The splines defined by the Riesz
estimators have affine components. An important analytical question in the spline literature is the
characterization of the space of possibly non-affine splines (Schumaker, 1984). The characterization
of the space of Riesz estimators as the lattice hull of affine estimators shows that there is a dramatic
change when one moves from the affine splines to the non-affine splines. One surprise is that non-
affine splines cannot be represented as lattice operations of their components, even in the case of
univariate quadratic splines.

It turns out that Riesz estimators have a familiar form in generalized additive models. In these
models there exists a known “link function” ¢g: R — R so that the conditional expectation has the
form

goE(Y|X)=a+gioXi+g2oXo+ -+ gmoXm,
where each g;: R — R is an unknown non-parametric function. Such models include the general
estimation problem when there is a single observed random variable X, the additive regression
where ¢ is the identity, and multiplicative regressions when g is the logarithm. We show that in
additive models (where g is known) the relevant Riesz estimators are of the piecewise linear form:

’"a+zﬁ1X +ZZ’71] _TU) > (AR)

i=1j=1

where Z is an estimator of g o E(Y|X).

We close the paper by showing that each constant r;; in (AR) is a possible structural break or
threshold in the otherwise linear relationship between the observed variable X; and the estimator
Z. Importantly, as we progressively add all the constants r;; (and p — oo) these additive Riesz
estimators approximate all additive estimators based on X. There is nascent economic intuition
for this. As mentioned earlier, the terms (X; — r;;)* can be thought of as call options in which
the underlying security pays the contingent claim X; and the strike price is 7i;. So the idea is that
by adding these put options (X; — 7;)* gives us all the needed information in additive models.
Moreover, in the statistics literature the form (AR) with m = 1 is used as a non-parametric
estimator using linear regression splines. Such estimators are the subject of a large literature,
see Agarwal and Studden (1980) and Zhou, Shen, and Wolfe (1998) for some asymptotic properties
covering linear regression splines.

Much of the analysis in this paper applies from well known, as well as recent, results in the
theory of Riesz spaces (or vector lattices) and their applications to economic theory. Riesz spaces
are ordered vector spaces whose vector orderings are lattice orderings. They are abstractions of
the order properties of spaces such as C[0, 1] (continuous functions on [0,1]), the classical Lebesgue
L,-spaces, and the space ca[0, 1] of all o-additive signed measures on [0, 1] of finite total variation.
The theory of Riesz spaces has become central to modern general equilibrium theory where the
lattice structures on the space of price systems are used to solve, for instance, separating hyperplane
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problems arising from the study of the fundamental welfare theorems.! Riesz spaces have also been
used in theoretical finance and have been employed to solve some special forms of the portfolio
insurance problem; see for example Aliprantis, Brown, Polyrakis, and Werner (1998), Aliprantis,
Brown, and Werner (2000), Aliprantis, Polyrakis, and Tourky (2002b). The theory of vector
lattices also underlines much of the work on linear optimization and more generally the Linear
Complementarity Problem with its applications to computational economics and game theory; see
for instance Cottle, Pang, and Stone (1992). Of course, there is a very long tradition of using
vector lattice theory in probability and statistics. The best known example is the beautiful work
of Le Cam (1986); see also Bomze (1990).

2. RIESZ SPACES, BANACH LATTICES, AND ESTIMATORS

The objective of this section is to present a brief discussion of the mathematical background
needed to study Riesz estimators. The mathematics behind the theory of Riesz estimators are
those of Riesz spaces and Banach lattices. We recall here some basic properties of Riesz spaces
and for details and terminology we refer to the monographs Abramovich and Aliprantis (2002a),
Aliprantis and Border (1999), Aliprantis and Burkinshaw (2003), Schaefer (1974), Luxemburg and
Zaanen (1971).

An ordered vector space is a vector space L equipped with an order relation > that is
compatible with the algebraic structure of L in the sense that if 2 > y, then:

(a) x+2>y+ 2z foreach z€ L, and

(b) ax > ay for all a > 0.
An ordered vector space L is said to be a Riesz space (or a vector lattice) if L is also a lattice
in the sense that every nonempty finite subset of L has a supremum (least upper bound) and an
infimum (greatest lower bound). Following the standard terminology from lattice theory, we shall
denote the supremum and infimum of a set {z1,...,zn} by

n n
\/ r; and /\ z;,
i=1 i=1

respectively. In particular, the supremum and infimum of any pair of vectors z and y are denoted
by x Vy and x Ay, respectively. The simplest example of a Riesz space is R with the usual order.
Here z Vy and z Ay are the largest and smallest numbers of the set {z,y}; for instance, 2V 3 = 3,
IN0=0,and 3A3=3.

For an element z of a Riesz space L the positive part of z is defined by 2t = z Vv 0, the
negative part by 2~ = (—z) V 0, and the absolute value by |z| =z V (~z).

The following is a simple but very useful result.

Lemma 2.1. An ordered vector space is a Riesz space if and only if x exists for each vector x.
For an illustration of the above notions let L = C[0,1], the vector space of all continuous real

valued functions defined on [0,1]. With the pointwise ordering and algebraic operations C[0, 1] is
a Riesz space such that for each z € L and each t € [0, 1] we have

2t (t) = max{x(t),0}, z~(t) = max{-z(t),0}, and |z|(t) = max{z(t), —2(t)} = |z(t)].

IFor a survey of the recent literature see Aliprantis, Cornet, and Tourky (2002a). See also the monograph Alipran-
tis, Brown, and Burkinshaw (1990) and Mas-Colell and Zame (1991).
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Similarly, if z € L and r € R, then for each ¢ € [0,1] we have

) =7 if xz(t) > e =) if z(t) <7,
[(x_rm(t)_{ 0 if z(t) <r and [(@—r) ](t)_{ 0 if z(t)>7.

Also, notice that if {xy,...,x,} € C[0,1], then for each t € [0, 1] we have
[\/ zl] (t) = max{x1(t),...,zn(t)} and [/\ xi] (t) = min{z1(¢),...,za(t)}.

i=1 =1

Since C'(R") with the pointwise ordering is a Riesz space, the above formulas are also true for
functions of C'(R™).

Our interest here is in the structure of the Riesz subspaces of a Riesz space. A vector subspace
M of a Riesz space L is said to be a Riesz subspace (or a vector sublattice) if z,y € M imply
that both z V y and z A y belong to M. If we consider the product vector space R (where § is
any nonempty set) and order it pointwise, then (with the above lattice operations) R® is a Riesz
space. Moreover, if Q is a topological space, then C(Q) (the vector space of all continuous real-
valued functions on Q) and Cy(9) (the vector space of all uniformly bounded continuous real-valued
functions on ) are both Riesz subspaces of R®.

It should be clear that arbitrary intersections of Riesz subspaces are Riesz subspaces. This
implies that every nonempty subset A of a Riesz space L is included in a smallest Riesz subspace,
called the Riesz subspace (or the vector sublattice) generated by A and denoted R(A).

Next, we shall briefly describe the Riesz subspace R(A), an important subspace for our work.
For every nonempty subset A of a Riesz space L, the symbol A" will denote the collection of all
vectors that can be written as infima of finite subsets of A. That is, a vector a € L belongs to A"
if there exist vectors ay,as,...,ax € A such that a = /\f=1 a;. Similarly, AV is the set consisting
of all suprema of finite subsets of A. We write AV” for (AV)" and A"V for (A")Y. So, a vector a
belongs to AY” if and only if there exists a finite family {E;};e of non-empty finite subsets of L
such that a = \/;c; A Ej. It turns out that AY" = ANV is always true.

Now we can describe the Riesz subspace generated by a set as follows. For proofs and more
discussion see Sections 5 of Abramovich and Aliprantis (2002a,b).

Lemma 2.2. The Riesz subspace R(A) generated by a vector subspace A of a Riesz space coincides
with AMY and also with AV". That is, R(A) = AN = AV".

Corollary 2.3. The Riesz subspace generated by a nonempty subset A of a vector lattice is precisely
the vector space R(A) = [A]"Y, where [A] denotes the linear span of A.

When a Riesz space L is equipped with a norm that is compatible with the order structure of
the space in the sense that |z| < |y| implies ||z|| < ||ly|l, then L is called a normed Riesz space.? A
Banach lattice is a Riesz space that is a Banach lattice under a lattice norm. It is not difficult
to see that in a Banach lattice the closure of a Riesz subspace is likewise a Riesz subspace.

The two classical examples of Banach lattices are the C(X)-spaces, where X is a compact
topological space and the norm is the sup norm | - ||oo, i.e.,

[ flloc = sup | f(2)},
TEX

2Any norm on a Riesz space such that |z| < |y| implies [|z]| < |ly|| is called a lattice (or a Riesz) norm.



RIESZ ESTIMATORS 7

and the L,(u)-spaces, where 1 < p < oc, and the norm is given by

N fllp = [/|f|pdu}p, if 1 <p<ooand ||f|loc =esssupf, if p=o0.

These are the two Banach lattices that will appear repeatedly in this work.

Finally, we shall close the section with some terminology regarding the Hilbert space La. In
this paper, (Q, F,7) will denote a fixed probability space. The functions (i.e., the equivalence
classes) in the Hilbert space La(m) = L2(Q2, F, ) will be referred to as random variables. The

constant random variable one on © will be denoted by 1, i.e., 1{(w) =1 for each w € Q. The norm
1

of Ly(m) will be denoted by || - ||, that is, ||f|| = ([,f?dr)?. For any sub-o-algebra A of F we
shall denote by Ly(A) the closed vector subspace of Lo(7) consisting of all .A-measurable square
integrable (equivalence classes) random variables.

The following basic result characterizes the closed vector sublattices that contain the constant

function 1. For the proof of the next result see for example Aliprantis and Border (1999, Thm 12.11,
p. 433)

Lemma 2.4. Every closed Riesz subspace of La(m) containing the constant function 1 is of the
form Lo(A), where A is a sub-o-algebra of F.

We shall use the boldface notation X = (X1, Xo,...,Xm) to designate random vectors in
Lo(m)™. For any random vector X, we shall denote by o(X) the sub-o-algebra generated by

X, i.e., 0(X) is the smallest (with respect to inclusion) sub-g-algebra of F for which each X; is
measurable.

Definition 2.5. A random variable Y is said to be an estimator based on a random vector X, if
we can write Y as a function of realizations of X in the sense that there exists a Borel measurable

function g: R™ — R satisfying Y = g o X. The function g s called the estimating function of
the random vector X.

Clearly, the collection of all estimators based on a random vector X is a closed vector subspace
of Ly(m). Moreover, it is a Riesz subspace that contains 1. The following result is well known and

is a simple consequence of Lemma 2.4. For a complete proof see for instance Aliprantis and Border
(1999, Thm 4.40, p. 145).

Lemma 2.6. The vector subspace of all estimators based on a random vector X coincides with the
Riesz subspace Lo(o(X)) of La(m).

To continue our discussion, we need the following basic result in Hilbert spaces that guarantees
the existence of a closest point from a given point to any non-empty closed convex subset. For
completeness, we present a short proof of this result.

Lemma 2.7. Let C be a non-empty convex closed subset of a Hilbert space. If x ¢ C, then there
exists a unique ¢y € C such that ||co — z|| = infeec ||c — ||

Moreover, if a sequence {cn} of C satisfies ||c, — || — infeec |lc — x|, then ¢ — co.
Proof. By translating, we can assume that z = 0 ¢ C. Let d = inf.cc ||c|| and then pick a sequence
{en} C C such that |jc,|| — d. From the Parallelogram Law, we see that

e —emll? = 2llenll? + 2llem I — 4| 2atza |* < 2ljen )| + 2lleml|? — 4d? e 2d% +2d° —4d* = 0.
2

T, m— 00
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This shows that {c,} is a norm Cauchy sequence. If ¢, — co, then d = |[co|-

Now assume that another sequence {c} C C satisfies ||c%|| — d. Define the sequence {c},"} of C
by letting c3¥ = ¢, and 02n . = .. Clearly, ||c;*|| — d. By the preceding case, there exists some
¢* € C satisfying ¢}* — ¢* and ||c | = d. Now note that ¢* = limy_,o0 €3;, = limp_oc Cn = Co.
This implies lim, o ¢}, = lim, o ¢35 _1 = o, and the proof is finished. ®

If Y is a random variable and V is a closed vector subspace of Ly(m), then the best (or
minimum) variance estimator of Y based on V is the unique (according to Lemma 2.7)

random variable ¥ € V' that satisfies ||Y — Y| < |Z - Y] for all Z €V, that is, Y is the unique
solution of the following minimization problem:

Min||Z - Y|
t.:2€eV
If Y is a random variable, then the best variance estimator of Y based on a random vector
X is simply the best variance estimator of Y based on La(co(X)).

Regarding best variance estimators, the following important result is well-known—we sketch a
proof below based on the Riesz space theory of positive operators.

Lemma 2.8. If Y is a random variable, then the best variance estimator Y of Y based on a
random vector X is E(Y|X), i.e., Y = E(Y|X), the conditional expectation of Y based on X.

Proof. The conditional expectation operator Y +— E(Y|X) is a contractive projection on Ly(m).
Moreover, Y +— E(Y|X) leaves invariant each L,(m) (1 < p < o0), is a contractive projection on
each L,(m) and has range L,(c(X)); see (Abramovich and Aliprantis, 2002a, Thms 5.37 and 5.38).
To complete the proof notice that on the Hilbert space Lp(m) the contractive projections are

precisely the orthogonal projections. (See for instance Abramovich and Aliprantis (2002b, Prob-
lem 5.3.14).) =

The next lemma is also very useful. Its proof follows immediately from Lemma 2.7.

Lemma 2.9. Assume that X is a random vector and Y is a random variable. If a sequence {Zy}
of random variables in Ly(o(X)) satisfies ||Y — Zn|| — ||IY —E(Y[|X)|, then ||Zn — E(Y|X)|| — 0.

3. ONE-DIMENSIONAL PIECEWISE LINEAR FUNCTIONS

We present here a few properties and formulas dealing with piecewise linear functions defined
on R or on a closed interval of R.

Definition 3.1. A function f: R — R is called piecewise linear (affine) if there exist real

numbers —0o < ag < a1 < -+ < ag < 0o and pairs of real numbers (m;, b;), i = 0,1,....k,k+1,
such that
m;t + b; if a;_1 <t<a; forsomel <i<k,
ft) = mot + b if t<ag,

mk+1t + bk+1 if t Z Qk+4+1 -
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The parameters {ag,a1,...,ax} and the pairs (mi, by), i = 0,1,...,k,k + 1, are referred to as a
representation of f and the functions f;(t) = m;t +b; as the components of the representation.

Similarly, a function f: [a,b] — R, where [a,b] is a closed interval of R, is piecewise linear if
there ezist a partition a = ag < ay < --- < ay = b of the interval [a,b] and pairs of real numbers
(ms,b;), i=1,...,k, such that f(t)=mit+b; foralla;_; <t <a;.

Notice that, according to these definitions, piecewise linear functions are automatically contin-
uous. The following result should be obvious.

Lemma 3.2. If f: R — R is piecewise linear, then its restriction to any closed interval of R is
likewise piecewise linear. Moreover, if [a,b] is any closed subinterval of R, then the components of
the piecewise linear function f: [a,b] — R are among the components of f: R — R.

In addition, every piecewise linear function on a closed interval of R can be extended to a
piecewise linear function to all of R.

The piecewise linear functions on a closed interval are characterized as follows. The idea is
depicted in Figure 2.

FIGURE 2. Notice that f(t) = by +t* —2(t — a1)* +2(t — a2)™.

Lemma 3.3. Let f: [a,b] — R be a piecewise linear function. If {ag,ai,...,ax} and (mg,b;),
i=1,...,k, is any representation of f, then for each t € R we have
k-1

f(t) =b +mit+ Z(miﬂ — ml)(t - ai)+ .
1=1
In particular, a function f: [a,b] — R is piecewise linear if and only if there exist a partition
a=ag<a; <--<ap=>b of [a,b] and constants c,co,c1,...,ck such that for each t € la, b] we
have f(t) =c+ Zf:o ci(t —ai)t.
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Proof. Let a <t <b. If ap <t < ay, then note that
k-1
by + mit + Z(miﬂ — mi)(t - ai)+ =by +mit = f(t) .
i=1
So, we can assume that a;_1 <t < a; for some 1 < j < k. Notice that foreach 1 <i <k —1 we

have m;a; + b; = mip1a; + biyy or (mip1 —my)a; = —(biy1 — by). Consequently, we have
k-1 7-1
by +m1t+Z(mi+1 ——mi)(t—ai)+ = b +m1t+2(mi+1 —mi)(t—ai)"'
— -
1 ;_11
= b +m1t+Z(mi+1 —mi)(t~a,~)
=1
1 Jj-1 Jj-1
= b +mt+ [Z(mi-H —mi)]t—Z(miH —m;)a;
i=1 =1
j—1 Jj-1
= by +mit+ [Z(miﬂ _mi)]t+2(bi+1 —bi)
=1 =1

= b +m1t+(mj —m1)t+(bj —by) =mjt+bj = f(t),
and the proof is finished. W

Corollary 3.4 (Brown, Huijsmans, and de Pagter (1991)). The vector subspace generated in
C[0,1] by the collection of continuous functions {1,t}U{(a—t)*: a € R} coincides with the Riesz
subspace of all piecewise linear functions on [0, 1].

Corollary 3.5. Let g: R — R be a piecewise linear function. If {ag,a1,...,ar} and (mg, bi),
i=0,1,...,k k+1, is an arbitrary representation of g, then for each t € R we have

k
g(t) =bo +mot + Y _(miy1 —my)(t —a)*.
1=0
In particular, a function f: R — R is piecewise linear if and only if there exist real constants
mo, bo, o, 1, . . ., ak and co,C1,- .., ck such that for each t € R we have
k
J(8) =bo +mot + > ci(t—a;)*
i=0

Proof. Consider the function h: R — R defined by h(t) = by +mit + S g — ma)(t — i)t
As in the proof of Lemma 3.3, it is easy to see that h(t) = f(t) for all ag <t < ax. Moreover,
h(t) = myt + by for all t < ag and h(t) = mgt + by for all t = ay. Since
mit + by +my(ag —t)T —melag — )t = by +mot for all t < ag
mit + by +my(ag —t)T —mglag —t)t = myt+by forallt > ao
Mt + b 4+ (Mpy1 —mp)(t —ar)t = mpgr +brgy forallt > ax, and
)

mit + by + (mpyr —mi)(t —ar)t = myt+ by forall t < ax,
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it follows that

g(t) = mi(ao—t)T —molaop — ) Th(t) + (Mit1 — mi)(t —ap)™
k-1
= ml(ao—t)+—mo(ao—t)+—+—b1+m1t+2(mi+1—mi)(t——ai)++(mk+1—mk)(t—ak)+
i=1
k

= mi(ao — )" —molag — )T + by +mat + D (migy —mi)(t —ai)*
i=1
k
= b0+m0t+ (m1 —mo)(t—a0)+ +Z(mi+1 —mi)(t—ai)+
1=1
k
= by +mpt+ Z(mi+1 —my)(t - ai)+ s
1=0

as desired. W

We close the section with two results that will be useful for our study later.

Lemma 3.6. Let f: [a,b] — R be a piecewise linear function and let {ag, a1, ..., ar} and (my, b;),
i=1,...,k, be a representation of f. Also let m = %ﬁ, the slope of the line segment joining
the points (a, f(a)) and (b, f(b)).

Then there exist 1 < i < k with m; > m and aj—; < & < a; satisfying f(£) = m(§ —a) + f(a).

a1 < t < a;. In particular, we have m; < m. Given that for a < t < a1 we have fit) =
mit + by = mq(t — a) + f(a), the latter implies f(t) < m(t —a) + f(a) for all @ <t < ay. Notice
that for each a; < t < ay we have f(t) = mat + by = ma(t — a1) + f(a1). So, if ma < m, then
for each a; < t < ap we have f(t) < m(t —a) + f(a). On the other hand, if my > m, then for
each a; < t < as we must have f(t) < m(t — a) + f(a); otherwise (by the intermediate value
theorem) there should exist some a; < & < ap with f(€) = m(t — a) + f(a), which contradicts our
assumption. The same argument yields f(t) < m(t —a)+ f(a) for all az <t < a3. Continuing this
way we see that f(ax) = f(b) <m(b—a)+ f(a) = f(b), which is impossible. =

Proof. Assume by way of contradiction that if m; > m, then f(t) # m(t — a) + f(a) for all

As an immediate consequence we get the following result.

Corollary 3.7 (Ovchinnikov (2002)). Let f: [a,b] — R be a piecewise linear function and let
{ag,a1,...,ax} and (m;, b)), i = 1,...,k, be the parameters of a representation of f. Then there
exists some 1 < i < k such that f(a) > mia+b; and f(b) < m;b+b;.

Proof. According to Lemma 3.6 there exist some 1 <1 < k and some a;—1 < € < a; satisfying
m; > m = %ﬂ and f(€) = m(t — a) + f(a). Note that for each a;-; <t < a; we have
mit +b; = ma(t — &) + f(€) and that for all a <t < b we have m(t —a) + f(a) = m(t - )+ f(&).
This implies mit + b; < m(t — a) + f(a) for all a < t < £ and m;t +b; > m(t — a) + f(a) for all
¢ <t < b, and our conclusion follows. ®
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4. MULTIVARIATE PIECEWISE LINEAR FUNCTIONS

Recall that any function f: R™ — R of the form f(z) = @ + a -, where a € R is a constant
and @ € R™ is a fixed vector, is called an affine function. As usual, an affine function f is linear
ifa=0,ie, f(z) =a-z. A function f: S — R, where S is a subset of R™, is said to be an affine
function if it is the restriction of an affine function defined on R™. Let Aff denote the collection
of all affine functions on R™ and note that Aff is a vector subspace of C(R™).

Lemma 4.1. Regarding affine functions we have the following:

(1) The vector space Aff of all affine functions is the linear span in C(R™) of the functions
{1,e1,€q,...,em}, where 1(z) = 1 and e;(x) = z; for all x € R™. That is, we have
Aff = Span {1,e1,€2,...,en}; and so Aff is an (m + 1)-dimensional vector space.?

(2) Two affine functions f,g € AfF coincide if and only if f(z) = g(z) for all x in a non-empty
open subset of R™. In particular, if a subset S of R™ has an interior point, then any
affine function on S is the restriction of a unique affine function defined on R™.

Proof. The proof of part (1) is obvious. The proof of part (2) follows easily from the following
simple property: If a non-zero linear functional f satisfies f(x) > « for all x in a non-empty open
set O, then f(x) > o must be the case for all x € O.

To see this, fix z € @ and assume that f(x) = . Since O is an open set, there exists some
¢ > 0 such that z + B(0,¢) € O. So, for each y € B(0,€) we have a + f(y) = f(z +y) =2 aor
f(y) > 0. This implies f(y) = 0 for all y € B(0,¢) and so f = 0, which is impossible. B

We are now ready to introduce the concept of a piecewise linear function.

Definition 4.2. A function f: R™ — R is called piecewise linear (or piecewise affine) if there
ezist distinct affine functions f1, f2,. .., fp and subsets S1,Sa,..., Sy of R™ such that:

(1) Each S; is closed with non-empty interior and Int(S;) = S; .4

(2) Ifi # j, then Int(S;) NInt(S;) = D.

(3) Uiy Si =R™.

(4) Ifz € S;, then f(x) = fi(z).
We also introduce the following terminology and notation.

(a) The sets S; are called the regions of f and the functions f; will be referred to as the

components of f.
(b) The pairs (S, f1),-- -, (Sp, fp) are the characteristic pairs of f.
(c) The set of all piecewise linear functions will be denoted by PL.

A remark is in order here. The same definition of a piecewise linear function can be given for
solid domains, i.e., for closed convex subsets of R™ with non-empty interior. All results in this
section hold true for piecewise linear functions with solid domains. We assume that our functions
have domain R™ for the sole purpose of simplifying the exposition. The reader can verify directly

3As a matter of fact, if we identify every vector r = (ro,71,...,7m) € R™*! with the affine function on R™
defined by r(z) = ro + 1121 + -+ + T'mTm, then it is not difficult to see that we can identify Aff with the vector
space R™+1.

41f A is any subset of R™, then Int(A) denotes its interior and A its closure. We remark that the sets S; are not
assumed to be connected.
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that when m = 1 the definitions for piecewise linear functions given in Definitions 3.1 and 4.2 are
equivalent; see also Corollary 4.10 below.

Here is an example of an piecewise linear function with a solid domain in R?.

Example 4.3. Let Q = [0,12] x [0,12] = {(z,y) € R*: 0 <z <12 and 0 <y < 12}. Consider
the piecewise linear function f: @ — R defined by

1 —5 if 2o > & 221 > 17 — 229,
.1'2—5 if ngIl&I1217—2x2,
flxy,z2) = —2y —20 — 12 if @9 > 21 & 200 <17 — 29 & 22y > 17 — 212,

or zp <z & 17 <17 =229 & 221 > 17 — 229,
1+ 29 —95 if 2x7 <17 —2x5.

The regions of this function are shown in Figure 3 and its graph is depicted in Figure 4.

(12,12)

51,271—5

Sg, ) -5

(0,0)

FIGURE 3. The regions of the function f: R? — R.

Notice that the regions cannot be specified by separate thresholds on the variables z; and zs.
This would be the case only when the function f is itself separable. W

The rest of the discussion in this section is devoted to the properties of piecewise linear functions.
The fundamental result for our work will be obtained in the sequel (see Theorem 4.15) and it
states that the collection of all piecewise linear functions is precisely the Riesz subspace generated
in C(R™) by the affine functions.
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FIGURE 4. The graph of f: R? - R

Lemma 4.4. Every piecewise linear function is continuous.

Proof. Let f: R™ — R be a piecewise linear function and let z,, — z. If f(x,) # f(x), then we

> €

) that there exists some e > 0 such that | f(z,) — f(2)|

can assume (by passing to a subsequence

} of {z,} satisfying y., € S;

for each n. But then we have € < |f(yn) = f(y)| = |fi(yn) = fi(y)| = O, which is impossible. This

for each n. Now notice that there exist some i and a subsequence {yn
shows that f is continuous.

The following result presents an extremely simple characterization of piecewise linear functions.

Theorem 4.5. A continuous function f: R™ — R is piecewise linear if and only if there exist

affine functions fi,..

f(z)

fying

< i < k satis

., fr such that for each x € R™ there exists some 1

fi(z).

is a subcollection of the collection of affine functions

Moreover, the set of components of f

{f1,--

ST}

e condition is trivially true. So, for the converse, assume

then th

Proof. If f is piecewise linear,

<i<k

fr such that for each x € R™ there exists some 1

that there exist affine functions fy,...,
We can assume that the affine functions fi, ..

such that f(z)
the following:

., fr are distinct. We claim

fi(z).

o For each non-empty open subset V of R™ there exist a non-empty open subset W of V and

on W.

f=1f

some 1 <1 < k such that
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To see this, assume by way of contradiction that the claim is false. This implies that f # fion 'V,
ie., fi(v) # f(v) for some v € V. Since f and f; are continuous, there exists some non-empty open
subset V; of V such that fi(z) # f(z) for all z € V4. Similarly, since (by our hypothesis) f # f2
on V; there exists some non-empty open subset Vz of V) such that fa(x) # f(z) for all z € Va.
Continuing this way, we see that there exist non-empty open sets Vj, C Vj_; C--- C V1 C V such
that for each 1 < i < k we have f;(z) # f(z) for all z € V;. But then for each x € Vi we have
f(z) # fi(x) for all 1 <4 < k, which is impossible, and our claim has been established.

Now for each 1 <7 < klet O; = | J{U CR™: U isopenand f = f; on U}. Thatis, O; is the
largest open set on which f = f;. By the preceding discussion O; # @ for at least one i. (To see
this take V = R™ and apply (e).) Deleting the O; with O; = @, we can assume that O; # @ for
each i. Put S; = O, and note that f = f; on S;. We shall verify that the closed sets Si,. .. , Sk
satisfy the conditions of Definition 4.2. Start by observing that condition (4) is obvious.

For (1) note that from O; C S;, we get that Int(S;) # @ and that O; C Int(S;). Moreover,
O; = Int(S;) must be the case, since otherwise the maximality property of O; will be violated. The
condition O; NO; = @ for i # j should be obvious and the validity of (2) follows. If Ule S; #R™,
then by the above discussion there exists some non-empty open subset ¢ of R™ \Uf=1 S; and some
1 < ¢ < k such that f = fr on Q. But then the open set O, U Q violates the maximality property
of @,. Hence, Uf:] S; = R™,

That the components of f are among the affine functions f1,..., fx should be obvious from the
above discussion. W

An immediate consequence of the preceding result is that PL is a Riesz subspace.

Corollary 4.6. The collection of all piecewise linear functions on R™ is a Riesz subspace of
C(R™). In particular, we have R(Aff) = Aff¥" = A" C PL.

Recall that an affine transformation from R* to R™ is any function 7': R¥ — R™ of the form
T(t) = At +b, where A is an m x k real matrix and b € R™ is a fixed vector. Now if T" is an affine
transformation and f: R™ — R is an affine function, then the function foT': R* — R is also an

affine function. To see this, assume that f is defined as f(z) = a4+ u -z and note that for each
t € R¥ we have

[foT)(t) = f(T(1) = a+u- (At +b) = (a+u-b) + (A'u) - t.

This conclusion in connection with Theorem 4.5 yields the following result.

Corollary 4.7. If f: R™ — R is a piecewise linear function and T': RF — R™ is an affine
transformation, then the function f o T: RF — R is piecewise linear. Moreover, if f has the
components f1, ..., fp, then the components of foT are among the affine functions fi10T, ..., fpoT.

In particular, for any two fized vectors a,b € R™ the function 6: R — R, defined via the formula
6(t) = f(ta+ (1 — t)b), is (one-dimensional) piecewise linear.

A hyperplane of R™ is any subset of the form H = {z € R™: a -z = a}, where a € R™
is a non-zero vector and « € R is a constant. Clearly, every hyperplane is a closed set and has
Lebesgue measure zero. Notice that two affine functions f,g: R™ — R either do not agree at any
point or the set that they agree is a hyperplane, i.e., the set [f = g] = {z € R™: f(x)=g(z)} is
either empty or a hyperplane.
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The boundaries of the regions of a piecewise linear function are parts of hyperplanes.

Lemma 4.8. Let (S1, f1),...,(Sp, fp) be the characteristic pairs of a piecewise linear function

f:R™ = R. ForeachiletZ; = {j € {1,...,p}: j#1i and S;NS; # @}. Then the boundary of
the region S; has the following property:

a5, = |J sins; ¢ Ui = 4]
JET; JETL;
In particular,

(a) each boundary 8S; has Lebesgue measure zero and consists of “parts” of hyperplanes, and
(b) if x € Int(S;) for some i, then x ¢ S; for all j # 1.

Proof. Let x € 8S;. Since B(z, 1) N (R™\ ;) # @, there exists for each n some zn € [, 4; Sr
such that =, € B(z, n). It follows that for some j # i we have z,, € S; for infinitely many n. This
implies z € S; = Sj and so z € S; N S;.

Now assume that z € S; N S; for some j # i. If x ¢ 3S;, then x € Int(S;) and so there exists
some & > 0 such that B(z,d) C Int(S;). Since Int(S;) N Int(S;) = @, we infer that z € 9S;. From
Int(S;) = S, it follows that there exists some y € Int(S;) such that y € B(z,§). This implies
y € Int(S;) N Int(S;), which is impossible. Consequently, = € S;, and the proof is finished. W

The characteristic pairs of a piecewise linear function are uniquely determined.

Lemma 4.9. The regions and the components of a piecewise linear function f: R™ — R are
uniquely determined in the following sense: If another collection of pairs {(S1,91),- -, (Sg:94)}
satisfies properties (1)—(4) of Definition 4.2, then ¢ = p and {(S],91), (S5, 92), .-, (54,94} is @
permutation of the collection of pairs {(S1, f1), (S2, f2)s -+ (Sps fp)}-

Proof. Fix some 1 < i < p. Since Int(S;) is non-empty (and hence it has positive Lebesgue
measure), it follows from Lemma 4.8 that there exists some 1 < j < g such that the open set
V = Int(S;) N Int(S}) is non-empty. In particular, since fi(z) = g;(z) = f(z) holds true for each
x € V, it follows from part (2) of Lemma 4.1 that f; = g;.

Now let = € Int(S;). Fix & > 0 such that B(z,d) C Int(S;) and let 0 < e < 4. As above,
B( €) NInt(S.) # @ must hold true for some index 1 < r < ¢. But then (as above again)

= f; = g, must be the case. Since the affine functions g1, ..., g, are all distinct, we infer that

r = j. Therefore, B(z,e) NInt(Sj) # @ for all 0 < e < §. This implies = € S’ = §j, and so
Int(S;) € 8. Consequently, S; = Int(S; Int(S;) € S5

By the symmetry of the situation, there ex1sts some 1 < m < p such that S C S,,,. This implies
Int(S;) N Int(S,,) = Int(S;) # @, from which it follows that m = 1. Therefore S; = S} and so
(83, fi) = (Sj, g;). From the last result, the desired conclusion now easily follows. W

Another consequence of Theorem 4.5 is that for real functions defined on R the definitions for
piecewise linear functions given in Definitions 3.1 and 4.2 are equivalent.

Corollary 4.10. A function f: R — R is piecewise linear according to Definition 3.1 if and only
if it is piecewise linear according to Definition 4.2.

Proof. Let f: R — R be a function. If f is piecewise linear according to Definition 3.1, then f is
clearly piecewise linear according to Definition 4.2. For the converse, assume that f is piecewise
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linear according to Definition 4.2. Let {(S1, f1), (S2, f2), ..., (Sp, fp)} be the collection of char-
acteristic pairs of f. Notice that every f; is of the form f;(t) = m;t + b;. So, every non-empty
set of the form [f; = f;] is simply a point of R. This is connection with Lemma 4.8 shows that
the boundary of each S; is a finite set. Now each Int(S;) is the union of an at most countable
collection of pairwise disjoint open intervals. Since 85; is a finite set, a moment’s thought reveals
that Int(S;) is a union of a finite number of pairwise disjoint open intervals. From this it follows
that S; is the union of the closures of these intervals. Now it is easy to see that f is a piecewise
linear function according to Definition 3.1. H

In order to further study piecewise linear functions, we shall need the theory of arrangements
of hyperplanes and oriented matroids, which are well studied combinatorial constructions that are
closely related to vector lattices and the simplex methods in linear programming; see Chapter 4
of Bjorner, Las Vergnas, Sturmfels, White, and Ziegler (1999).

Recall once more that any subset of R™ of the form H = {x € R™: a-z = a}, where a € R™
is a non-zero fixed vector and « € R is a constant, is called a hyperplane of R™. We can assume
without loss of generality that |laj| = 1 and refer to a as a (unit) vector normal to H. Since
H = {z € R™: (—a)-z = —a}, we see that —a is also another (unit) normal vector to H. In
other words, H has essentially two unit normal vectors, each of which defines an orientation in
the sense that it divides R™ into three parts: a “positive” part {z € R™: a -z > a}, a “zero”
part {z € R™: a-z = a}, and a “negative” part {z € R™: a-z < a}. Of course, if we let
H = {z € R™: (—a)-z = —a}, then the orientation changes: the positive part is now negative
and the negative part is positive. Thus, writing H in the foom H = {x € R™: a-z = a}, the
vector a defines automatically an orientation, and H is called an oriented hyperplane.

Now let E be a finite index set and let (H,)cep, where He = {x € R™: a. -z = a.}, be a family
of (oriented) hyperplanes in R™. The family (H.)ce, is called an oriented arrangement of
hyperplanes (or simply an arrangement). Every arrangement of hyperplanes (H ¢)ecE “almost”
subdivides R™ into a finite number of non-empty convex regions. The subdivisions are obtained
by means of the “sign” mapping « — o, from R™ to {+, —,0}F, that is defined by

+ if ae-x > ae,
oz(e)=( — if ac -z <a,

0 if ae = qe,

ie, o, = (Sign(ac -z — O‘ﬁ’))eeE‘ Let M denote the range of o, i.e., M = o(R™) C {+,—,0}*.
A vector T € M satisfying T'(e) # 0 for all e € E is called a tope of M. Note that o, is a

tope if and only if = ¢ UeeE H.. Let T}, T5 ..., Ty be an enumeration of the topes of M. For each
1< h<Jlet

K = {r eR™: o, = T;L} =0 Y({Tn}).

Obviously, each K}, is a non-empty open convex set and from U,lel Kp = R™\U,cg He, we see that

U){:l K, = R™. The sets K1, Ka,..., K are called the cells induced by the arrangement of the
hyperplanes (H,)cecr. It should not be difficult to see that the collection of cells {K1, Ko,..., K }
is independent of the orientation of the planes H., and so we can refer to {Ky,Ka,...,K;} as
the collection of cells generated (or induced) by the family of hyperplanes (Hc)cep. For an
example of an arrangement of hyperplanes see Figure 5.
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FIGURE 5. An arrangement of 4 oriented hyperplanes in R2.

Now let {fi,..., fp}, where p > 2, be a collection of distinct affine functions on R™. If for each
1<i<j<pwelet Hj=[fi = fj], then the set E = {(i,j): 1<i<j<pand H;; #@}
is a finite set. Letting H, = [f; = fj] = {x € R™: a. -z = a.} for each e = (i,j) € E, we see
that the family (H.)ccf is an arrangement of hyperplanes, called an arrangement generated by
{f1,..-+ fo}- The collection of cells collection of cells generated by (H.)eeg is called the collection
of cells generated (or induced) by {f1,..., fp}.

With this terminology at hand, we are now ready to state several extra properties of piecewise
linear functions.

Lemma 4.11. Let F = {f1,..., fx} be a finite collection of distinct affine functions of R™ and let
{K1,Ka,...,K;} be the cells induced by F. Assume also that f: R™ — R is a continuous function
such that for each x € R™ there exists some 1 <1 < k satisfying f(x) = fi(x).> Then for a vector
z € K), we have the following:

(1) If f(z) = fi(z), then f(y) = fi(y) for ally € Kp.
(2) If f(x) > fi(x), then f(y) > fi(y) for ally € Ky.
(3) If f(z) < fi(z), then f(y) < fi(y) for ally € Kp.
Moreover, for each 1 < h < J there exists a unique 1 <ip <k such that f = fi, on K.

Proof. We shall prove (1) first. To this end, suppose that some z € K}, satisfies f(z) = fi(z).

Let X = U,{:l K}, and note that X is an open dense subset of R™. Notice that for each z € X
any pair of distinct functions fi, f; € F we have fi(z) # f;j(2). So for each z € X there exists
a unique 1 < i, < k such that f(z) = fi,(z). Since f and the f; are continuous functions and
f(z) = fi.(z) # [j(z) for each j # i., there exists an open neighborhood N, C X of z such that
for each y € N, and all j # i, we have f(y) # f;(y) and fi,(y) # f;(y). This implies that for each
y € N, we have f(y) = fi,(y), ie, iy =i,.

5Keep in mind that this implies (by Theorem 4.5) that f is piecewise linear.
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Now fix y € K. Let L(z,y) be the line segment joining = and y and notice that L(z,y) C Kn

since K}, is convex. Since L(zx,y) is compact, there exists a finite set Z = {21,...,2;} € L(z,y)
such that L(z,y) € U,c; N.. We can assume that the neighborhoods {N,: z € Z} form a
chain, i.e.,, N;, NN, ., # @ for each t = ,7 — 1; see (Abramovich and Aliprantis, 2002b,

Problem 1.5.7, p. 50). This easily implies that for each z € L(z,y) we have f(z) = fi,(2) = fi,(2).
In particular, i; = 1.

Therefore, we have shown that for each K, there exists a unique index 1 <7, < k such that
y € K, implies f(y) = fi, (y). This proves (1) and the last part of the lemma.

To establish (2), assume that f(z) > fl( ) holds true for some z € K} and that some other
y € Ky, satisfies f(y) < fi(y). If f(y) = fi(y), then according to (1) we must have f(z) = fi(z),
which is impossible. If f(y) < fi(y), then there exists some z in the line segment joining x and y
(and hence z € K}) satisfying f(2) = fi(z). But then (according to (1) again) we get f(z) = fi(z),
a contradiction. This establishes (2) and the validity of (3) can be proven in a similar fashion. B

From Theorem 4.5 we know that if for a continuous function f: R™ — R and affine functions
fi,..., fx for each € R™ there exists some 1 < i < k satisfying f(z) = fi(z), then [ is piecewise
hnear The next result constructs the characteristic pairs of such a piecewise linear function from
a given collection of affine functions.

Theorem 4.12. Assume that a continuous function f: R™ — R and a finite set of distinct affine
functions F = {f1,..., fx} are such that for each x € R™ there exists some 1 < i < k satisfying
f(z) = fi(x). Let {K1,Ka,...,K;} be the cells generated by F. For each 1 <1<k let

E;, = {hE {1,,.]} f=fi on Kh}
and then define S; = UhEEi K;,. We have the following.
(a) If {Ei}iez is the family of non-empty E;, then the family {(S;, fi) YieT 1is precisely the
family of characteristic pairs of the piecewise linear function f.
(b) For each 1 < h < J there exists ezactly one i € T such that K C Int(S;).

(c) For eachi € T the non-empty set Int(S;) is a union of a finite collection of pairwise disjoint
non-empty open and connected subsets of R™.

Proof. (a) We know from Theorem 4.5 that the function f is piecewise linear whose components
are among the fi,..., fr. The proof below will present also an alternate constructive proof of
Theorem 4.5. Let {Ky,..., K } be the collection of cells generated by F and for each 1 <i <k
define E; and S; as in the statement of the lemma.

According to Lemma 4.11 at least one of the E; is non-empty; relabeling, we can assume that
Ep,...,E, are the non-empty E;, i.e, T = {1,...,p}. Clearly, f = fi on S;. Since the affine
functions f1,..., fr are distinct, it follows from part (2) of Lemma 4.1 that E,NEs =@ forr # s
and from Lemma 4.11 we see that | JI_, E; = {1,...,J}. The latter yields

Us-0Um-0UUx-Um=w

i=1

Next notice that since for each 1 < 7 < p we have UheEL K; C Int(S;), it follows on one

hand that Int(S;) # @ and on the other hand that Int(S;) = S;. Moreover, using part (2) of
Lemma 4.1, it is easy to see that Int(S,) NInt(Ss) = @ for 7 # s. Since f = fi holds true for each
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1 < i< p, it follows from Definition 4.2 that f is a piecewise linear function with characteristic
pairs (S1, fi), .-+ (Sp, fp).

(b) Now let 1 < h < J. According to Lemma 4.11 there exists a unique 1 < i) < k such that
f = fi, on Kp,. This implies that E;, # @ and K, C Int(S;,).

(c) Observe that for each i € T every component of Int(S;), i.e., every maximal (with respect
to D) non-empty and connected subset of Int(S;), is open. Now notice that every K5 C Int(S;)
is open and connected (as being a convex set) and so is included in some component of Int(S;).
Moreover, from the definition of S;, it is not difficult to see that every component of Int(S;) includes
some K. Thus, the number of components of Int(S;) is at most J, and the proof is finished. W

To continue our study, we need one more property of piecewise linear functions.

Lemma 4.13 (Ovchinnikov (2002)). If f: R™ — R is a piecewise linear function with components
fis-- -, fp, then for any pair a,b € R™ there exists a component f; of f satisfying fi(a) < f(a) and
fi(b) > f(b).

Proof. Fix a,b € R™ and consider the function g: R — R defined by g(t) = f(tb+ (1 — t)a). By
Corollary 4.7, g is a one-dimensional piecewise linear function whose components are among the
affine functions g1, 92, .. .,9p, where g;(t) = fi(tb + (1 — t)a). Consider g restricted to [0,1] and
then use Lemma 3.2 in conjunction with Corollary 3.7 to see that there exists a component g;
satisfying f(a) = g(0) > ¢:(0) = fi(a) and f(b) = g(1) < gi(1) = fu(b). W

We are now ready to state and prove one of the major results of this work. It includes the
basic structural properties of piecewise linear functions. The proof is based on the discussion by
Ovchinnikov of referees’ comments concerning his paper Ovchinnikov (2002).

Theorem 4.14. Assume that f: R™ — R is a piecewise linear function with characteristic pairs
{(S1, f1)s -, (Sp, fp)} and let {K1, Ka,..., K } be the set of cells induced by {f1s- s fp}-

(1) If for each h we pick some xy € Kj, and let By = {1 e{1,...,p}: fi(zn) > f(a:h)}, then
E}, 1is non-empty and

f=\J//\fi-

h=11i€E),

In particular, f € {f1, f2,..., fp}"'".
(2) If J* is the subset of {1,...,J} having the property that for each 1 < h < J there exists a
j € J* such that Ej C Ej,, then we have

=\ N5
jedr icE,

Proof. (1) For each 1 < h < J fix some z;, € K} and then use Theorem 4.12 to choose some
1 < j < psuch that K, C Int(S;). Clearly, fj(zx) = f(zn). This implies that if for each
1<h<Jwelet

E,={ie{l,....p}: filzn) 2 f(zn)},
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then on one hand Ej, # @ and on the other hand a glance at Lemma 4.11 guarantees that for each
i € Ey and each y € K, we have fi(y) > f(y). Now for each 1 < h < J consider the function
Fp = /\ fis (*)
1€Ey
and note that F},(y) > f(y) for each y € Kj. Since for some j € Ej, we have filzn) = flzn), it
follows from Lemma 4.11 that f;(y) = f(y) for all y € Kj,. Thus, Fr(y) = f(y) for all y € Kp,.
Next, fix y € R™. For each 1 < h < J there exists (according to Lemma 4.13) some f; satisfying
fiy) < f(y) and f;(zn) > f(xn). In particular, it follows that we have j € E} and consequently
Fu(y) = [Nieg, fi](v) < f(y) for all 1 < h < J. This implies Vi_, Fr)(y) < f(y) for all y € R™.
On the other hand, since for each z € K} we have Fy(z) = f(z), it must be the case that

J J
VE=VNAf=7,
h=1

h=14€E),
on Ui=1 Kp. Since Ui:l K}, is dense in R™ and \/,le1 Aick, fi and [ are both continuous func-
tions, it follows that \/;j_, Aep, fi = f holds true on R™.
(2) To establish this identity, note first that if E; C Ep, then Ajcp, fi < /\ieE] fi < f.
This implies /\ieEh fi < VjEJ‘ /\z‘eEj fi < f for each 1 < h < J, and consequently we have
f=Vi_ Nieg, fi < Viesr Nieg, fi < £, and the proof is finished. ™

Combining Corollary 4.6 and Theorem 4.14 we are now ready to state the fundamental result
for this work.

Theorem 4.15. The vector space PL of all piecewise linear functions is a vector sublattice of
C(R™) and coincides with Aff*", i.e., PL = Aff"".

In other words, PL is precisely the Riesz subspace of C(R™) generated by the (m+1)-dimensional
vector subspace Aff of all affine functions.

The next example reported in Ovchinnikov (2002) shows that piecewise polynomial functions
need not admit a sup-inf representation.

Example 4.16. Define the piecewise quadratic function f: R — R as follows:
0 ifz<0,
J(@) = {x2 ifx>0.
Notice that z2V0=z? and 22 A0=0. ®

Noting that the set {f1, f2,...,fp}'" is finite, Theorem 4.15 yields also the following.

Corollary 4.17. If F = {f1, fa,. .-, fp} is a finite set of affine functions on R™, then a function
f e C(R™) is piecewise linear with components in F if and only if f belongs to the finite set FV".

Theorem 4.14 also provides an algorithm for constructing the sup-inf representation of a piece-
wise linear function with components fi, fa, ..., f, and unknown regions. The next example is a
rudimentary algorithm illustrating this.
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Example 4.18 (From f, fi, f2,..., fp to AffVA). Take f € PL with components f1, f2,..., fp.
Following Theorem 4.14 the function f can be re-constructed following the steps below:
Step I: Determine E = {(i,j): 1 < i < j < pand [fi = f;] # @} and then for each
e = (i,7) € E pick a € R and a. € R™ such that H, = {z € R™: ac-z = a.} = [fi = £l
Step II: Using the hyperplane arrangement (H.).cg determine that cells Ky, ..., K.
Step III: For each h = 1,2,...,J choose some zp from the cell Kj.
Step IV: For each h = 1,2,...,J determine Ej, = {i € {1,...,p}: fi(zn) > f(zn)}.
Step V: Select a “minimal” set J* C {1,2,...,J} so that it satisfies property (2) of Theo-
rem 4.14. Then we have
f=\ A f-

jeJ* i€E;

The above procedure gives a desired sup-inf representation of f. B

The next example illustrates the preceding algorithm. It also shows how in applying this algo-
rithm, we can restrict our attention to a closed convex domain with non-empty interior.

Example 4.19. Consider once again Example 4.3 but with the restricted domain shown in Fig-
ure 6. Take the four affine components of the function f:

fi(z,z2) = 21 -5,
f2(z1,22) = x2-05,
fa(xi,22) = x1+x2-3,
fa (ml,ig) = —x1—x9+12.

These four affine functions induce eight cells. They are the eight regions of the oriented matroid
in Step I of the algorithm of Example 4.18 and they are depicted in Figure 6.

Notice that By = {1,2,3}, Ea = {1,2,3}, B3 = Ey = Es = Eg = E7 = Eg = {3,4}. Therefore,
if we take J* = {1, 3}, then we can write

f=fsnfa)V(fiAfaAf3).

Since we have restricted the domain, we can now write f = (f3 A fa) V (fi1 A f2); compare Figures 4
and 7. ®

A rudimentary algorithm for computing the regions of the functions in AffY" by means of
Theorem 4.12 is presented next.

Example 4.20 (From Aff¥" to PL). Take f € {f1, f2,..., fp}'", where f1, fa,..., fp are affine
functions on R™. Following Theorem 4.12 the regions of the function f can be obtained following
the steps below:
Step I: Determine E = {(i,j): 1 <i<j<pand[fi= f;] # @} and for each e = (i,j) € E
and then pick a. € R and a, € R™ such that H, = {xt € R": e -z =a.} = i = fil
Step II: Use the hyperplane arrangement (He)ecr to determine the cells Ky, ..., K.
Step III: For each h =1,2,...,J choose some x; € K} and then let

i =min{i € {1,...,p}: filzn) = flzn)}.
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(0,0)

FIGURE 6. The eight regions of the oriented matroid.
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FIGURE 7. The graphs of f1 A f2 and f3 A fs.

Step IV: For each h = 1,2,...,J determine the set I}, = {j e{l,....J}:
Step V: For each h =1,2,...,J let S;, = Uielh K;.

The characteristics pairs of f are distinct members of the family {(fi,, S, )} heqr,....5)- B
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5. THE SPACE OF RIESZ ESTIMATORS

In this section we study the space of Riesz estimators, establish approximation results for Riesz
estimators, and alternative formulations of the estimators. As mentioned earlier, we are working
in the Hilbert space (Banach lattice) Lao(m) = Lo(Q, F, 7). Recall that a random variable Y is
said to be an estimator based on a random vector X = (X1, Xo,..., Xm), if we can write Y asa
function of realizations of X in the sense that there exists a Borel measurable function g: R™ — R

satisfying Y = g o X. The function g is called the estimating function of the random vector X.
Now let X be a random vector and consider the vector subspace of Ly(r) given by

Ax = Span{l,Xl, Xz, ceey Xm} .
Notice that each Z € Ax can be written in the form
Z=r"4+r X+ X+ + "X,

where the coefficients rJ are real scalars. If we consider the continuous function g: R™ — R defined
by g(t1,...,tm) =70+l + 12ty + - + 1"y, then 7= goX, and so every random variable in
Ax is an estimator based on X having an affine estimating function. This justifies the name we
reserve for the estimators in Ax.

Definition 5.1. The estimators in Ax are called affine estimators based on X.

Given affine estimators 21, 22, o Zk € Ax we shall write
k k
\/ Zl and /\ Zl s
i=1 =1
for the m-almost everywhere pointwise supremum and infimum of the set {21, 22, cey Zk}, respec-

tively. That is, for m-almost all w € @ we let

k
[\/Z](w) = max{?l(w),zg(w),..‘,Zk(w)}, and

min{Z,(w), Za(w), ..., Zr(w)} .

N
£
I

Notice that \/f=1 Z and /\f:1 Zi are not usually in Ax but they always lie in the vector space of
estimators Lo(0(X)).

As before, we shall denote by A% the collection of all random variables that can be written as
infima of finite subsets of Ax. That is, a random vector Ze Lo () belongs to A7 if and only if

there exist random variables Z1, Za, . .., Z,, € Ax such that 7= /\le Z:. Similarly, A is the set
consisting of all suprema of the finite subsets of Ax. Write A" for (A})" and ALY for (AQ)Y.
We now introduce the notion of a Riesz estimator.

Definition 5.2. Any random variable in AY" is called a Riesz estimator based on X.

A direct application of Lemma 2.2 yields the following.
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Lemma 5.3. The collection A" of all Riesz estimators based on X coincides with the vector
sublattice R(Ax) generated by the vector space of all affine estimators Ax. That is, we have

R(Ax) = A" = ALY

In other words, a random variable 7 is a Riesz estimator if and only if there exist affine estimators
{ZU' i€{1,2,...,p}; j€{1,2,...,q}} in Ax such that

We list below several important and useful consequences of Lemma 5.3.

Theorem 5.4. A random variable Y is a Riesz estimator based on X if and only if there exists a
piecewise linear estimating function f: R™ — R such that Y = f o X.

Proof. Observing that for any collection of affine functions {f1, f2, ..., fp} on R™) and any family
of non-empty subsets {Ey: h=1,...,J} from this collection we have
J
VA fioX= [\/ A fi]eX.
h=11€E) =1i€E)

the conclusion follows from Theorem 4.14. W

Corollary 5.5. For a random vector X the following hold true:

(a) Fach Riesz estimator Y based on the random vector X can be written as

P q
Y= \/ /\ (ry +riXa + 5 Xy 4 X)) (R)
i=1i=1
(b) Fvery estimator of the form

m Pj

=a+ ZB,X + Z’YJ [\/ /\ ( e + TineX1 + i Xe + o+ T?}Lexm)] (SR)

Jj=1 h=14¢=1
is a Riesz estimator based on the random vector X.
(c) If Zl, Z2 are Riesz estimators based on the random vector X, then Z1 \Y, Zg, Zl A Zg, Z1 s
Z1 , and |21| are also Riesz estimators based on the random vector X.

The Riesz estimators enjoy the following important density property.

Theorem 5.6. The vector space A" of all Riesz estimators based on a random vector X is norm
dense in the vector space of all estimators based on X.

Proof. We know that AY" is the Riesz subspace of La(m) generated by {1, Xy, Xs,..., X} and
that AY" C La(o(X)). Now the closure AVA is a closed Riesz subspace of Lo(F) and satisfies
AN C Lg(a( ).

Accordmfr to Lemma 2.4 there exists some sub-o-algebra A of F such that AV/‘ = Ly(A). In
particular, we have La(A) C Ly(0(X)). Since each X; belongs to Lo(A), it follows that each Xj is
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A-measurable. Therefore, o(X) C A and so Ly(c(X)) € La(A) = A
AVF = Ly(A) = La(o(X)). ®

Y/ is also true. Consequently,

An immediate consequence of the preceding result is the following.

Corollary 5.7. Aﬁsume that X is a random vector and Y 1is a random variable. Also, assume
that an estimator Z based on X, i.e., Z € Ly(0(X)), is not the minimum variance estimator of
Y, ie., Z# E(Y|X). Then there exists a Riesz estimator Z, based on X of the form

N

P q

=V A @S+ riXa + 15X+ 41753 X0m)
i=1k=1

satisfying |21 — Y| < ||1Z = Y.

Some special estimators can be approximated by increasing sequences of Riesz estimators.

Lemma 5.8. Assume that a random vector X has support on an order interval [a,b] of R™ and
that g: [a,b] — R is a continuous function. If Y = g o X, then there exists a sequence of finite
Riesz estimators {Yt} based on X such that Yt 1 Y and Yt % uniformly on 2.

Proof. We can assume that X = X € Ly(r) and [a,b] = [0,1]. Let g: [0,1] — R be an arbitrary
continuous function. Since the vector space of all continuous piecewise linear functions is norm
dense in C[0, 1], there exists a sequence {u;} C C[0,1] of piecewise linear functions such that
0< U 7 ¢ holds in C[0, 1} and u¢ — g uniformly on [0, 1]. Letting Y, = u; o X, we see that Y, 1 Y
and Y, -Y uniformly on 2. W

__ We conclude this section with a discussion of additive estimators. Recall that a random variable
Y is an additive or separable estimator based on X, if we can write Y as a separable function of
the realizations of X. That is, if there exist Borel measurable functions g;: R = R, ¢ =1,2,...,m,
satisfying

?=910X1+920X2+"'+9m°Xm-6

For additive models we introduce the following series estimator.

Definition 5.9. Any random variable Y of the form

m m

—a-i-Zﬁ,X +ZZ%J i —rij)t, (AR)

i=1j=1

is said to be an additive Riesz estimator based on X = (X1, X2,..., Xm).

Notice the following characterization of additive Riesz estimators, which is a simple consequence
of Lemma 3.5.

5When we only have a single observation X, then each estimator based on X is trivially separable Notice also that
the vector space of all additive estimators based on X is the vector space La(o(X1))+ L2(o(X2))+---+ La(o(Xm))
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Lemma 5.10. A random variable Y is an additive Riesz estimator based on X if an only if there
exist piecewise (one-dimensional) linear functions g;: R » R, i = 1,2,...,m satisfying

Y=gioXi+goXo+ + fmoXm

The next result shows that additive Riesz estimators approximate all other additive estimators.

Theorem 5.11. The vector space of all additive Riesz estimators based on X is norm dense in
the vector space of all additive estimators based on X.

Proof. We know that the vector space of all additive Riesz estimators based on X; is norm dense

in Ly(o(X;)). This implies that the vector space of all additive Riesz estimators is likewise dense
in Ly(0(X1)) + La(0(X2)) + -+ + Lo(0(X)). ®

Recall that the best affine (minimum) variance estimator Y of Y based on a random
vector X = (X1, X2,..., X;m) is the unique random variable of the form

Y=a+ 68X +BXo+ +BnX
that minimizes ||Z — Y||. That is, Y is the unique solution to the minimization problem:
min ||Z = Y|
st:(a,f) ERxR™and Z = a+ 1 X1 + B2 Xo + - + B X

In other words Y is the best variance estimator based on Ax.

Theorem 5.12. Let Y and Z be random variables and let X = (X1,X2,...,Xm) be a random

vector such that Z and the conditional expectation E(Y|X) are additive estimators based on X,
i.e.,

Zz = flOX1+f2OX2+"‘+ngva and
IEY‘X) = gIOXI+920X2+"'+ngXm»
where the g; and fi are Borel measumble e functions from R to R.
Then Z coincides with E(Y|X), i ,Z = E(Y|X), if and only if for any i and any real number
r the best affine variance estimator Y of Y based on the random vector X; , = (Z,Xl,( i —r)%)

is Z, e, |Z—Y|| < ||Y = Y| for all Y € La(o(Xiy)).

Proof. Assume by way of contradiction that the conclusion is false. This means that if for each
1 < i < m and each r € R the nearest point of to Y in the vector space Span {1, X, Z,(Xi—1)*}
is precisely Z. This implies that the random variable Y — 7 is orthogonal to 1, X; and (X; —7)*
for for each 1 <7 <'m and each » € R. Consequently, for each 1 < i < m the random varlable
Y -Zis orthogonal to

Vi = Span {1, X;} U {(Xi —n)*: reR}.

Since (by Theorem 5.6) the vector subspace V; is dense in Lz(o(X7)), it follows that Y — Z is
orthogonal to Y"1, La(o(X;)). Since E(Y|X) and Z are elements of S0, La(a(X;)), we see that

Y - ZEY|X)-2)=0 and (E(Y|X)-Y,E(Y|X)-Z)=0.
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This implies
IE(Y|X) - Z|)” (E(Y|X) - Z,E(Y|X) - 2)
= (Y- Z,EY|X) - 2)+ (E(Y|X) - Y,E(Y|X) - Z) =0,

and so E(Y|X) — Z or Z = E(Y|X), which is impossible. ®

Rewriting the preceding result in its contra-positive form we have the following

Corollary 5.13. Let Y and Z be random variables and let X be a random vector such that Z and
the conditional expectation E(Y|X) are additive estimators based on X.

Then Z # E(Y|X) if and only if for there exist some i, some r € R and some estimator Y of
Y based on the random vector (Z X, (X; —r)7) satisfying ||Y Y| < ||Z Y.

To explain this corollary let us apply it to the case of a single observed random variable.

Corollary 5.14. If Z is an estimator based on a random variable X and Z # E(Y|X), then
there exists r € R such that the best affine variance estimator Y of Y based on the random vector
(Z,X,(X —71)F) satisfies |[Y = Y| < ||Z-Y].

The idea is that if Z is not the minimum variance estimator based on X, then there always
exists at least one kink or structural break in the estimation function which reduces variance; see
Figure 8.
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FIGURE 8. The estimator Z + $(X —r)tis Z with a structural break at 7.

6. MULTIVARIATE PIECEWISE LINEAR REGRESSION

We turn to defining the statistical model in which we estimate a multivariate piecewise affine
regression. To do this we need the following definition.
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Definition 6.1. Two sets E; and E, are said to be non-comparable if neither £y € Ez nor
E, € Ey. For any natural number k:
(i) The letter Wy will denote the collection of all families of subsets of {1,2,...,k} whose
members are pairwise non-comparable.
(i) Arbitrary elements of Uy, will be denoted with the usual family notation {E;}je.
(iii) We let #k = max|J| such that {Ej}jes € Yk.
(iv) For any number q < k, we let Vgr = {{Ej}jes € Yr: |J]| < g}

Clearly, ¥4 C Uy, and so gy, is a finite set. However, as the next example shows, Uy is quite
large.

Example 6.2. Consider the case k = 3. Note that

E, = {1}
Ey = {2}
Ey = {3}
Ei = {12}
E; = {1,3}
E, = {2,3}
E, = {1,2,3}
219 z:g
_ 1 = 1 s =
Us=3E - (2 B, = {3)
E, = {1} Ey = (2,3}
Ep = {2} E; = {1,3}
E1 = {3} E; = {2,1}
Ey = {1,2} Ey = {2,3}
E, = {1,3} Ey = {2,3}
E, = {1,2} Ey = {1,3}
E1 = {1,2} E; = {1,3} B3 = {2,3}
Ey = {1} Ey = {2} E3 = {3}
Also for ¢ = 2 we have
(E1 = {1}
Er = {2}
E, = {3}
Eq = {1,2}
E. = {1,3}
E1 = {2,3}
A A S
— 1= 2 = 3
Yas=9E - (1} B = ({3
E1 = {2} Ey = {3}
Ey = {1} Ey = (2,3}
E, = {2} Ey = {1,3}
E1 = {3} Ey = {2,1}
Ey = (1,2} E; = {2,3}
Ey = ({1,3} Ey = (2,3}
E; = {1,2} Eqo = {1,3}

Notice also that in this case #3=3. B

In this terminology, Corollary 4.17 and Theorem 4.14 can be stated as follows.

o Let F = {f1, fa..., fp} be a finite set of affine functions. Then a function f e C(R™) be-
longs to F¥" if and only if there exists a family {E;}jes € Vp such that f =V ¢, /\ieE, fi-

o If f: R™ — R is a piecewise linear function with affine components fisfo,- ooy fp, then
there exists a family {E;}jes € ¥y such that f =V ;c; Nicg, fi-

Recall that every random vector X = (Xi,...,X;) defines (in the usual manner) a Borel
measure mx on R™ by letting 7x(B) = 7(X~!(B)) for each Borel subset B of R™. Also, recall
that the support Supp(u) of a Borel measure y is the complement of the largest open set on which
1 vanishes. A Borel measure has compact support if its support is a compact set. Two random
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vectors X and Y are said to be identically distributed if 7x = my. In this case notice that for
m-almost all w the values X (w) and Y (w) lie in Supp(7x).

Definition 6.3. A piecewise linear regression model consists of the following:
(1) Two sequences {Y;} and {X;} each of which consists of independent and identically dis-
tributed (i.1.d.) random variables, where Yy: @ — R and X;: @ — R™.
(2) The common support X of the sequence of i.i.d. random variables {X:} is compact and
has non-empty interior.
(3) Affine functions fi, fa, ..., fp: R™ — R and some {E;}jcs € ¥p such that

E(VXe) =\ A fioX:. (PL)

jeJi€E;

For the rest of our discussion we shall assume that the sequences {Y;} and {X;} are as in
Definition 6.3. Notice that since X has a non-empty interior any affine function defined on X
is the restriction of a unique affine function defined on R™. Therefore, we can talk about affine
functions on R™ as being in C(X) without creating any confusion.

By Theorem 4.14, the model of Definition 6.3 includes all piecewise linear specifications for
E(Y;|X;). So if we consider each X;, as a column vector of the matrix Xy, then in matrix form
our statistical model is the following multivariate threshold model

[11Xt]ﬂl if Xt € Sly

[lvxt]ﬁZ if Xt € 82 )
X ={

[1,X:]8, if X¢ €Sy,

where 3; € R™*1 each S; is a closed subset of R™, Int (S;)NInt (j) = @ for i # j, and S1,52,...,5)p
cover R™. An equivalent specification of the model is that

IE(YHXt) = f OXtv

where f: R™ — R is continuous and agrees with a finite set of affine functions fi, fas oo fp

Notice, however, as with other parametric representations of piecewise linear functions there
could be several representations of E(Y;|X;) in (PL). In our case this identification problem is
a problem of choosing one of the finite number of equivalent representations in Wy, There are
several natural ways to solve this identification problem. One way is to order V¥, by size (and
lexicographically) and choose the smallest representation of E(Y;|X¢). In this section we will avoid
this finite identification problem and consider consistent algorithms for the estimation of E(Y:|X¢)
using one of the sup-inf representations.

We now introduce the notion of a consistent estimator.

Definition 6.4. A consistent estimator of E(Y;|X;) in (PL) is a pair of sequences

({E_’?}jej" ) (g?vggv o vg;cl)) )
where k is o fived natural number, satisfying the following properties:
(a) For each n and each 1 <i < k we have §j*: Q@ — C(X) and g (w) is an affine function of
R™ for m-almost allw € Q.
(b) {E}}jcjn: @ — Yk
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(¢c) If for each n we define friQ— C(x) by
frwy="\V A\ @),

jeJn (w) he EP (w)

then the sequence {f™}: Q@ — C(X) satisfies fr iz Vjes /\ieE]_ fi.7
For simplicity, in the preceding definition, the function yniQo C(X) will also be written as

j€Jm heE?
where it is understood that \/ ;¢ jn /\pcpn varies with the states in Q. Noting that if f* € C(X)
J

converges almost surely to f in C(X), then f o Xy € La(7) converges almost surely to f o X¢ in
Ly(7). In other words, our definition of consistency implies that the estimator converges almost
surely to the conditional expectations in Ly ().

Out next task is to introduce two methods of computing consistent estimators of the estimation
problem (PL). The first is RIESZVAR(i), which is easy to implement on a computer, and the sec-
ond, RIESZVAR(ii), is a non-linear estimator that requires an efficient algorithm for minimization
of piecewise quadratic functions.

7. RIESZVAR(1)

We now introduce our first algorithm for the estimation of (PL). Theorem 4.14 divides the
problem of estimating a solid piecewise linear function into two parts. The first is estimating the
affine components of the functions and then searching over the finite number of sup-inf operations
on these affine components to find the sup-inf operations that best fits the function. This gives
us a “meta-algorithm” for the parametric estimation of piecewise linear functions, which we call
RIESZVAR(i). We call it a “meta-algorithm” since it takes as given that we have a method for
consistently estimating a superset of functions in C(X) that contains the true piecewise linear
functions of E(Y;|X;). The idea is that this initialization problem is related to standard affine esti-
mation problems in statistics; examples of such algorithms are given in the sequel. The algorithm
is shown in Table 1. It highlights the role of the Riesz operation in providing consistent estimation.

The idea in Module I of RIESZVAR(i) is to estimate a set of affine functions that contains
members that consistently estimate the affine components of the piecewise linear function. We
provide examples of the implementation of Module I.

Example 7.1. Suppose that E(Y;|X;) is given by (PL) as in Definition 6.3. Denote the regions
of this piecewise linear function by Si,S2,...,Sp. Assume for convenience that X; has support
[0,1]™ € R™. We can assume without loss of generality that the interior of each S}, intersects
[07 1]771.

Let G be an “regular” grid of [0, 1]™ whose mesh size is less than some given € > 0. For ¢ small
enough, there exists a cell in the grid G contained in the interior of Sy, for every h. For each cell

TFor a sequence £": @ — C(X) and z € C(X) we write " 1%z « or simply " 25, ¢ if for m-almost all w
limp— oo |2 (w) — Z|loc = 0.
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RIESZVAR(i)

Consider the estimation of (PL) in Definition 6.3 using {Y;, X:}}=;, (n = 1,2,...):
Module I:
Estimate k affine functions g7, 9%, ...,9p: & — Aff C C(X) such that
(1) for each 1 < i < k there is some g; € C(X) such that g;' = gi, and
(2) fi € {91,92,---, 9k} for each true affine component f; in (PL).

Module II:

(a) Compute {E?}jej1l :  — ¥, such that for each w € Q we have

Vw - VA g;;(w,xt(w))r:

n

t=1 j€Jn(w) he BT (w)
n
min{Z[Yt(uJ) - \/ /\ ‘@g(w,xt(w))]2; {E;}jes € ‘Ilk}.
t=1 jE€J hEE;

(b) Let f™: © — C(&X) be the function

FeVOA

j€Jm heEY

Module IT’: If we know an upper bound g (satisfying p < ¢ < k) of the
number p of affine components of E(Y;|X¢), then (a) of Module II can be
replaced with the following.

(a) Compute E™Y} .. Q0 — W, such that for each w we have
jJjed q

Miw- VA (X)) =

n

t=1 jEj"'(w) hEE;l (w)
n 2
min{ 3 [Viw) - VA Gr@Xew)] : (Bes € k)
t=1 j€J heE,

TABLE 1. The RIESZVAR(i) algorithm.

Cy of the grid, use OLS to estimate the piecewise linear regression of Y; on X; using only those
observations for which X; € Cy. This gives the estimated function

gZ(Xt) = 1;0,1 + Bl,fxl,t + -+ Bm,é’Xm,t-
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Obviously the true regions where E(Y,|Xy) is affine are unknown so some arbitrary cell size must
be chosen to commence estimation. The basic trade-off in the choice of the cell size is that it is
desirable that it be small enough so each affine component can be estimated, but not too small so
that some cells contain few observations resulting in imprecise regression estimates. The number of
observations in each cell will go to infinity as n — oc. Thus, by the strong consistency of OLS for
ii.d. observations and the compactness of the support of X, the functions {g¢} converge almost
surely and uniformly to functions {ge}. It then follows that, for small enough mesh size €, each
true f; is equal to at least one of the affine functions g,. W

Example 7.2. Under the assumptions of the previous example, consider an alternative grid G
of [0,1]™ consisting of cells Cy, for £ =1,... ,k, defined so that each cell contains at least L%J
observations. Compared to the previous example, this approach guarantees that each cell contains
a specified number of observations, allowing some control over the precision of the regression
estimates. However, this approach allows no control over the actual locations of the cells in [0,1]™.
The two approaches are equivalent when X, is uniformly distributed on [0,1]™ but can produce
different results for other distributions. A possible extension is to consider k = k, where k, — o0
and %f- — 0 as n — oo, although this is not included in our consistency results below. W

To prove the consistency of the RIESZVAR(i-11) estimators we shall need the following uniform
law of large numbers.

Lemma 7.3 (Jennrich (1969)). Let {Z.} be a sequence of i.i.d random k-vectors, let C be a compact
subset of RY, and let g: R¥ x C — R be a Carathéodory function, i.e.,

(1) g(-,¢) is Borel-measurable for each c € C, and
(2) g(z,) is continuous for each x € RE.

If E(supeec |9(Ze,0)]) = [qsupcec 19(Zi(w), ¢)ldm(w) < oo, then for m-almost all w we have

lim (
n—o0 CGC

The next theorem shows that ¥ defined in Module II of RIESZVAR(i) provides a consistent
estimator of E(Y;|X;) as in Definition 6.4.

Theorem 7.4. Assume that E(Yy|X;) has the form (PL) as in Definition 6.3 and
EViX) =\ A o
j€JO heEY

If the sequence of estimators R
({E}Y e jms (3165, 31))

VA VAo

jn fon icJo 0
jed /LGEJ jeJ heEy

is from RIESZVAR(1), then

Moreover, for m-almost all w € Q, there exists nj, such that n > n}, implies

EYiX)= \ A moX:.

jeJn(w) heE} (w)
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In summary, RIESZVAR(i) consistently estimates (PL).

Proof. Let A be the non-empty subset of ¥}, defined by
A={{E} e BOUX) =\ A gnoXi}.
jeJ heE;

We show that for m-almost all w € €, there exists n* such that if n > n*, then {E]” }jej" (w) € A
We know from Lemma 7.3 that for 7-almost all w € Q and each {E;}; € ¥ we have

Jim M@ -V A sx@)] = n-V A aex]

t=1 j€J heE; je€J heE;

Now by assumption for 7-almost all w we have g}*(w) converges to gn in C(X). Therefore, for
m-almost all w there exists n* large enough such that if {E;}; € A and {Ej}; ¢ A, then n > n*
implies

n 2 n 2
S -V A seX@)] <@ -V A dwXw)]
t=1 JjEJ hEE; t=1 jeJ' heE]
This of course implies that if n > n*, then {EJ" biegn(w) € A
Notice now that if {E;}, {E}}J/ € A, then
VA a@=V A o
jEJ heE, j€J heE!

for all 2 € X. That is, the two functions in C(X) are identical. This is so since otherwise the
two functions differ on an open subset of X, and since X is the support of X; this open set is not
ax-null. In view of this, the fact that Uy is finite, and that C(X) is a Banach lattice, we see from

the last paragraph that frows, \/jeJ /\heEj gn for each {E;}; € A, and the proof is finished.

We move to two computer generated examples of RIESZVAR(1).

Example 7.5. In the first example we have

2
Vo= N fe (X14, Xou) + 0 (7.1)
k=1

where g, ~ N(0,1), X1, X2, are independent and uniformly distributed on [0,12]?, and
f1(X14, Xop) =44+ 02X, + 03Xy,  fo(Xip, Xoye) = X1 +0.3X2,.

A plot of /\i=1 frx (X1, Xo.1) is given in Figure 9. This example exhibits what is usually referred
to as a structural break or threshold in the regression function, specifically

 4402X1, 403Xy, if Xpo> 32,
E(iXe) = { Xy +0.3Xa, X, <32

This shows that a continuous threshold regression with a single threshold is a very simple
example of the general model (PL).

We generate a sample of n = 160 observations from (7.1), denoted {y, T14t,Z2,¢}1—1 and imple-
ment RIESZVAR (i) with Module II'. We choose k = 16 in Module I and, following Example 7.2,
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i f2 f=hnfanfs

FIGURE 9. The graph of the functions in Example 7.5.

divide the space [0, 1]? into 16 regions each containing 10 observations. OLS regressions are com-
puted for each of these 16 regions. We consider a maximum of ¢ = 3 functions to be included in
the final piecewise linear estimate and implement the least squares search specified in Module T
The fitted piecewise linear regression plotted in Figure 9 can be seen to resemble the graph of the
true function. The point estimates are

f1 (@14, 24) = 4.39 + 0.2121 ¢ 4+ 0.27z2 4,

fg (qu,:cgyt) =-0.16 + 0.913?1,1 + 0.401}1“

f3 (:cu,x“) = —0.14 4+ 1.5721¢ + 0.292 ¢,
and
f@re,x20) = fi (@i, x2,) A fo (@1, m20) A f3 (10, 2.40) -
As would be expected, Module II’ selects a continuous piecewise linear estimate with ¢ = 3
functions, even though the truth is p = 2. Clearly, model selection methods to consistently estimate
p are an important area for further research. It can be seen that f1 provides an estimate of f; and
both f2 and f3 provide estimates of fo. The imprecision is due to the fact that these coefficient

estimates are computed from subsamples of just 10 observations each, which is a disadvantage of
this sample splitting approach. W

Example 7.6. Now consider (PL) in which
(X0 Xa0) = [f1 (X6 Xo) A f2 (X1, X20)] V 3 (X1, Xag)

and
f1(XieXop) = =5+ X1+ Xop,
f2 (Xl,hXZt) 12“‘X1,g "‘XZ,t,
f3 (X1,£5X2,t) = _5+X2,t-

A plot of this function is given in Figure 10. This function implies considerable changes in the
behavior of E(Y;|X;) over the support of X;.
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Data generation and estimation are carried out as in the previous example. Figure 10 shows
the estimated piecewise linear regression for one of the samples. The point estimates are

fi (@14, 224) = 2.89+0.70z1, + 0.60z2,,
fo(z14,224) = 10.00 — 0.90z;, — 0.64z2 ,
fg (zu,xgvt) = —6.46‘}'0‘1111“ + 1.11.’172‘t,

and

F@iezas) = [fi (@10 22,) A f2 (21,0, 22,)] V fa (@ xay) .
The number of functions is correctly specified before estimation, i.e., ¢ = p. For this sample,
the sup-inf arrangement is correctly estimated and the point estimates are suggestive of the true
parameters.

For another sample, an interesting outcome is also given in Figure 10. In this case the point
estimates are

fi (@1, 20) = —6.52+ 1312y, +0.97xay,
fg (xu,xg‘t) = -3.88— 0.065$11t - 1.11$2‘t,
fs (x14,x0) = 10.00 — 0.90z;, — 0.6422,,

and f = (f1 /\fg)\/(f2/\f3)\/(f1/\f3). This case highlights the finite identification problem in (PL).
The consequence of this alternative arrangement of sup-inf is shown graphically in Figure 10. It
shows that having 3 affine functions does not necessarily mean that the resulting piecewise linear
regression function will have 3 connected regions—complex behavior is possible by taking sup-inf
operations over three affine functions. ®

8. RIESZVAR(ii)

We consider again the piecewise linear regression model (PL) as described in Definition 6.3.
One of the basic problems of RIESZVAR (i) is that we need to divide the data into small regions of
X, the common support of the measures mx,. This results in efficiency losses. In this section, we
define a non-linear estimator of (PL) that avoids the division of data into regions. The idea is to
estimate the sup-inf representation and the affine components in a single shot. It turns out that
this can be done by minimizing a piecewise quadratic function of the data.

To this end, notice that every vector r = (rg,r1,...,7m) € R™*! generates an affine function
via the formula

r(z) =ro+rizi+ -+ rmTm.
To avoid introducing extra notation, we shall view r both as a vector in R™*! and as an affine
function in Aff C C(X).

Now fix two numbers p, g and let ®,, = Rm+1)Pa An arbitrary element R of ®,, is denoted by

a matrix of the form
ryg rig ... Iy
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sV (finf2) (FAF)V (f2 A fa) V(LA f5)

FIcURE 10. The graph of the functions in Example 7.6.

where the entries ry; = (r3, 75, ..., 71}) € R™+1. For any x € X (and as a matter of fact for any
x € R™) let

q P q P
Rox = [\/ A rij](ff) =V A +riz+ i)

i=1j=1 i=1j=1
Therefore, Ro defines a function from X to R (which is also the restriction of Ro: R™ — R to X).

Notice that Ro € AffY" C C(X).
Next, for the random vector X, write
q p

RoX,=Ro(Xy)=\/ Nf+riXue+ -+ Xms).

i=1j=1

We have the following simple lemma.

Lemma 8.1. Regarding the function o the following hold true:

(1) The function R Ro, from ®,q to C(X), continuous.
(2) The function R+ Ro Xy, from ®pq to La(m), 15 continuous.
(3) If {x/}_, is a finite collection of points in R™, then the function

R— (Rox;,Roxa,...,R0x,),
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RIESZVAR(ii)

Consider the estimation of (PL) assuming that we know of a compact subset © of
®,, satistying
{ReO©: EVi|X;) =RoXi} # 0.
Using {Y;, X}y
(%) Choose R™: Q — O such that R™(w) is a solution to the following mini-
mization problem:

min{i[RoXt(w) _Y,w)]*: Re @}.

t=1

TABLE 2. The RIESZVAR(ii) algorithm

from @4, to R™, is positively homogeneous and piecewise linear.

The next result is an easy consequence of Theorem 4.14. It tells us that we can express the
estimation problem (PL) in terms of the functions of the form Ro.

Lemma 8.2. If E(Y;|X;) = f o X; where [ is piecewise linear with at most ¢ components, then
there exists R € ®y(uq) such that E(Y;|X;) = Ro X,.

Table 2 describes our second algorithm for estimating piecewise linear functions from data. We
are ready to prove the main result of the section.
Theorem 8.3. If E(Y;|X;) = R° o Xy, then for R,, in RIESZVAR(ii) we have
R,o == R0 .
That is, RIESZVAR(ii) consistently estimates (PL).
Proof. Notice that all conditions of Lemma 7.3 are satisfied for g: R x R™ x © — R defined by
9(y, %, R) = (y = Rox)”.

This implies that aliost surely

n

tim_sup| 2 3 [Vilw) - RoXu(@)]” — ¥ = Ro Xyl?| = 0.

n-—00 ReO® =1
Clearly, therefore, for m-almost all w €  we have
7111_{{}0”}@ — R"(w) o X¢| = ||Ve — E(YelX0)]| -

This (in connection with Lemma 2.9) yields lim,,_,ooHR"(w)oXt - [E(Yt|Xt)“ = 0 for m-almost all
w € Q.
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Now let
A={ReO: E(YX:)= RoX,}.
Since © is compact and R — R o X, from ®,, to Ly(7), is continuous it must be the case that
for m-almost all w, the cluster points of R"(w) are in A. Now the continuous function R — Ro,

from ®,, to C(X), maps A to a single point RO% of C(X). Therefore, it must be the case that
R™ o -2 RY%. and the proof is finished. W

We now give a computer generated example of the application of RIESZVAR(ii).

Example 8.4. Suppose the data generating process is (PL) where

F(X1e, Xa) = [[1(X1e, Xo) A fo(Xu ey X2.0)] V [f3( X1, X2.0) A fa(X e, Xa4))

and
fi(Xi4, Xoy) = =5+ X+ Xay,
fo (X1, Xap) = 12— Xqe— Xoy,
f3 (X1,6, Xot)

2t) = =5+ Xay,
fa (X1, Xoyt) 2.

A plot of this function is given in Figure 11. The matrix R that defines the function R o X; for
this example is

[ [/ -5 12\ ]
-1
-1
R =
-5 2
0 0
L 1 0 ]

As in Example 7.5, we generate n = 160 observations z; ; and 2 ¢ as being uniformly distributed
on [0,12] and generate ¢, = Y; — E(Y;|Xy) from a standard normal distribution.

We implement RIESZVAR(ii) using ¢ = p = 2, which are the smallest values of p and ¢ that
include our data generating process. The numerical minimization with respect to R specified by
RIESZVAR(ii) is implemented using the BFGS algorithm in the “optimum” library of Gauss v6.0.

For the first sample we report, the point estimates are given by

—4.42 11.07
111 —0.84
1.02 -0.82
R =
—5.32 2.48
0.02 0.04
| \ 113 0.02




RIESZ ESTIMATORS 40

and Figure 11 shows a plot of the resulting estimate (Estimation 1) of E(Y;|X,) given by R"ox
for x € [0,12]2. Clearly both the point estimates and the resulting estimate of E(Y;|X;) strongly
resemble the true values.

1y
"%‘2"".’"1,",’ =
REORKEERAA
QRS
QA
RS

”Ié;}”;",”’ 010000007,
AOOOKRRAN O
'o‘e’e'.oio;o;%;’.’.’.’o’m,o,o:,

00'»“”’...&:.0.:0 M

i
Il’

0

Estimation 1 Estimation 2

FIGURE 11. The graph of the functions in Example 8.4.

A plot (Estimation 2) of the estimates of E(Y;|X;) from additional replications are given in
Figure 11. This plot show qualitatively that E(Y;|X;) is generally estimated very well globally,
with just small local deviations due to the usual sampling variation. W
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