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Abstract. In this study we offer a new approach to proving the differentiability of the value

function, which complements and extends the literature on dynamic programming. This result is

then applied to the analysis of equilibrium in the recent class of monetary economies developed

in [13]. For this type of environments we demonstrate that the value function is differentiable

and this guarantees that the marginal value of money balances is well defined.
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1. Introduction

This study develops two complementary objectives. First, it presents a new approach to proving
the differentiability of the value function from dynamic programming. This initial result is then
applied to the study of equilibrium for the recent class of monetary economies developed from
the work in [13]. These economies present a natural example, but our differentiability result is of
general applicability so our study contributes to a much wider literature in dynamic programming
and macroeconomics.

To understand the thrust of our contribution, one should recall that in the typical dynamic
economy the optimum lifetime utility of an agent is known as the value function. This function
satisfies the classical Bellman equation and, in order to characterize and compute optima, it is
often important to establish its differentiability. The common reference on this issue is the classical
monograph [19], where Theorem 4.11 presents a set of conditions for the differentiability of the
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value function.1 One of the conditions in this theorem is that, given the initial state x0, the value of
the policy function g must be in the interior of the upper section of the constraint correspondence
Γ, i.e., g(x0) ∈ int Γ(x0). One can imagine situations in which the value of the policy function is
on the boundary of Γ. For instance, this may occur when agents are constrained in their ability to
save or to borrow, as it happens in several monetary models. An additional difficulty is associated
to the statement, in the proof of the theorem, that “since g(x0) ∈ int Γ(x0) and Γ is continuous,
it follows that g(x0) ∈ int Γ(x), for all x in some neighborhood of x0;” see [19, p. 85]. According
to the assumptions imposed in [19], this claim does not seem to be substantiated. However, if
the point (x0, g(x0)) is an interior point of the graph of the constraint correspondence Γ, then the
claim is true. Indeed, in general, in most macroeconomic models this is the case.

The observations above motivate the first objective of this study, i.e., to develop a novel formula-
tion of the differentiability of the value function. Our formulation is based on a proof that bypasses
the two difficulties noted above by making a less restrictive assumption. The key requisite is that
the initial state x0 be an interior point of the lower section of Γ at g(x0), i.e., x0 ∈ intΓ−1(g(x0)).
We then present a application of this result to a model of money based on [13]. In the model, anony-
mous individuals face idiosyncratic trading shocks, sometimes being buyers and other times being
sellers. This feature ensures an explicit role for money, but also causes individual money balances
to evolve stochastically, with obvious drawbacks in analytical tractability (e.g., see [9, 11, 16]).
These are avoided by assuming quasilinear preferences, which eliminate of wealth effects and open
the door to an equilibrium with a degenerate distribution of money holdings. In equilibrium ev-
eryone chooses identical savings and the optimal savings plan corresponds to a boundary solution
in which agents hold equal shares of the money stock.

The use of dynamic programming in such an economy presents two complications. First, quasi-
linearity leads to a period return function that is unbounded in the available real balances; this
contrasts with the standard assumption in dynamic programming of a bounded return function
(see [19]). Second, one cannot apply the standard proof for the differentiability of the value
function from [19], because individual savings lie on the boundary of the graph of the constraint
correspondence. Indeed, though this monetary literature normally supposes that the value function
is differentiable, we are not aware of any specific paper establishing this differentiability. We solve
the first complication by restricting the value function on bounded intervals. We solve the second
problem by applying our differentiability result.

We structure the paper as follows. In Section 2 we start by describing a typical representative
agent economy, which is the basic framework found in [19]. In Section 3 we introduce the value
function and present simple proofs of two of its basic properties. Section 4 contains our main result

1There are other works on this subject, for example see [5, 7, 8, 10, 14, 15, 18].
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concerning the differentiability of the value function. Finally, Section 5 presents an application of
our proof of the differentiability of the value function to the model of money developed in [13].

2. The Basic Dynamic Framework

The standard dynamic framework consists of an infinite horizon representative agent economy,
where the representative agent can consume, produce, and save by accumulating some assets. In
what follows we consider a deterministic framework where time is discrete, i.e., there are countably
many periods labeled as t = 0, 1, 2, . . . . In each period t the agent must make a choice from a given
opportunity set X, the elements of which define the states of the economy and can be interpreted
as the stock of real assets or capital available in a given period. In making this choice the agent
faces a constraint that is described by a nonempty-valued “constraint” correspondence Γ: X→→X.
Given that the state at the beginning of a period is x, the set Γ(x) is the set of feasible states at
the end of the period.

As usual the graph of the correspondence Γ is denoted by GΓ, i.e.,

GΓ = {(x, y) ∈ X ×X : y ∈ Γ(x)} .

It is assumed that there exists a function F : GΓ → R known as the return (or utility) function.
The value F (x, y) is interpreted as the payoff to the agent in a period that starts in state x and
ends in state y.

A plan starting with x0 ∈ X is a sequence x = (x0, x1, x2, . . .) such that xt+1 ∈ Γ(xt) holds
for each t = 0, 1, 2, . . . . The state of the economy at the beginning of period t + 1 is xt+1 which
is chosen by the agent on period t given that the state at the beginning of period t was xt. The
collection of all plans starting with x0 is denoted Π(x0). That is,

Π(x0) =
{
x = (x0, x1, x2, . . .) ∈ X{0,1,2,...} : xt+1 ∈ Γ(xt) for all t = 0, 1, 2, . . .

}
.

Since Γ is nonempty-valued, notice that Π(x0) is a nonempty set for each x0 ∈ X.
It is assumed that agents have time-separable preferences and they discount future utility by a

factor β, where 0 < β < 1. This means that given an initial state x0, the agent’s lifetime utility is
given by

U(x) =
∞∑

t=0

βtF (xt, xt+1) .

In order to make U(x) well-defined, we impose the following convergence condition.

For each plan x the series
∑∞

t=0 βtF (xt, xt+1) converges in R. (C)
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Note that for any given initial state x0 the above formula defines a function U : Π(x0) → R.
Now given an initial state x0, the agent must choose a plan x ∈ Π(x0) that maximizes his lifetime
utility. In other words, given x0 ∈ X, the agent must solve the optimization problem:

Maximize: U(x)
Subject to: x ∈ Π(x0) (P)

Any plan that solves the optimization problem (P) is called an optimal plan. When condition
(C) is satisfied, a function—known as the value function— can be defined, which is associated
with the optimization problem (P).

3. The Value Function

In this section we first recall the definition of the value function and then state (with proofs)
two of its basic properties.

Definition 3.1. Assuming that condition (C) holds true, the function v : X → (−∞,∞] defined
for each x0 ∈ X by

v(x0) = sup
x∈Π(x0)

U(x)

is called the value function.

In what follows we establish two well known basic properties of the value function that are needed
to carry out our work. Specifically, the value function satisfies the functional equation known as
the Bellman equation (see [6]) and it is concave. We include the proofs of these statements both
for completeness and because they differ from the standard proofs in [19].

Lemma 3.2. The value function v is a solution of the Bellman equation. That is, for each x ∈ X

we have

v(x) = sup
y∈Γ(x)

[
F (x, y) + βv(y)

]
.

Proof. We must show that inequalities

v(x) ≤ sup
y∈Γ(x)

[
F (x, y) + βv(y)

]
and v(x) ≥ sup

y∈Γ(x)

[
F (x, y) + βv(y)

]
.

are both true.
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First, fix some x = (x0, x1, x2, . . .) ∈ Π(x0) and note that the plan z = (x1, x2, x3, . . .) belongs
to Π(x1). Now note that

U(x) =
∞∑

t=0

βtF (xt, xt+1) = F (x0, x1) + β

∞∑
t=1

βt−1F (xt, xt+1)

= F (x0, x1) + β

∞∑
t=0

βtF (xt+1, xt+2)

= F (x0, x1) + βU(z) ≤ F (x0, x1) + βv(x1)

≤ sup
y∈Γ(x0)

[
F (x0, y) + βv(y)

]
.

This easily implies

v(x0) = sup
x∈Π(x0)

U(x) ≤ sup
y∈Γ(x0)

[
F (x0, y) + βv(y)

]
. (3.1)

We distinguish two cases, v(x0) = ∞ and v(x0) ∈ R. If v(x0) = ∞, then it should be obvious that
v(x0) = supy∈Γ(x0)

[
F (x0, y) + βv(y)

]
= ∞.

Now we assume v(x0) ∈ R. Fix some y ∈ Γ(x0). Let z0 = y and then pick an arbitrary plan
z = (z0, z1, z2, . . .) ∈ Π(y). Then x = (x0, y, z1, z2, . . .) ∈ Π(x0) and so

F (x0, y) + βU(z) = F (x0, y) + β

∞∑
t=0

βtF (zt, zt+1) = F (x0, y) +
∞∑

t=1

βtF (zt−1, zt) = U(x) ≤ v(x0) .

This implies that

U(z) ≤ v(x0)−F (x0,y)
β

for all z ∈ Π(y). In other words, the real number v(x0)−F (x0,y)
β is an upper bound of the set

{U(z) : z ∈ Π(y)}. Therefore, v(y) := supz∈Π(y) U(z) ≤ v(x0)−F (x0,y)
β , from which we get

F (x0, y) + βv(y) ≤ v(x0)

for all y ∈ Γ(x0). Hence

sup
y∈Γ(x0)

[
F (x0, y) + βv(y)

] ≤ v(x0) . (3.2)

From (3.1) and (3.2), we see that v(x0) = supy∈Γ(x0)

[
F (x0, y) + βv(y)

]
in this case too.

The second property that must be established is the concavity of the value function.

Theorem 3.3. If the return function F : GΓ → R is concave,2 then the value function v is concave.

2This guarantees (by the definition of a concave function) that the graph GΓ is a convex subset of X ×X.
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Proof. Let x0, y0 ∈ X and 0 < α < 1. The convexity of X implies αx0 + (1 − α)y0 ∈ X. Fix
M,N ∈ R with v(x0) > M and v(y0) > N . Pick x ∈ Π(x0) and y ∈ Π(y0) such that

v(x0) ≥
∞∑

t=0

βtF (xt, xt+1) > M and v(y0) ≥
∞∑

t=0

βtF (yt, yt+1) > N .

Since GΓ is a convex set and (xt, xt+1), (yt, yt+1) ∈ GΓ for each t = 1, 2, . . ., it follows that
αxt + (1− α)yt ∈ Γ(αxt−1 + (1− α)yt−1) holds for each t = 1, 2, . . . . This implies

αx + (1− α)y = (αx0 + (1− α)y0, αx1 + (1− α)y1, . . .) ∈ Π(αx0 + (1− α)y0) .

Now note that the concavity of F implies

v(αx0 + (1− α)y0) ≥
∞∑

t=0

βtF (αxt + (1− α)yt, αxt+1 + (1− α)yt+1)

=
∞∑

t=0

βtF
(
α(xt, xt+1) + (1− α)(yt, yt+1)

)

≥ α

∞∑
t=0

βtF (xt, xt+1) + (1− α)
∞∑

t=0

βtF (yt, yt+1)

> αM + (1− α)N .

Since this is true for all real numbers M and N with v(x0) > M and v(y0) > N , it follows that
v(αx0 + (1− α)y0) ≥ αv(x0) + (1− α)v(y0). This shows that v is concave.

Notice that the above proof is perhaps simpler than the one in [19], because it does not require
the existence of an optimal plan. We now have the necessary background in order to present a
new proof of the differentiability of the value function.

4. The Main Result

To develop the new proof of the differentiability of the value function, we start by letting
ξ = (ξ1, . . . , ξ`) denote the arbitrary vector of the Euclidean space R`. Now consider a function
f : A → R, where A ⊆ R`. The function f is said to be differentiable at a point a ∈ A if a is an
interior point of A and there exist a neighborhood V ⊆ A of a and a vector q ∈ R` such that

f(ξ) = f(a) + q · (ξ − a) + o(ξ − a)

holds for all ξ ∈ V , where as usual limξ→a
o(ξ−a)
‖ξ−a‖ = 0.3 It is well known from Calculus that the

vector q (called the differential of f at a) is uniquely determined and coincides with the gradient
of f at a, i.e.,

q = ∇f(a) =
(∂f(a)

∂ξ1
, ∂f(a)

∂ξ2
, . . . , ∂f(a)

∂ξ`

)
.

3 For the o-notation and more on differentiability, see [3, p. 286].
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A vector p ∈ R` is said to be a supergradient of f at a point a ∈ A if for each ξ ∈ A we have

f(ξ) ≤ f(a) + p · (ξ − a) .

The (possibly empty) collection of all supergradients of f at a is denoted ∂f(a) and called the
superdifferential of f at a. That is,

∂f(a) =
{
p ∈ R` : f(ξ) ≤ f(a) + p · (ξ − a) for all ξ ∈ A

}
.

It turns out that if f is a concave function (and so by definition A is also a convex set), the
superdifferential of f is nonempty at any interior point of A. (See also [1, Theorem 7.12, p. 265].)
Moreover, we have the following theorem that we shall employ below; see [17, Theorem 25.1, p. 242]
or [1, Theorem 7.25, p. 274].

Theorem 4.1. Let A be an open convex subset of R` and let f : A → R be a concave function.
Then f is differentiable at some a ∈ A if and only if the superdifferential ∂f(a) is a singleton, in
which case the lone supergradient is in fact the differential of f at a.

The following result that presents a sufficient condition of differentiability of convex and concave
functions is due to Benveniste and Scheinkman [7].

Lemma 4.2 (Benveniste–Scheinkman). Let C be a convex subset of the Euclidean space R` and
let f : C → R be a concave function. Assume that for some point ξ in the interior of C there exist
an open ball B ⊆ C of ξ and a concave function g : B → R such that:

(1) f dominates g on B, i.e., f(ξ) ≥ g(ξ) for all ξ ∈ B, and
(2) g(ξ) = f(ξ).

If g is differentiable at ξ, then f is likewise differentiable at ξ and the differential of f coincides
with the differential of g at ξ. In particular, we have ∂f(ξ)

∂ξi
= ∂g(ξ)

∂ξi
for each i = 1, . . . , `.

Proof. We also consider the functions f and g restricted to the open ball B of ξ. We know that the
superdifferential of f is nonempty at ξ; see [1, Theorem 7.12, p. 265]. So, according to Theorem 4.1,
it suffices to show that it is a singleton.

To this end, let p be a supergradient of f at ξ. That is, for all ξ ∈ B we have

f(ξ) ≤ f(ξ) + p · (ξ − ξ) .

Since f dominates the function g and f(ξ) = g(ξ), it follows from the preceding inequality that

g(ξ) ≤ g(ξ) + p · (ξ − ξ)

holds for all ξ ∈ B. That is, p is a supergradient of g at ξ. Since g is differentiable at ξ, we infer
that p = (∂g(ξ)

∂ξ1
, . . . , ∂g(ξ)

∂ξ`
). This shows that p is uniquely determined and that the differential of f

coincides with that of g at ξ.
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We are now ready to present a result regarding the differentiability of the value function. Keep
in mind here, that as mentioned in the introduction of this note, the usual assumption of the
literature, g(x0) ∈ intΓ(x0) , will be replaced with the condition x0 ∈ intΓ−1(g(x0)).

Theorem 4.3. Assume that the set of state variables X is a convex subset of the Euclidean space
R` and that the return function F : GΓ → R is concave. Suppose that (x, y) ∈ GΓ is a point such
that:

(1) x is an interior point of the lower section Γ−1(y) = {x ∈ X : y ∈ Γ(x)} of Γ at y.
(2) There exists an open convex neighborhood N of x with N ⊆ Γ−1(y) such that v(x) ∈ R for

each x ∈ N .4

(3) v(x) = F (x, y) + βv(y).

If the function H : Γ−1(y) → R, defined by H(x) = F (x, y), is differentiable at x, then the value
function v is differentiable at x and

∂v(x)
∂ξi

=
∂H(x)

∂ξi
=

∂F (x, y)
∂ξi

holds for each i = 1, . . . , `.

Proof. The concavity of F guarantees that the function H restricted to N (i.e., the function
H : N → R) is also a concave function.

Next define the function L : N → R by L(x) = F (x, y) + βv(y) = H(x) + βv(y) and note that
L is concave and differentiable at x. Moreover, for each x ∈ N we have y ∈ Γ(x), and so

v(x) = sup
y∈Γ(x)

[F (x, y) + βv(y)] ≥ F (x, y) + βv(y) = L(x) .

Clearly, v(x) = L(x) and, by Theorem 3.3, the value function v is concave. But then, according
to Lemma 4.2, v is differentiable at x and for each i = 1, . . . , ` we have ∂v(x)

∂ξi
= ∂H(x)

∂ξi
.

Notice that if (x, y) satisfies property (3) of Theorem 4.3 and is an interior point of the graph
GΓ of the correspondence Γ, then properties (1) and (2) are also automatically satisfied. There-
fore, Theorem 4.3 has wider applicability than the existing theorems, and of course encompasses
the case when the value of the policy function is in the interior of the graph of the constraint
correspondence Γ.

5. An Application to Monetary Economics

In this section we present a natural application of the results from the previous section, which
is offered by the monetary economics literature. In the economy we present, the value function is
defined on the real money balances held by an individual, and it is differentiable even if the policy

4This is certainly the case if the return function F is bounded.
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function does not satisfy the standard interiority assumption. To be precise, we demonstrate the
use of our differentiability result for the monetary economy studied in [13] where the value function
is generally treated as being differentiable though the optimal plan is a boundary solution.

Time is discrete and the horizon is infinite. There is an infinite number of identical infinitely-
lived agents who consume two perishable goods, good 1 and good 2, and discount future utility
with a factor β ∈ (0, 1). The perishable goods are traded in competitive markets, 1 and 2. These
two markets open sequentially in each period. Preferences differ across periods. At the beginning
of each period every agent is either a buyer or a seller with equal probability. It is assumed that
a shock process partitions the agent population into two “equal” parts, called buyers and sellers.5

Output is sold on competitive spatially separated markets composed by many anonymous agents
as in [2]. Buyers cannot produce good 1, but derive u1(c) utility from c ≥ 0 consumption of good
1. Sellers do not wish to consume good 1 but can produce y ≥ 0 of good 1 by suffering disutility
y. Every agent derives u2(q) utility from consuming q ≥ 0 of good 2 and can produce h ≥ 0 of
good 2 suffering disutility h. We assume that each utility function ui : [0,∞) → R satisfies the
Inada conditions.6 Since each u′i is a strictly decreasing continuous function, the Inada conditions
guarantee that the equations u′1(c) = 1 and u′2(q) = 1 have unique solutions. That is, there exist
unique quantities c∗ and q∗ such that u′1(c

∗) = 1 and u′2(q
∗) = 1.

There is an authority that supplies fiat currency and sets monetary policy starting with the
money stock M̂0 > 0. Let M̂t denote the stock at the start of period t. Monetary policy is a time-
invariant gross rate of growth γ > β for the money stock, publicly announced. It is implemented
via a deterministic per capita lump-sum cash transfer in market 2. So, M̂t+1 = γM̂t is the cash
available at the end of period t. Since sellers do not wish to consume, goods are non-storable and
anonymity rules out credit, sellers in market 1 will demand cash compensation. Cash can also
be used to trade in market 2. We let p1,t and p2,t denote the nominal prices of consumption in
markets 1 and 2, respectively, on period t. Also, we work with real variables, defined to be the
ratio of a nominal variable to p2,t. Thus, we let pt = p1,t

p2,t
denote the real price of goods in market

1 and let M̂t

p2,t
= m̂t denote the real money stock available at the start of period t. We denote by

mt ≥ 0 the real balances held by an arbitrary agent at the start of period t.7

5 If the population of agents is countable, then to each agent j ∈ N we assign a weight wj so that
∑∞

j=1 w2j =∑∞
j=1 w2j−1 = 1

2
. So, we can consider “even” agents as buyers and “odd” ones as sellers, assuming that at the

beginning of each period a shock reassigns agents to buyers and sellers, so that the above weight equation is valid.

One way of doing this is by randomly exchanging the roles (buyer and seller) between each pair (2j − 1, 2j).
6 A function u : [0,∞) → R is said to satisfy the Inada conditions, if (1) is twice differentiable on (0,∞), (2)

u′(x) > 0 and u′′(x) < 0 for each 0 < x < ∞, and (3) lim
x→0+

u′(x) = ∞ and lim
x→∞u′(x) = 0; see [12, p. 120].

Replacing u by u− u(0), we can assume without loss of generality that u(0) = 0.
7 If we let mt,j be the real balances of agent j ∈ N in period t, then the aggregate money balances in period t

are
∑∞

j=1 wjmt,j ≤ m̂t. It follows that if mt,j = mt for each agent j, then mt ≤ m̂t by money market clearing.
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In what follows we consider allocations in which money is valued and aggregate real money
balances are constant over time. Stationarity requires m̂t = m̂ in each period t, and therefore
p2,t+1
p2,t

= M̂t+1

M̂t
= γ, i.e., the gross inflation rate is deterministic and equal to γ. Finally, we let

τ = (γ − 1)m̂ denote the real balance transfer in each period t.
The timing is as follows. The representative agent starts in market 1 with real balances m.

Then, shocks are realized and the agent ends up in one of two states, buyer or seller. Trade and
production takes place in market 1, and then market 2 opens. At this point in time, the agent has
mj,t money balances, where j ∈ {b, s} reflects his market 1 activities and b denotes a buyer and s

a seller. Subsequently, the agent receives the money transfer and production and trade takes place
in market 2. Then, a new period starts.

5.1. The agent’s problem. The agent takes as given the sequence of nominal prices (p1,t, p2,t)∞t=0

in markets 1 and 2 and money supplies (M̂t)∞t=0 that satisfy M̂t+1
p2,t+1

= M̂t

p2,t
= m̂ for each t = 1, 2 . . . .

We will define by X = R+ the set of possible real balance holdings of the agent. At the start of a
period t, the agent has mt ∈ X real balances available. During the course of the period, the agent
will have to select savings mt+1 ∈ Γ(mt) = [0, m̂] for the next period. We explain how this is done,
below. For now, notice that the constraint correspondence Γ: X→→X must satisfy Γ(mt) = [0, m̂]
for each mt ∈ X because there cannot be short selling of money, i.e., mt cannot be negative and
the supply of real balances is bounded above by m̂.

In market 1, if the agent is a buyer, i.e., j = b, then given the relative price pt he can consume
ct ∈ [0, mt

pt
] goods. If he is a seller, i.e., j = s, then he can produce yt ≥ 0. The agent enters

market 2 with mb,t = mt−ptct real balances if he was a buyer in market 1 and with ms,t = mt+ptyt

if he was a seller. Each agent also receives τ = m̂(γ−1), constant over time. Each agent in market 2
can consume qj,t ≥ 0 and produce hj,t ≥ 0. Therefore, the resource constraint in market 2 is

hj,t = qj,t + γmt+1 −mj,t − τ , (5.1)

and it holds with equality due to non-satiation. Since we need hj,t ≥ 0 we will work under the
conjecture that the right-hand side of the equation above is non-negative. Conditions for this to
occur, in an optimum, is (u′2)

−1(1) sufficiently large. Notice also that we are conjecturing that
mt+1 does not depend on j, which is without loss in generality because preferences are quasilinear.
(For details about these claims see [13].)

We will concentrate on monetary competitive equilibria, in terms of the given price vector
(p1,t, p2,t)∞t=0. We carry out the analysis under the assumption that everyone starts each period
with identical real balances; for a justification of this assumption see the discussion in [13]. Within
this context, we wish to define an optimal plan for the representative agent. Any such plan will
involve sequences of consumption and production in markets 1 and 2 as well as choices of savings
by means of money holdings. To simplify the discussion of the optimal plan, it is convenient to
make four remarks all of which deal with the choices of consumption and production in a period for
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the representative agent. The key observation, at this point, is that these choices are intratemporal
in nature.8

(1) At the start of each period t the expected utility of the agent is

1
2 [u1(ct)− hbt] + 1

2 (−yt − hst) + u2(qt) .

So, if we substitute the budget constraint from (5.1), then we get the following expression
for the period expected utility:

mt + τ − γmt+1 + u2(qt)− qt + 1
2 [u1(ct)− ptct] + 1

2 (−yt + ptyt) .

(2) By market clearing, in an optimum we must have yt = ct in market 1 of each period
t. Indeed, half of the population buys and half sells goods in that market, agents are
homogeneous, and we are operating under the conjecture that everyone starts each period
with identical real balances.

(3) In a competitive equilibrium we must have pt = 1 for each t = 0, 1, . . . . Otherwise a seller
in market 1 would set either yt = 0 or yt = ∞, choices which are inconsistent with an
optimum.

(4) In an optimum we must have ct = min{mt

pt
, c∗} for each period t = 0, 1, . . . . This is the

case, since, given pt = 1, the utility function u(ct)− ptct is strictly concave and decreasing
past the point c∗. It should also be clear that in an optimum qt = q∗ for each t, because
each agent can access unlimited resources (at constant marginal cost) in market 2, and
preferences in that market are quasilinear.

Given the four observations above, we are left to deal with the intertemporal choices, i.e., the
choices of money holdings. To this end, we define the expected period utility F : X ×X → R by

F (mt,mt+1) := mt − γmt+1 + 1
2 [u1(min{mt, c

∗})−min{mt, c
∗}] + τ + u2(q∗)− q∗ .

This plays the role of the period return function discussed earlier. It is not difficult to see that the
real function f(x) = u1(min{x, c∗})−min{x, c∗}, x ≥ 0, is concave, and from this it easily follows
that the expected period utility function F (x, y) satisfies the following four important properties:

(1) is a concave continuous function,
(2) is an unbounded function that satisfies the convergence condition (C),
(3) for each fixed savings choice mt+1 ∈ [0,∞) the function F (x,mt+1) is differentiable at each

x > 0, and
(4) for each mt > 0 we have

∂F (mt,mt+1)
∂x

=





1
2 [1 + u′1(mt)] if 0 < mt < c∗

1 if mt ≥ c∗ .

8 For more background and more details concerning the statements that follow, see the discussion in [4, 13].
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Now, a plan starting with m0 ∈ X is a sequence m = (m0,m1, . . .) ∈ X{0,1,2,...} such that
mt+1 ∈ Γ(mt) holds for each t = 0, 1, 2, . . . . The collection of all feasible plans starting with m0

is denoted Π(m0), i.e.,

Π(m0) = {m ∈ X{0,1,2,...} : mt+1 ∈ Γ(mt) for all t = 0, 1, 2 . . . }.
As before, we define the lifetime utility for an agent who starts with real balances m0 by

U(m) =
∞∑

t=0

βtF (mt,mt+1) .

The objective of the representative agent is to choose an optimal monetary savings plan m that
solves our standard lifetime utility maximization problem:

Maximize: U(m)
Subject to: m ∈ Π(m0)

We discuss this maximization problem in detail, next.

5.2. The value function. As shown in the previous section, the maximization problem of the
representative agent has a corresponding value function v : X → R defined for each m0 ∈ X by

v(m0) = sup
m∈Π(m0)

U(m) . (5.2)

This value function satisfies the Bellman equation, that is, for each x ∈ X we must have:

v(x) = sup
m∈Γ(x)

[F (x,m) + βv(m)].

Our objective is to show that v is continuous and differentiable. Since F is clearly a continuous
function, we have that if v were continuous, then it would follow that for every x > 0 there exists
at least one y ∈ Γ(x) such that v(x) = F (x, y)+βv(y). So, our task now is to prove that the value
function v is indeed continuous.

In order to establish the continuity of v, it suffices to show that v is continuous on every interval
of the form [0, x], where x > m̂. To this end, let x > m̂ and fix m0 ∈ I = [0, x]. Now for each plan
m = (m0,m1, . . .) notice that

|U(m)| =
∣∣∣
∞∑

t=0

βtF (mt, mt+1)
∣∣≤ k

1−β ,

where (using the triangle inequality) the constant k is given by

k = (1 + γ)x + 1
2 [u1(c∗) + c∗] + τ + u2(q∗) + q∗ .

This yields |v(m0)| ≤ k
1−β , and from this we see that v is a bounded function on the interval I.

Next, let B(I) and Cb(I) denote the vector spaces of all bounded real functions and bounded
continuous real functions defined on I, respectively. Clearly Cb(I) ⊆ B(I) and both B(I) and
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Cb(I) equipped with the metric induced by the sup norm are complete metric spaces, i.e., they
are both Banach spaces. Next, we define the Bellman operator T : B(I) → B(I), defined for each
function f ∈ B(I) and α ∈ I by

T (f)(α) = sup
m∈Γ(α)

[F (α, m) + βf(m)] .

It is easy to see that T is a contraction with contraction constant β. This implies that T has a
unique fixed point, which (according to Lemma 3.2) must be the value function v restricted to I.
Now an easy application of the classical Berge’s Maximum Theorem (see for instance [1, p. 570])
shows that T leaves Cb(I) invariant, i.e., T (Cb(I)) ⊆ Cb(I), which implies that T has also a fixed
point in Cb(I). But this fixed point of T in Cb(I) must be the function v restricted to I. We
conclude that v restricted to I is continuous, as desired.

We are now ready to discuss the differentiability of the value function. To start, observe that
for each 0 ≤ m ≤ m̂ the lower section for m is Γ−1(m) = [0,∞). This shows that for any real
balances x > 0 and any real balances y that satisfy

v(x) = F (x, y) + βv(y) ,

the point x > 0 is an interior point of the lower section of Γ at y, i.e., x ∈ intΓ−1(y). Therefore,
it follows from Theorem 4.3 that the value function given in (5.2) is differentiable at every real
balance level x > 0 that the agent finds himself holding at the start of a period. It should be noted
here that due to market clearing we have in general y = m̂. That is to say, agents hold all of the
available money stock, in equal amounts. In this case, (x, y) /∈ int GΓ, and so it is not obvious
that the differentiability theorem in [19] can be applied. However, our Theorem 4.3 shows not only
that v is differentiable on (0,∞) but also that for each real balance level x > 0 we have:

v′(x) =
∂F (x, y)

∂x
=





1
2 [1 + u′1(x)] if 0 < x < c∗,

1 if x ≥ c∗ .

That is to say, one can easily calculate the marginal value of real balances even if the optimal
savings plan is a boundary solution.

6. Concluding Remarks

The study of macroeconomic equilibrium is often based on the use of dynamic programming
techniques. In this context, if the value function is differentiable, then it is possible to characterize
the equilibrium allocation and the policy function in a simple manner. The classical reference on
establishing the differentiability of the value function is in [19], where Theorem 4.11 presents a
proof based on the assumption that the policy function is in the interior of the upper section of
the constraint correspondence. Two difficulties are associated to this approach. First, there are
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instances in which the optimal plan is a boundary solution, as in some monetary models where
agents are constrained in their saving/borrowing abilities. Second, one must first establish that
the policy function is also in the interior of the upper section of the constraint correspondence for
all states that are in some neighborhood of the initial state. The new approach we have developed
bypasses these two difficulties. It relies on an assumption for the initial state, and not for the policy
function; one simply must ensure that the initial state is an interior point of the lower section of the
constraint correspondence. The resulting proof of differentiability of the value function is simpler
and of general applicability.
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