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Abstract This paper examines a multi-player and multi-front ColoBkltto game in which
one player, A, simultaneously competes in two disjoint @eldlotto games, against two sep-
arate opponents, 1 and 2. Prior to competing in the gameagegla and 2 have the opportunity
to form an alliance to share their endowments of a one-dimaeakresource (e.g., troops,
military hardware, money). This paper examines “non-coaijpee” alliances in which only
individually rationalex antetransfers of the resource are allowed. Once these trartsiezs
place, each alliance member maximizes his payoff in hisaesge Colonel Blotto game, given
his resource constraint and player A's allocation of its@mahent across the two games. No
ex postiransfers are enforceable. Remarkably, there are sewrgds of parameters in which
endogenous unilateral transfers take place within tharale. That is, one player gives away
resources to his ally, who happily accepts the gift. Unitansfers arise because they lead to
a strategic shift in the common opponent’s force allocatisay from the set of battlefields of
the player making the transfer, towards the set of batttefief the player receiving the transfer.
Our result demonstrates that there exist unilateral teaadbr which the combination of direct
and strategic effects benefits both allies. This standsaik sontrast to the previous literature
on alliances (see Sandler and Hartley, 2001), which relefe assumption of pure or impure
public goods.

1 Introduction

This paper examines a multi-player, multi-front Coloned®b game in which one playe, si-
multaneously competes in two disjoint Colonel Blotto gapagminst two separate opponents,
1 and 2. Prior to competing in the games, players 1 and 2 havepportunity to form an
alliance to share their endowments of a one-dimensionalres (e.g., troops, military hard-
ware, money). Our focus is on non-cooperative allianceshitkvonly individually rationakx
antetransfers of the resource are allowed. Once these traraterplace, player A optimally
responds in allocating his resource endowment across thgdames and then players play their
respective Colonel Blotto games given their resource camss. Noex postiransfers between
the two alliance members are enforceable. We call such emedl aself—enforcing alliance
without commitment.

The main result of this paper is to show that there is a widgeaf parameters in which en-
dogenous unilateral transfers take place within such @éamak. That is, one player gives away
resources to its ally, who happily accepts the gift. Unilatéransfers arise because they lead
to a strategic shift in the common opponent’s force allaratiway from the set of battlefields
common to the player making the transfer, towards the seattietields common to the player
receiving the transfer. Our result demonstrates that tiwast unilateral transfers for which the
combination of the direct and strategic effects benefith hiies.
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Our approach contrasts with the major focus of the liteeatur the economics of alliances,
dating back to Olson (1965) and Olson and Zeckhauser (19@®8)a summary, see Sandler
and Hartley, 2001). This literature generally assumestti@tesource employed by allies is
a (possibly impure) public gootlin these models, one player’s resource allocation provides
direct non-rival, non-excludable benefits to an allied pt&yin our model, resource expendi-
ture by an ally is completely rival and excludable. Howetl@mugh its effects on the strategic
choices of the enemy, strategic externalities may be aedteese externalities may suffice to
generate endogenous unilateral transfers in strategameds without the priori assumption
of pure or impure public goods and without commitment.

Our model appears to provide potential insight into the bmaof alliances in historical
military conflicts. For instance, it seems capable of exphaj the assistance that the United
States provided to the Soviet Union in The Second World Waudph the Lend-Lease Act of
1941. Estimates of these transfers vary, ranging from $@ibito $11 billion for the four-year
period after Nazi Germany’s invasion of the Soviet Union 1. Historical accounts of this
program lend some support for the view that this assistamseextended with no expectation
of repayment

Despite its significant departure from the assumptions efptliblic goods-based literature
on alliances, our model also obtains results consistett @nte prominent conjecture in that
literature, Olson’s (1965)xploitation hypothesis.This hypothesis asserts that larger nations
will bear a disproportionately higher share of the commost @ an alliance relative to its
benefits. In our model, a self—enforcing alliance withouhoatment arises involving unilateral
transfers from playeirto playerj when playei has a larger resource endowment and the ratio
of playeri’s endowment to playej’s endowment is sufficiently greater than the ratio of the
total values of the battlefields in the two players’ respec€@olonel Blotto games. When such
alliances arise, transfers flow from the player who is res®uch to the player who is resource

1 In Olson (1965) and Olson and Zeckhauser (1966) allianceredifure was treated as a
pure public good. Extensions to impure public good expemeéjtknown as the “joint product
model” originate with Van Ypersele De Strihou (1967). Semdbandler and Cauley (1975),
Sandler (1977), and Murdoch and Sandler (1982, 1984).

2 In the early contributions to this literature it was stamtitar focus solely on the game be-
tween alliance members and take the enemy’s expendituireeas §xceptions to this approach
include Linster (1993) and Skaperdas (1998), who examiaddimation of alliances in con-
tests in which the probability of winning a prize is represehby a contest success function
and the expenditure of each alliance member serves as alyasgpure) public good in that
it directly increases the expected payoffs of other alamembers for a given enemy expen-
diture.

3 See for instance, Herring (1973, p.38).
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poor. The degree of asymmetry in resource endowments raeegesgenerate a self-enforcing
alliance without commitment depends not only on the redatiggregate values of the players’
respective battlefields, but also on the absolute magrstofi¢he two players’ endowments
relative to that of playeA.

Section 2 introduces our three stage game. Section 3 charas equilibrium in the final
stage of the game, which consists of a multi-player, mudtif Colonel Blotto game in which
one playerA, simultaneously competes in two disjoint Colonel Blottongs, against two sep-
arate opponents, 1 and 2. This section provides a complataaterization of the equilibrium
univariate marginal distributions and payoffs of the comgrat Colonel Blotto games for ar-
bitrary budget constraints and any number of battlefields3. The resource endowments in
this final stage are determined by choices made in the firsistages. These two stages are
examined in Section.4n the first stage, conditional on their endowments, plajexad 2 de-
cide on whether to transfer resources, with any positivéraasfer generating a self-enforcing
alliance without commitment. In the second stage, pla@ydecides upon an allocation of its
resources across the two Blotto games, contingent on theashof players 1 and 2. Section
4 shows thaself—enforcing alliances without commitmemdy indeed occur and characterizes
both the range of parameter values for which they arise aach#ture of transfers in such
alliances. Section 5 compares the range of parameters fohhsitive transfers arise in self—
enforcing alliances without commitment to the range forahhpositive individually rational
ex antetransfers would arise between players 1 and 2 when comptétbiading contingent
commitments may be made as to #e postdivision of payoffs. We call alliances in which
such commitments can be maaléances with complete commitme8ection 6 concludes and
outlines extensions.

2 The Coalitional Colond Blotto Game
Players

There are 3 playergA, 1,2}, and two simultaneous Colonel Blotto gam&g,andG,. Player

A competes in both of the Colonel Blotto gamé&sg,andG,. Each player € 1,2 competes in
only one Colonel Blotto gamé; (see the schematic in Figure 1). The Colonel Blotto game
Gi hasn; battlefields, and we will assume that> 3,i = 1,24 Each battlefield € {1,...,n;}

in Colonel Blotto gamé&s; has a payoff of; > 0. The total value of Colonel Blotto gant&,

NV, is denoted by = njv;. The force allocated to each battlefield in each ColoneltBlgame
must be nonnegative and each playerAU {1,2} has a normalized budget ¥f, where player

4 Moving from n; = 2 to n; > 3 greatly enlarges the space of feasibeariate distribution
functions, and the equilibrium strategies examined inplaiser require that; > 3.
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A’'s normalized budget i¥a = 1. On each battlefield the player that allocates the highed le
of force wins that battlefield. In the case that the playdiscate the same level of force on a
given battlefield, the player that has the higher level obueses in that Colonel Blotto game
wins that battlefield. The specification of the tie-breakinte does not affect the results as
long as no player has less thﬁintimes the forces of their opponent in Colonel Blotto game
Gi, i =1,2. In the case that this condition does apply this specitioatf the tie-breaking rule
avoids the need to have the stronger player allocate a |é¥etee that is arbitrarily close to,
but above, the weaker player’s maximal allocation of fokceange of tie-breaking rules yield
similar results.

[Insert Figure 1 here]

Alliances

In the first stage of the game players 1 and 2 choose whetheastdo fiorm an alliance. We
focus on the case in which it is not possible for players 1 atm& priori commit to a divi-
sion rule for the alliance’sx postpayoff. In this case each alliance member, conditional en th
resources that are available, maximizes the payoff fronn theéividual Colonel Blotto game.
To emphasize the point that unilateral transfers betwed@sahay take place in the absence
of pure or impure public goods, we assume that neither plparyoff depends on the even-
tual outcome of his ally’s game. However, prior to the playhair respective games, alliance
members may reallocate resources among themselves siabffeetconstraint that the resulting
allocation of resources is individually rational for eadlieace member.

Since there are many game forms that might govern how mytoefieficial transfers might
take place, we instead focus on the following simple quasiiéhen does there exist a nonzero
and feasible net transfert, from player 1 to player 2 (negatiteorresponds to a positive net
transfer from 2 to 1) that strictly increases both alliesyq@i#és when compared to the case in
whicht = 0. In examining this question, we assume that following amyice oft the game
that follows is one in which playeA observes the resulting budget constraibﬁ%z X1 —t
andX} = X, +t, takes them as given, and then responds optimally in allug3is acrossG;
and Gy. We label the resulting allocations & acrossG; and G, by Xa1 and Xao, respec-
tively. Once the budgetéX}, X, Xa1, Xa2) are determined, they become common knowledge
and the corresponding complete information simultaneanen@olonel Blotto game&, and
G, are played. If such Pareto improving transfers betweergpgaly and 2 exist, it is reasonable
to assume that the allies, in this environment of complefi@rination, can implement some

5> Feasibility in this context means that the transfer liesiminterval[—Xz, X1].
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such transfe?. When nonzero transfers between players 1 and 2 exist thatr@ctly Pareto
improving, we refer to the alliance asalf—-enforcing alliance without commitment.

Before examining this game in more detail, it is importanhtde that one immediate re-
sult of Roberson’s (2006) characterization of equilibripayoffs in Colonel Blotto games with
asymmetric budgets is that, for a given opposition budgesiraint, a player’s payoff is non-
decreasing in his own budget. Hence, if plapé&r allocation of his budget over the two games
Gi, i = 1,2, cannot be adjusted in response to transfers, as woulcebmate ifA’'s allocation
of Xa across the two games preceded or was simultaneous withetisfér between players 1
and 2, neither player could possibly strictly benefit fromaamsfer of resources to his ally.

In the analysis that follows, let' denote the payoff of the Colonel Blotto gai®eto player
i = 1,2 if a self—enforcing alliance without commitmestformed with net transfer from 1
to 2 equal tot, and no denote the payoff to player= 1,2 from acting in isolation, with
no transfer taking place. By definition salf—enforcing alliance without commitmeotms if
and only if it > 70 for somet # 0 for eachi = 1,2. Thus, aself-enforcing alliance without
commitmentorms if and only if there exists a reallocation of the altarmembers’ budgets
such that each player 1,2 strictly prefers this to competing with his own endowmeigen
the corresponding optimal response#\ah allocating his resources.

Before defining the players’ strategies, it is useful to wadi the leadership role the alliance
takes in determining transfers. As noted above, if playeannot condition the allocation of
his budget on the available budgets of the alliance membweesprivate good nature of the
expenditure of players 1 and 2 insures that no transferspkae between the two players.
However, ifA has an opportunity to condition his allocation upon theaalte transfers, a pos-
itive transfer from one player to the other may induce a gefficshift in the optimal budget
allocations of playeA away from the transferring player’s Colonel Blotto game torenthan
compensate the player for making the positive net transteat is, the strategic effect may
more than compensate for the direct effect of the transfewrie player, while the direct effect
more than compensates for the strategic effect for the .other

Why might it be reasonable to assume thatn condition his allocation across fronts on the
transfers of the allies? One reason is that it seems plauldbelieve that transfers between

6 Naturally, there are many game forms that might govern thidémentation of transfers of
the one-dimensional resource between the two allies. Rtarmce, in one version of such a
game each ally simultaneously decides upon a nonnegatiwararto transfer to its ally. Each
ally then observes these amounts and then the allies simeoltesly decide whether to accept or
reject the offer of its ally. It is straightforward to showathwhen nonzero transfers exist which
are Pareto improving, this offer process can implement aobk gansfer, the transfer in which
the ally making the Pareto improving positive net transteiams his most preferred positive
net transfer.
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alliance members are more easily observed than transfenede different Colonel Blotto
games by playeA. After all, alliance members are different players and h@agagreements to
transfer material between players may take longer thamgpan individual allocation problem
and may involve a public announcement. Moreover, as in the wéth the Allies fighting Nazi
Germany in The Second World War, it may be the case that theColonel Blotto game&:
andG; represent two distinct geographically separate frontssateand countnA can transfer
resources between these fronts within the confines of thgrgpbical area that it controls.
Finally, the notion of the transfer of resources as a comaritnseems more reasonable in the
context of a Pareto improving transfer across players tsanshifting of resources controlled
by a single player. Any attempt to undo such a commitment doedjuire the compliance and
coordination of two decision makers, not just the commanohef.

Strategies

Let Xa1 andXa» = 1 — Xa1 be playerA’s resources allocated to the Colonel Blotto gar@es
and Gy, respectively, and! be playeri’s, i = 1,2, level of resources utilized i; after a
transfert is implemented. Each distinct pair of gam& (X}, Xa1), G2(X$, Xa2)) represents a
distinct final stage subgame of the overall game. In the fiteges it is well known that for
a giveni € {1,2}, if either n—liXAi < Xt < Xaj or n%xit < Xai < X! there exists no pure strategy
equilibrium in the final stage Colonel Blotto garGe’

For each player € 1,2 a mixed strategy i&;, which we label aistribution of forcefor
playeri, is ann;-variate distribution functior®, : Rﬁ — [0, 1] with support contained in the set
of playeri’s feasible allocations of forcet; = {x R[5, x; < X'}, and with a set of uni-
variate marginal distribution functior{sFi‘}?i:l, one univariate marginal distribution function
for each battlefield in playeis Colonel Blotto gamés;. Then;-tuple of playei’s allocation of
force across thein; battlefields is a random;-tuple drawn from then;-variate distributiorP
with the set of univariate marginal distribution functio{Fs,j}T‘:l. PlayerA’'s mixed strategy,
a distribution of forcefor playerA, is a set compromised of am-variate distribution func-
tion Paz : R — [0,1] and anny-variate distribution functioPaz : R? — [0,1]. Each of the
ni-variate distribution$?aj has support contained s = {x € Rﬁ\ Z?izl)(j < Xai} and has
a set of univariate marginal distribution functio{EAji}?izl, one univariate marginal distribu-
tion function for each battlefield in the Colonel Blotto gafe For each Colonel Blotto game
Gi, then;-tuple of playerA’s allocation of force across thg battlefields is a random-tuple

7 Inthe cases Wher#iXAi > Xt or niixit > Xai there, trivially, exists a pure strategy equilibrium
in the gameG; and the player with the higher level of resources in that gaims all of the
battlefields.
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drawn frpm thenj-variate distributiorPa; with the set of univariate marginal distribution func-
tions {F} ;.

Coalitional Colonel Blotto Games

TheCoalitional Colonel Blotto Gameayhich we label
r {GL 627 XA7 X17 XZ} ;

is the multistage game in which players 1 and 2 first implengzefeasible net transfer of
resources between themselves, plafkghen observes this transfer and allocates his budget
Xa(= 1) across the two Colonel Blotto gam@s andG,, and then players 1 and 2 individually
compete with playeA in their respective Colonel Blotto games by simultaneoasiyouncing
distributions of forces to their respective battlefieldshject to their respective budget con-
straints determined in the previous stages. In the gagaemnd G, each battlefield is won by
the player that provides the higher allocation of force t thattlefield (subject to the tie break-
ing rules discussed above), and each player’s payoff ethmkxpected value of all battlefields
won.

3 The Final Stage Colonél Blotto Games

We start our analysis with the final stage subga@es= 1,2, and work our way back through
the game tree. Theorem 1 summarizes Roberson’s (2006)ctkiazation of equilibrium in
the Colonel Blotto game. To simplify the exposition we adibet following notation: leX; =
max{Xai, X} andX; = min{Xa;, X!} fori =1,2.

Theorem 1 (Roberson (2006))

A. Suppose XandX; satisfyn% < % < 1, then the unique Nash equilibrium univariate marginal
distribution functions of the final stage Colonel Blotto ga@ in the gaméd™ {G1, G2, Xa, X1, X2}
are as follows:

For the player with X forces, denoted as player Kk,

% Xe [0, zii]

ni

Vie{1l,...,n} RJ(x) = <1_%>+%Xx

Similarly for the player withX; forces, denoted as playek,

=N

Vie{l..m} Fl(x) =2 xe [o,n%x]



9

Moreover, in any Nash equilibrium the expected payoff faypt k is@ ( ) and the expected

Xi
2Xi
payoff for player—k is @ (1— 2%) 8

B. Suppose Xand X; satisfyni—l_1 < % < n% then the unique Nash equilibrium univariate
marginal distribution functions of the final stage Colonedbt® game G in the game
I {G1,Gg2,Xa, X1, X2} are as follows:

For the player with X forces, denoted as player k,
Vie{l...m} FJ(x)= (1—,%) + %2 xe(0,X]
Similarly for player withX; forces, denoted as playerk,

: 2X<Xi7§_ii> 0.X
vie{lon} Flg={ wr XOX)
1 X> X
In any Nash equilibrium the expected payoff for player I(qiér%i — %) and the expected
payoff for player—k is @ (1 -2+ %) .
C. Suppose ¥andX; satisfy; < % < 711 Define m= % , and note tha < m< oo,
A pair of Nash equilibrium pvariate distributions of the final stage Colonel Blotto gaf® in
the gamd™ {G1, Gp, Xa, X1, X2} are as follows:
The player with X forces, denoted player k, randomly alloca@frces to n— 2 battlefields.
On the remainin@ battlefields player k utilizes a bivariate distribution thes m mass points
and each mass point receives the same Weiféht?layer k’s mass points on ti&remaining

battlefields are located at the points

Player —k, randomly allocates Xforces to n— 2 battlefields. On the remaining battlefields
player—k utilizes a bivariate distribution that has m mass pointd aach mass point receives
the same weigh%]. Player—k’s mass points on th2remaining battlefields are located at
niX; — Xi

X — X :
(Xi — == Xi— (m—1—]) ——]

j=0,...,m—1
m—l )7] Y ?m

In any Nash equilibrium the expected payoff for player Iqqiéznr:—%z>, and the expected

payoff for player—k is ¢ <1— Zm—r‘f) .

8 The final stage gamé3; andG, are constant-sum games. Consequently, any Nash equilib-
rium strategies derived are also optimal strategies anddhesponding payoffs are security
level payoffs.
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For a proof of Theorem 1 see Roberson (2006). A major partigfitoof is establishing the ex-
istence ofn;-variate distributions with the given univariate margidatribution functions and
with supports contained ifx € R}| 3" 1 xj = X;} and{x € RY| 3", xj = Xi} respectively.
Note that uniqueness of the equilibrium payoffs follows iediately from the fact that the fi-
nal stage Colonel Blotto games are constant—sum. Thes&gayeillustrated in Figure 2 as a
function of%. A salient feature of this characterization is that as thaloer of battlefieldsy;,

becomes large, the ranges%fcovered by (B) and (C) of Theorem 1 collapse to zero, and the
weaker player’s payoff (in these ranges) goes to zero as Wellise these facts in the analysis
of the second stage game that follows.

[Insert Figure 2 here]

4 Stages One and Two: Alliances and Resour ce Allocations

We begin in stage two with playéYs optimal allocation of resources between the two Colonel
Blotto games. The primitives in this section are the payd#sved in the previous section.
Given the above characterization, it follows that the forfrplayer A's payoff function de-
pends critically on the transfer of resources between ptay@nd 2 in the first period. In fact
for playerA there are 64 different regions each with a distinct form fa payoff function.
These regions correspond to the cases where e%ciliqelr XXAr' i = 1,2, satisfy one of the three
conditions of Theorem 1, or one player has more thammes the budget of the other (.

For example, assume th¥s = 1 > X! +XI. If player A divides his resources between the
two Colonel Blotto games such th#lt < xx_Ail <1 andn—z2 < % < 1 then playerA’'s payoff
function is:

(DX i) =0 (1 )+ (1 5 ).

The payoff functions for the remaining regions are simyl@dnstructed.

To simplify the analysis the number of battlefieldsis assumed to be arbitrarily large.
(However, the total value of each Colonel Blotto gage= nv; is held constant.) Thus, the
number of different regions collapses from 64 to 4, whichgiven byr%i < %tl <1 andn% <
XX’_*# < 1 for each Colonel Blotto gam@;, i = 1,2. For given post-transfer levels of resources
of players 1 and 2x} andX} respectively, playeA's payoffs in each Colonel Blotto game are
shown in Figure 3 below.

[Insert Figure 3 here]
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PlayerA’'s optimal second stage allocation of resources betweernvtbeColonel Blotto
games is determined by the marginal payoffs in each CololtBgame. In particular, there
are four qualitatively distinct cases of optimal resourltecations for playefA. These corre-
spond to the four distinct regions X!, X ;) pairs illustrated in Figure 4.

max{( )2 1} ¢ 1
Case 1Suppose— > —xr— Of 1> X and = XX Then playerA allocates all of
his resources to Colonel Blotto garGe

In Case 1, each unit of resource that plapeallocates to the Colonel Blotto gant& has a
marginal payoff that is higher than the first unit allocatet ;. If the initial endowments(f,
X9 are such that this case holds, it is clear that there can bemzero net transfer that strictly
improves upon the allocation for both players, since playietannot do strictly better.

1
t Tyt \ 5
Case ZSuppose% > %‘t— and 0< 1— (%)2 < X';. Then player A allocates

Nl

it
Xpj = <‘”X'x ) to Colonel Blotto gameS; and Xa_jy = 1— <(n>;‘,7>i(*') to Colonel Blotto
gameG_;.

In Case 2A’'s budget is sufficiently large that it is optimal to allocatkevel of resources greater
thanX! to the Blotto gamé5;, Xaj > X!, thereby hitting the range of diminishing returns (see
Figure 3). At the margin A equates the return to an extra dmgspurce allocated to gan® to

t
the constant marginal return that he receives for allogaXi_;) < X';. That i |syt— = 2(‘?:(')2
Al

<Xt

NI

1
(see Figure 3), yieldin¥aj = qq)g:(t*i ‘. PlayerA’'s remaining forces & 1— <(ﬂ)§—i7i>

are allocated to the remaining Colonel Blotto gai@e;.

1
tyt \ 3
CaseSSuppose 2 > X't and 1-— (%)2 > X',. Then player A allocates

Qi — 7i P-i
t
= (qu") r to Colonel Blotto gamés; andXa_j) = ((p X2 r to Colonel
(axt)2+(@uixt;)? ((an)7+((p Xt )
Blotto gameG_;.

In Case 3 playeA has a sulfficient level of resources to be able to set the madngayoffs from
the two Colonel Blotto games equal at levels greater thand)h@spondlng resource levels of

players 1 and 2. In particular, play&rchooses(aj andXa iy such that X > = ik > (see
(XA(—i)> 2(XAi)

Figure 3).
Case 4Suppose¢% = %'jrl and 1< X? + X9. Then any paifXa, Xa2) such thaia + Xaz = 1
andXaj < X!, i = 1,2 is an optimal response of play&r

In Case 4 any allocation by playArin which Xa; < X!, i = 1,2 sets the marginal payoffs from
the two Colonel Blotto Games equal. As is shown in Sectiohfalyers 1 and 2 had the ability
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to commit to binding agreements and<1X? + X2, then the transfet, which sets— = ;(('t
maximizes the sum of the two players’ payoffs. Thus, it isckhat in Case 4 there can be no
nonzero net transfer that strictly improves upon the atioogor both players.

Figure 4 illustrates the ranges %, X";) pairs corresponding to the cases described above

for values ofgg and¢_; such that% > 1. The analysis is analogous Whgﬂ? < 1.
[Insert Figure 4 here]

We now determine when there exists a nonzero trarisfiezm player 1 to player 2 that
strictly Pareto improves upon their initial endowmentslod tesource. The primitives at this
stage are théX{, Xﬁ)-contingent subgame payoffs arising when playeptimally responds as
detailed in Cases 1 through 4 above, and the resulting CoBloto game payoffs are given
as in Theorem 1, part (A).

By definition a self-enforcing alliance without commitmentsts if and only if there exists
at # 0 such that

(K Xai (X1 X5)) > 110 (%0, Xai (X2, %3) )
in each of the respective gam@g i = 1,2.
Clearly if the initial resource endowmentX?, X9) satisfy the conditions of Case 1, then
there is no incentive for a non-zero transfer to take platey@v —i is already receiving his

highest feasible payoff) The following two propositions examine alliance formatishen the
initial resource endowments satisfy the conditions of €&sand 3, respectively.

Proposition 1 Suppose(Xf,XZO) satisfies the conditions of Case 2. Then a self-enforcing al-
liance without commitment exists in which playdrtransfers a net positive level of resources

to player i if and only if
1
0, 0 @ix?)’
CHXE > 2
AR ( qugi )

No self—enforcing alliance exists in which player i tramsfa positive net level of resources.

Proof With the initial endowments satisfying the conditions ofs€&, playe”A’'s optimal al-

0
location of forces between the two Blotto games is deterchiog -2 2x0 = 2((’;()2)2, and thus
|

9 While our focus is on alliance transfers that strictly benleéith alliance members, it is
instructive to note that in the portion of the Case 1 regiomvhich 1< X or 1> X° and
% #* ﬁ player—i is indifferent between keeping his endowment and makingrster to
playeri that leaves the endowment pair within the region, whereagepl prefers to accept
any such transfer.
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1

0y 0
Xai = (mxf)(Z) andXa—j) =1— (%) . Given playerA’'s optimal stage 2 allocation of

resources between the two Colonel Blotto games with nofeeslayelii’s payoff is

Nl

7.40 (Xi07XAi (X:?,Xg)) _ % <(n(p—ixi0> 2

X0,

and player—i’s payoff is

Q- AP_iX?
e, (Xgiva(fi) (X2, X9)) = @i — ZXA +2< xQIIXI )

Note that any positive net transfarsromi to —i would result in the paifX}, X}) satisfying
the conditions of Case %—‘”b increases whilgxg’;i2 decreases), and that in this case player

A’s optimal allocation of forces between the two Blotto gangesdetermined b 2x0 +2T =
@ (X-1)
2(Xai)°

. Thus playei’s payoff from such a transfer is

(X% +71)

i (X0 — 1, % (X2 —1,X% + 1)) :% <w> 2

It follows immediately that sincg(;‘—r'r < 0O for all feasible positive net transfersit is clear that
any nonzero strictly Pareto improving transfer must be fpdayer—i to playeri. Furthermore,
it is also clear that any such transfer of resources fromeplay could not result in the pair
(Xi,X}) satisfying the conditions of Case 3 or Case 2 vgggik
since in both cases playefi would be worse off. Thus we can restrlct our attention taaliie
transfers from player-i to playeri in which the resulting levels of resources remain in the
current Case 2.

If a positive net transfer, of resources from playeri to playeri takes place, resulting in
an allocation that remains in Case 2, plapér optimal allocation of forces between the two

Blotto games is determined by the marginal condltﬁé‘{— ) aad) and thus players
Xai
payoff is

(X0 + 1% (0 +T.X0%5— 1)) = % (%)(L:)T))

and player—i’s payoff is

T
T

(X% =1, Xai) (XP+T1,X% — 1)) =
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(@o-)Y2(X0+Xx9)
40 1) ) T
to accept a transfar > 0. It is straightforward to show that,

oy e (9@ (X0+X%)

0T 2(X%-1) 4(x% 1) (x4 1)Y?

o _
Note thatﬁ =

which is positive for allr. Thus player is always willing

Clearly, |f \r —o > 0, a sufficiently small positive transfer would benefitas well. More-

over, itis stralghtforward to show that+%|r —0<0 then L will remain nonpositive for all
T > 0 such that < X9 . Hence playeri will strictly beneflt from a positive transfer to player

1
i if and only |f Ir 0> 0. This holds if and only iX° + X%, > 2< ) . Q.E.D.

Proposition 2 Suppose(Xf,XZO) satisfies the conditions of Case 3. Then a self-enforcing al-
liance without commitment exists in which playdrtransfers a net positive level of resources

to player i if and only if
1
0 %0 2
1- 252 (‘P"ﬁ' )
XZ @xXZ

No self—enforcing alliance exists in which player i tramsfa positive net level of resources.

Proof With the initial endowments satisfying the conditions ofs€a, pIayerA’s optimal al-

0
location of forces between the two Blotto games is deter(htlyez((‘;xi)2 =3 ((f<l *')
Al A(—i)

1 1
0)?2 0)2
<¢11X1) r andXap = <(pr2) . Given playeA’'s optimal stage 2 allocation
(@XD)2+(@X3)? (@X)2+(@X3)? o _
of forces between the two Colonel Blotto games plaigei = 1, 2, payoff with a zero transfer
is

-, and thus

70 (50, X (00 58)) = & [0+ (%)

If a positive net transferr > 0, of resources from playeri to playeri takes place, it is
feasible that the resulting allocation may remain in Case g&ay switch to Case 2. First

looking at transfers within Case 3, play®s optimal allocation of resources between the two
i(XO+t1 )

Blotto games is determined by the marginal condltf@;(nx— 2(x )
AI A(—i)

. Hence, player

—i’s payoff is given by

T, (X — T, Xa(i (X,O-l-r X9 — r)1 =
2
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and playei’s payoff follows directly Clearly |fd =70 > 0 a sufficiently small positive trans-
fer would benefit-i, and |f IT o>0a suff|C|entIy smaII transfer would benéfiMoreover,
it is straightforward to show that ff—*'|, 0<0 then WI|| remain nonpositive for alt > 0

such thatr < X0 In addition, for allt, ‘zﬁ > a Hence within the range of transfers that

remain in Case 3, both players 1 and 2 will strictly benefitrfra net positive transfer from
player—i to playeri if and only |f |r o> 0.
It is straightforward to show that

o ¢ 1 }<£)2 X0, — X0 — 21
1) ((X0 1) (04 1))°

ot 2 2
Thus, there exists a strictly Pareto improving trangfer O, from —i to i, that remains in the

0 _ywO0 X 1 ) .
range of allocations covered by Case 3 if and onI%,LXh‘;X;r > 2 (%) ?. We claim that this
X0x9,)2
is also a necessary condition for the existence of a stiahgto improving transfer fromi to

i that switches to Case 2. This results from the fact that theefwof Case 2 allocations where
‘%L\r:o > 0 (delineated in Proposition 1) may be reached through afeeafrom—i to i only
if the initial Case 3 allocation satisfies the condition obpwsition 2.

A similar condition holds for playeir In examining transfers > 0 fromi to —i, %—TH:O >

1
0

0 is equivalent tox'i > 2(¢ .) . However, no initial endowment in whic%“—i > ;:'—0
. —i

OXO
satisfies this const?aint. Thus, playienever offers a positive net transfer to player that
results in an allocation in Case 3. As shown in Propositiammteg in Case 2 playemlso never
offers a positive net transfer to playei. It follows directly that given an initial endowment
in Case 3 there exists no strictly Pareto improving posiigetransfer from playerto player
—i that crosses over into Case 2. Thus, playever offers a positive net transfer to playet
Q.E.D.

Propositions 1 and 2 demonstrate that there are severasarigarameters in which en-
dogenous unilateral transfers take place. Thats$gla-enforcing alliance without commitment
forms. The set ofX°,X%) pairs for which such an alliance forms is illustrated in Fe6 for
the case in whicba = 1. The(XiO, x9i) pairs satisfying the conditions of Cases 2 or 3 and lying
in the region above and to the left of the bold lines are thigairendowments for which these
alliances arise.

[Insert Figure 5 here]

As is evident from Figure 5 and the inequalities that deteenthis region in the statements
of the two propositionsself—-enforcing alliances without commitmédotm only when players
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1 and 2 have sufficiently asymmetric endowments both in albsaerms and relative to the
corresponding values of their Blotto games. In particufathe region of endowments corre-
sponding to Case 3, the boundary delineating the set of eméons for which these alliances
form is linear (see Figure 5). Throughout this region, satfercing alliances without commit-

0.
ment form if and only if the ratio of the initial endowmen%g exceeds a constant threshold,

which is greater than md#, E} This insures that alliance transfers only flow from playér
the player with the higher endowment to playethe player with the lower endowment and
only if the ratio of their endowment% exceeds the ratio of Blotto game vaIL%s

In the region of endowments corresponding to Case 2, thedaoyrof the set of endow-
ments for which these alliances form is concavesfh Within this region, as the sum of the

0
endowmentsX® + X9, increases, the threshold value%at above which alliances form de-

creases. Whelﬁf‘;—i < 1, as in panel (a) of Figure 5, the boundary of the set of endenisior
which these alliances form intersects the boundary of th@necorresponding to Case 1 along
the 45 line. One consequence (as is illustrated in Figure 5, pa)giq that there exist param-
eter configurations for which self—-enforcing allianceshwiit commitment arise even though
the initial endowments are arbitrarily close to equalit;h@’nl% > 1, as in panel (b) of Figure
5, the boundary of this set intersects the lilg = %X} before it reaches the boundary of
the Case 1 region. Indeed, from the condition provided ipB&sdion 2, this happens precisely
WhenXiOJrXEi = 2. One consequence, (as is illustrated in Figure 5, pangiqf)at there ex-
ist parameter configurations for which self—-enforcingaaties without commitment arise even

0' - - - -
though the ratio of the initial endowmen)fg%;gI is arbitrarily close to the ratio of Blotto game

vaIues% 10 Finally, as in the region of endowments corresponding tceGador Case 2 en-

dowments alliance transfers always flow from playerthe player with the higher endowment
to playeri, the player with the lower endowment, and only if the ratidhair endowment%

exceeds the ratio of Blotto game valu%s.

In this sense, the nature of transfers in our model conforentersion of the éxploitation
hypothesis When self—enforcing alliances without commitment fotmansfers flow from the
player who is resource rich to the player who is resource ,doath in absolute terms and
relative to the total value at stake in their respective Gel®lotto games with player A.

Moreover, wherself—enforcing alliances without commitméoitm, it must be the case that
the combination of direct and strategic effects of the ueikd transfer benefits both allies.
Clearly, since the direct effect harms the player makingitiesfer and benefits the player re-
ceiving the transfer, it must be the case that the stratéfgictdoenefits the transferring player

10 This holds for initial endowments which are (1) above the k', = %X} and (2) satisfy
2< X%+ X0 <1+ %
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and harms the receiving player (if play&moves resources away from the game of the trans-
ferring player, these resources flow to the game with thavieceplayer). In this context, it is
interesting to identify the source of a breakdown of the texise of self—enforcing alliances
without commitmenthat is, whether it is the relatively resource poor ally weelines to re-
ceive a transfer or the relatively rich ally who declinesrdiate the transfer. The details of
the proofs of these two Propositions indicate that it is gswhe resource rich ally whose in-
centive constraint binds first. That is, the region wheréhsaltances form is bounded by the
willingness of the player making the transfer.

5 Alliances with Complete Commitment

As a benchmark for the analysis of self-enforcing allianeglout commitment, it is useful
to examine the nature @ antetransfers that would arise between players 1 and 2 if complet
and binding commitments could be made concerningethpostdivision of payoffs. We call
alliances in which such commitment can be matiiences with complete commitment

In the presence of complete and binding commitments an epérantetransfer solves

mtaxni (Xiv Xa1 (X}JX§)> + Té (X£7XA2 (X}J Xé))

In Proposition 3 we show that an optimal transfer leads towname in whichx!; = ¢ 'Xf

Hence, unless the initial endowments satify = %Xio nonzero transfers of resource endow-
ments will always take plack.

Proposition 3 LetX = Xo—l-X§J In any alliance with complete commitment the allocation o
the alliance budget to the two Colonel Blotto games; &)V and X ; = . Thus, the

ey
alliance transfers result in’- = %‘S If X% = %:X?, then no transfers take place.

Proof We begin with the case th&t> 1. Thus, in the alliance with complete commitment, the
allocation of the alliance budget to the two Colonel Blotames may satisfy the conditions for
Case 1, Case 2, or Case 4 (see Figure 4). Clearly, any atladayi the alliance that satisfies
the conditions for Case 1 is not an equilibrium strategy. &#s€1 the alliance wins all of the
battlefields in Blotto game-i and playerA allocates zero resources to Blotto gamie Thus,
the alliance can strictly increase its payoff by dlvertlegaurces from the Blotto gamel to
the Blotto game up until the point at whlchp—l = 5{_‘ asinCase4,or& 1— (qqx' = )2 as

in Case 2.

11 we abstract away from issues concerning the precise ex pasiod of the alliance’s joint
payoff. For cooperative game theoretic approaches to g@ytof alliance costs and benefits
see Sandler (1999) and Arce M. and Sandler (2001).
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Similarly, any allocation by the alliance that satisfies toaditions for Case 2 is not an
equilibrium strategy. In particular note that in Case 2 thietjpayoff of the alliancer, = 1 +

0 0_
T3 , given any aIIocationQXiO,XQi) in Case 2 and any transfer> 0 such that% < XZo',i d
given by

S

i, (X0 +1,X% —1) =
TET<XiO+T7XAi(XiO+T,XOiET))-l-T[Ti(XO T, %) (X0 +1,X% - 1)).

1
. 2 T
In Case 2 this equalg.i — 556" + <‘"“’X'§_>9°j”) . It follows directly that?/%z > 0 for all

0 _
%. Thus, the alliance can strictly increase its payoff by ding

resources from Blotto gamei to Blotto gamei up until the point at WhiCh(% = %‘% as in
Case 4.

In Case 4, the payoff to the alliance(ig + @) (1 — —~> Given the arguments given above
concerning Cases 1 and 2, it is clear that their are no priditddviations for the alliance.

Lastly, in the case of an alliance with complete commitmert ¥ < 1, the allocation of
the alliance budget to the two Colonel Blotto games may fyatiee conditions for Case 2 or
Case 3 (see Figure 4). Given the above arguments, any alodat the alliance that satisfies
the conditions for Case 2 is not an equilibrium strategy. &8&€3 the payoff of the alliance
given any initial allocation(X?,X°;) in Case 3 and any transfer> 0 such thaf% < X(*;jjir,
is given by

0
T > 0 such thatxim“ <

i, (X0 +1,X0% —1) =
0 i (X9 — 1
A0 | 21D L (g (X9, —T)(X0+ 1))

It follows directly that
1 1
L 10000\ 1 aei’+ D))’
2 X0+ 1 2 X0 —1

O+1 t_ _Xa t _ X
— and thus§f = z=5—andXZ; = <n+<p.

drr{z_ﬂ
o1 2

Solving fort yields(pii Q.E.D.

In contrast to the restricted range of initial endowmentswbich transfers take place in
self—-enforcing alliances without commitment, such trarsfake place almost everywhere un-
der alliances with complete commitment. Only wix?) = %X does no transfer take place.
However, as shown in panel (b) of Figure 5, there exist |hﬁra:iowments for which a self—
enforcing alliance without commitment yields the same onite as under complete commit-
ment, X!, = & ')(,t This arises for a subset of the range of endowments in whielalliance
member (—| in the figure), with the higher Colonel Blotto game valge;) has an endowment,
x9i, both larger than that of playeéx and larger than the product of the ratio of game values
and the alliance partner's endowmef§ ?).
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Of course these two types of alliances form the two endpaoiitise entire spectrum of pos-
sible levels of commitment. However, one might conjectuieg intermediate levels of commit-
ment generate regions of initial endowments where nonzansfers take place that are nested
between the regions corresponding to these two extremes.

6 Conclusion

The literature on the economics of alliances, originatirithvdIson (1965) and Olson and
Zeckhauser (1966) focuses on the case where defense eixpeadire a (possibly impure)
public good and the threat of attack is exogenous. This pafends this literature by examin-
ing the formation of self—enforcing alliances without cortment in a multi-player, multi-front
Colonel Blotto game. In this case, the payoff to each alkamember is completely exclud-
able and rival. Moreover, the common opponent is able torebsand react to the formation
of the alliance and the resulting transfer of resources. &kably, we find that self—enforcing
alliances without commitment form for a wide range of partare Withex anteasymmetry
of resources — both in absolute terms and relative to theentise values at stake in the al-
lies’ Colonel Blotto games — unilateral transfers from te&atively resource-rich ally to the
relatively resource-poor ally cause a reallocation of thaimon opponent’s resources that ben-
efits both allies. For the ally making the transfer, the pesitrategic effect of the opponent’s
reallocation of resources away from their Blotto game makefor the negative direct effect
of the reduction in own resources. For the ally receivingtthasfer, the positive direct effect
of greater resource availability dominates the negativetesyic effect of a higher opponent
resource level.

Potential extensions of the model include the analysis obeergeneral network structure
of battlefield alignment in which players may be engaged ires# conflicts with different
sets of adversaries, who may themselves be engaged in ah#icts. In this context, it is
possible to carry out a nontrivial examination of the nawiréhe alliances that form and the
composition of their membership. Our model also provideseful tool for examining the
strategic effects of precommitment to budgetary transpareSince the payoffs and strategies
in any Blotto game are parameterized by the players’ bugdgetsnodel is a natural framework
for examining the costs and benefits of finer or coarser badg@tformation and the effects
of budgetary aggregation and disaggregation in entitiga@ed in conflict. It may also serve
as a useful framework for the study of espionage.

Finally, although the analysis in this paper is framed indbetext of military alliances, itis
readily adapted to other contexts. For instance, in theesdmf multiple-product R&D races
or patent races, it can be applied to explain research j@ntwes and silent cross-industry
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partnerships (“cash infusions”) between firms that do natpete in the same market, but face
a common conglomerate competitor.
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