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Abstract

Hausken (2008a) formulates a contest-theoretic model of the attack and defense of

a network of targets. This note identifies a technical error that invalidates Hausken’s

characterization of Nash equilibrium for a substantial portion of the parameter space

that he examines and provides necessary conditions for his solution to form a pure-

strategy Nash equilibrium. Many of the existing results in the contest-theoretic liter-

ature on the attack and defense of networks of targets rely upon Hausken’s (2008a)

characterization and require corresponding parameter restrictions. When these restric-

tions are not met, the analysis of Clark and Konrad (2007) and Kovenock and Roberson

(2010a) provides a foundation for constructing mixed-strategy Nash equilibria.
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1 Introduction

Clark and Konrad (2007) and Hausken (2008a) formulate models of the attack and defense

of a network of targets in which the outcome of the conflict at each target is determined by

a contest success function that maps the players’ resource allocations into their probabilities

of success.1 If the defender (attacker) allocates a force of di ≥ 0 (ai ≥ 0) to target, or

component, i, then the probability that target i is successfully defended is given by the

contest success function pD,i(di, ai), which may take one of several forms including, but

not limited to, the general ratio-form specification of the contest success function given by

pD,i(di, ai) = dmi
i /(ami

i + dmi
i ) where mi ≥ 0 is an exogenous parameter that specifies the

level of noise in contest i. In the trivial case where mi = 0, each player wins contest i

with probability (1/2) regardless of the players’ force allocations. The interpretation of a

strictly positive but low value for mi is that contest i involves a substantial amount of noise

conditional on the profile of allocations (see Konrad and Kovenock 2009 for a discussion of

how much noise is implied). When mi is high, with mi =∞ the limiting case, each contest

has a low amount of, or no, noise.

The outcome of the overall conflict is determined by the outcomes at the individual

targets. For example in infrastructure networks there often exist particular targets or com-

binations of targets which if destroyed would be sufficient to either disable or disrupt the

entire network. In the context of an arbitrarily complex network of targets, Hausken (2008a)

uses the players’ sets of first-order conditions to identify a pure-strategy Nash equilibrium

and then examines properties arising in that solution. In this comment we provide necessary

conditions for the solution in Hausken (2008a) to form a pure-strategy Nash equilibrium

point and show that these conditions are quite restrictive.

Section 2 reviews the characterization of equilibrium given by Hausken (2008a) and pro-

vides necessary conditions for the solution in Hausken (2008a) to form a pure-strategy Nash

equilibrium point. For the portion of the parameter space in which the solution given in

Hausken (2008a) does not form a pure-strategy Nash equilibrium point, there exist mixed-

strategy Nash equilibria.2 Section 3 summarizes the existing results on mixed-strategy equi-

libria.

Many of the existing results in the contest-theoretic literature on the attack and defense

1The contest success function may be interpreted as the specifying the probability that component i is
completely destroyed or alternatively the degree to which it is damaged.

2For general Nash equilibrium existence proofs covering this special case see Montiero and Page (2007)
and Tian (2009).
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of networks of targets build upon the characterization in Hausken (2008a). Section 2 briefly

discusses how the parameter restrictions on the first-order approach impact the related liter-

ature. Clark and Konrad (2007) and Kovenock and Roberson (2010a)3 demonstrate how to

construct mixed-strategy equilibria for benchmark special cases in this class of games. These

two articles provide a foundation for examining the parameter ranges of those models in the

related literature which have no pure-strategy Nash equilibria. We view the characterization

of the mixed-strategy equilibria over these parameter ranges as an important area for future

research.

2 Model and Main Result

The basic model of attack and defense of networks of targets is formally described as follows.

Two players, an attacker, A, and a defender, D, simultaneously allocate their forces across

a finite number, n ≥ 2, of targets indexed by i ∈ {1, . . . , n}. The overall outcome of the

conflict across the network of targets is determined by the outcomes at the individual targets.

Beginning with the outcomes at the individual targets, let ai (di) denote the level of force

allocated by the attacker (defender) to target i. The probability that target i is successfully

defended is given by

pD,i(di, ai) =


1
2

if ai = di = 0

d
mi
i

a
mi
i +d

mi
i

otherwise
. (1)

The probability that target i is successfully attacked is given by pA,i(ai, di) = 1−pD,i(di, ai).

Let pD(pD,1, pD,2, . . . , pD,n) denote the probability that the network of n targets is successfully

defended.

As in Hausken (2008a), we will focus on the simple series network, or what Clark and

Konrad (2007) refer to as a weakest-link network.4 The second simple type of network,

referred to as a parallel network by Hausken (2008a) or a best-shot network by Clark and

Konrad (2007), is successfully defended if the defender successfully defends at least one target

within the network. As noted by both Clark and Konrad (2007) and Hausken (2008a), a

best-shot network is the same as a weakest-link network with the labeling of the attacker

and defender reversed.

3An earlier version of Kovenock and Roberson (2010a) appeared under the title, “Terrorism and the
Optimal Defense of Networks of Targets,” (Kovenock and Roberson, 2006).

4It is straightforward to extend the arguments given below to cover what Hausken (2008a) refers to as
an “arbitrarily complex system.”
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A weakest-link (series) network is successfully defended if the defender wins all of the

targets within the network. Conversely, an attack on a weakest-link network is successful if

the attacker wins at least one target in the network. In this case,

pD(pD,1, pD,2, . . . , pD,n) =
n∏

i=1

pD,i(di, ai). (2)

Assume that players are risk neutral and have asymmetric objectives. The attacker’s

objective is to successfully attack at least one target, and the attacker’s payoff for the suc-

cessful attack of at least one target is vA > 0. Let a (d) denote the attacker’s (defender’s)

n-tuple of force allocations. The attacker’s expected payoff function is given by

πA (a,d) = vA

(
1−

n∏
i=1

pD,i(di, ai)

)
−

n∑
i=1

cA,iai (3)

where cA,i is the attacker’s constant unit cost of force expenditure to target i. The defender’s

objective is to preserve the entire network, and the defender’s payoff for successfully defending

the network is vD > 0. The defender’s expected payoff function is given by

πD (a,d) = vD

(
n∏

i=1

pD,i(di, ai)

)
−

n∑
i=1

cD,idi (4)

where cD,i is the defenders constant unit cost of force expenditure to target i. The force

allocated to each target must be nonnegative.

The set of first-order conditions of the players’ optimization problems is given by equation

(14) of Hausken (2008a). In each contest i = 1, . . . , n,

∂πA
∂ai

= vA
mia

mi−1
i dmi

i

(ami
i + dmi

i )2

∏
j 6=i

d
mj

j

a
mj

j + d
mj

j

− cA,i = 0 (5)

and
∂πD
∂di

= vD
mid

mi−1
i ami

i

(ami
i + dmi

i )2

∏
j 6=i

d
mj

j

a
mj

j + d
mj

j

− cD,i = 0. (6)

Let a∗ and d∗ denote the solution to the first-order conditions, for the attacker and defender
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respectively, where as given by equation (15) of Hausken (2008a),

a∗i =
1

(cA,i/vA)

mi(cD,i/vD)mi

(cA,i/vA)mi + (cD,i/vD)mi

n∏
j=1

(cA,j/vA)mi

(cA,j/vA)mi + (cD,j/vD)mi
(7)

and

d∗i =
1

(cD,i/vD)

mi(cD,i/vD)mi

(cA,i/vA)mi + (cD,i/vD)mi

n∏
j=1

(cA,j/vA)mi

(cA,j/vA)mi + (cD,j/vD)mi
(8)

for each i = 1, . . . , n.

The players’ expected payoffs from the pair of n-tuples (a∗,d∗) are given by equation

(17) of Hausken (2008a),

πA(a∗,d∗) =

vA

(
1−

(
1 +

n∑
i=1

mi(cD,i/vD)mi

(cA,i/vA)mi + (cD,i/vD)mi

)
n∏

i=1

(cA,i/vA)mi

(cA,i/vA)mi + (cD,i/vD)mi

)
(9)

and

πD(a∗,d∗) = vD

(
1−

n∑
i=1

mi(cD,i/vD)mi

(cA,i/vA)mi + (cD,i/vD)mi

)
n∏

i=1

(cA,i/vA)mi

(cA,i/vA)mi + (cD,i/vD)mi
(10)

Because each player can ensure a payoff of 0 by doing nothing, in any equilibrium each

player must have a nonnegative payoff. When the solution of the first-order conditions, the

strategy profile (a∗,d∗), results in negative expected payoffs for either or both players, the

first-order conditions do not yield a pure-strategy Nash equilibrium point. Furthermore, it

is incorrect to assert, as does Hausken (2008a), that if a player’s expected payoff given in (9)

or (10) is negative, then there exists an equilibrium in which that player allocates zero forces

to each target (yielding a payoff of zero) and the other player earns arbitrarily close to his

valuation for the system by allocating an arbitrarily small amount of force to one or more of

the targets.5 To see that such a pair of n-tuples does not form an equilibrium, assume that

the defender allocates zero forces to each target and that the attacker allocates an arbitrarily

small amount of force to one or more targets. In such a case, the defender’s best response

is to outbid the attacker, by an arbitrarily small amount, at each of the attacked targets.

Such a strategy increases the defender’s payoff from zero to arbitrarily close to his valuation

5This argument is given in the discussion following equation (17) on p.864, the discussion following
example 1 on p.865, and the discussion of example 2 on p.866 of Hausken (2008a).
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for the entire system. A similar argument rules out the possibility that allocating zeros

everywhere could be an equilibrium strategy for the attacker.

Proposition 1 below provides necessary conditions for the strategy-profile (a∗,d∗) to form

a pure-strategy Nash equilibrium point.

Proposition 1. Two necessary conditions for the strategy-profile (a∗,d∗) to form a pure-

strategy Nash equilibrium in the model of attack and defense of networks of targets are,6

and

n∑
i=1

mi(cD,i/vD)mi

(cA,i/vA)mi+(cD,i/vD)mi
≤ 1

n∏
i=1

(cA,i/vA)mi

(cA,i/vA)mi+(cD,i/vD)mi
≤ 1

1 +
∑n

i=1
mi(cD,i/vD)mi

(cA,i/vA)mi+(cD,i/vD)mi

.

(11)

First, observe that if either or both of the conditions in Proposition 1 fail to hold, then

one or both of the players’ expected payoffs, given in equations (9) and (10), are negative and

the strategy profile (a∗,d∗) is not a pure-strategy Nash equilibrium. Because the players’

objective functions fail to be quasi-concave with respect to the relevant choice variables (each

player’s n-tuple of force) for a large portion of the parameter space, standard arguments on

the existence of pure-strategy equilibrium do not apply. Therefore solving the system of

first-order conditions, as does Hausken (2008a), does not guarantee equilibrium.

Whether the conditions stated in equation (11) are, in general, sufficient for (a∗,d∗) to

form a pure-strategy equilibrium is still an open problem. However, we know that under

certain parameter restrictions, necessity and sufficiency are guaranteed. For example, an

extension of the arguments given in Clark and Konrad (2007) implies that if for all targets

i = 1, . . . , n (i) cA,i = cA, (ii) cD,i = cD, and (iii) mi = m ≤ 1, then the conditions in equation

(11) are indeed necessary and sufficient for (a∗,d∗) to form a pure-strategy equilibrium.

To see just how restrictive the conditions in Proposition 1 are, assume as in Clark and

Konrad (2007) that: (1) at each target the per unit cost of allocating force is symmetric

across players (i.e., cA,i = cD,i for all i) and (2) mi = 1 for all i. As Clark and Konrad

(2007) show, both of the conditions in Proposition 1 hold (i.e., the first-order conditions

identify a pure-strategy Nash equilibrium point) if and only if vD ≥ (n − 1)vA. That is,

pure-strategy equilibria may fail to exist even in the popular case of mi = 1 for all i. Note

also that if (cD,i/vD) = (cA,i/vA) for all i = 1, . . . , n, then the conditions in (11) hold only if

6Observe that these conditions can be written more succinctly as
∑n

i=1
mi(cD,i/vD)mi

(cA,i/vA)mi+(cD,i/vD)mi
≤

min{1,
∏n

i=1[1 + ((cD,ivA)/(cA,ivD))mi ]− 1}.
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∑n
i=1mi ≤ 2. Clearly, this inequality places severe restrictions on {mi}ni=1.

Because the solution in Hausken (2008a) forms a pure-strategy Nash equilibrium point

only for a restrictive set of parameters, statements that are based on this solution — such

as all of the propositions in Hausken (2008a) — fail to hold for all combinations of mi, vA,

vD, cA,i and cD,i that violate either of the two conditions in Proposition 1. Although we do

not know at this time whether these conditions are sufficient, as a general proposition the

nature of equilibrium strategies is quite nuanced and varies over the parameter space, as we

detail below in our discussion of mixed-strategy equilibria.

There are a number of articles that analyze variations of the Hausken (2008a) framework

that are also erroneous without the imposition of more restrictive parameter assumptions.

These variations fall into two groups. First, both Hausken (2008b) and Hausken (2010)

contain closely related technical errors that invalidate those characterizations of Nash equi-

librium for a substantial portion of the parameter space. In particular, in both of those

games each of the players has a secure utility that can be assured regardless of the action of

the other player. But in the solutions that are given Hausken (2008b) and Hausken (2010)

there exist large portions of the parameter space in which one or both of the players obtain

a level of utility that is below their secure utility level, and hence these solutions do not form

pure-strategy equilibria.

There is also a growing literature that relies upon the equilibrium characterization in

Hausken (2008a) in order to analyze more complex environments. In the context of an

“arbitrarily complex system,” Proposition 1 of Hausken (2008a) states that,

The investment expenditures relative to the system value for the defender and

the attacker are equal for each component . . . regardless of the parameter mi.

(Hausken 2008a, p.862)

If correct, this result would make it very easy to embed a multidimensional resource allocation

game into a more complex game and would facilitate straightforward comparative statics

statements regarding changes in the levels of exogenous noise {mi}ni=1. However, as our

Proposition 1 shows, Hausken’s characterization of equilibrium fails to hold for most values

of mi. Unfortunately, there are a number of papers that, relying on Hausken (2008a),

incorrectly assume that when cA,i = cA, cD,i = cD, and mi = m for all components i =

1, . . . , n, it is optimal for each player to allocate forces evenly across components. Examples

include, but are not limited to, treatments of the basic networks environment (Hausken and

Levitin 2009a; Levitin and Hausken 2009f, 2010a, b), the partitioning of networks by the

defender, the creation of false targets, and the creation of network redundancy (Hausken and
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Levitin 2008, 2009c; Levitin and Hausken 2008, 2009a, b, c, d, 2010d, f; Peng, Levitin, Xie,

and Ng 2010a, b), and multiple time periods and sequential attack (Hausken and Levitin

2009b, 2010; Levitin and Hausken 2009e, 2010c, e). It is beyond the scope of this comment to

provide necessary and sufficient conditions for the existence of a pure-strategy equilibrium

with an even allocation of forces that is assumed in all of these articles. However, it is

straightforward to modify the necessary conditions given in Proposition 1 above for each of

those particular models. Furthermore, as discussed in Section 3 below, Clark and Konrad

(2007) and Kovenock and Roberson (2010a) demonstrate how to correctly construct the

mixed-strategy equilibria for benchmark cases for which there exist no pure-strategy Nash

equilibria. We conjecture that employing their methods, the set of mixed-strategy Nash

equilibria can be derived for the relevant parameter ranges of those models. We view the

completion of this equilibrium characterization as an important area for future research.7

3 Mixed-Strategy Equilibria

A mixed strategy, which we term a distribution of force, for player i is an n-variate distri-

bution function Pi : Rn
+ → [0, 1]. The n-tuple of player i’s allocation of force across the n

targets is a random n-tuple drawn from the n-variate distribution function Pi. It is beyond

the scope of this comment to provide a complete characterization for this class of games. We

will instead highlight the existing results on mixed strategy equilibria for this game (Clark

and Konrad 2007 and Kovenock and Roberson 2010a).8

In dealing with multivariate mixed strategies it is helpful to reduce the number of exoge-

nous parameters in the model. Towards this end, assume that for each player the unit costs

are symmetric across targets and players and are normalized to one (i.e., cA,i = cD,i = 1 for

all i) and that the level of noise at each target is the same (i.e., mi = m for all i).

The case of m = 1 is analyzed by Clark and Konrad (2007). If vD ≥ (n− 1)vA, then this

game has a pure-strategy Nash equilibrium that coincides with the characterization given

above for a∗ and d∗ with m = 1 and cA,i = cD,i = 1 for all i. If vD < (n− 1)vA, then Clark

and Konrad (2007) show that the following pair of strategies constitutes an equilibrium.9

7See for example Arce, Kovenock and Roberson (2010) who examine the mixed strategy equilibria in a
model with a network of targets and a terrorist organization with multiple attack technologies.

8This multi-dimensional contest is an example of a “Blotto-type” game. For more on the Colonel Blotto
game see Roberson (2006). For a survey of multi-dimensional contests see Kovenock and Roberson (2010b)
or Roberson (2010).

9It is straightforward to extend this analysis to cover cases in which m ≤ 1.
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Proposition 2 (Clark and Konrad (2007)). If m = 1 and vD < (n−1)vA, then the following

pair of strategies forms an equilibrium. Player A chooses the n-tuple a = (a, a, . . . , a) where

a =
(n− 1)n−1

nn+1
vD.

With probability q = vD
vA

1
(n−1) player D chooses the n-tuple d = (d, d, . . . , d) where

d =
(n− 1)n

nn+1
vD.

With the remaining probability player D chooses the n-tuple d = (0, 0, . . . , 0).

Player A’s expected payoff is vA − 2vD((n− 1)n−1/nn), and player D’s expected payoff is

0.

The case of m =∞ is analyzed by Kovenock and Roberson (2010a). In this deterministic

case we assume that in the event that the players allocate the same level of resources to a

target, the defender wins the target.10 There exist multiple mixed-strategy Nash equilibria

in this case. Kovenock and Roberson (2010a) provide one equilibrium and characterize

properties that hold in all equilibria. Proposition 3 provides one property that demonstrates

how the nature of equilibrium drastically changes.

Proposition 3 (Kovenock and Roberson (2010a)). If m = ∞, then in any equilibrium

{PA, PD} the attacker allocates a strictly positive level of force to at most one target in the

weakest-link network.

In the case of m =∞, equilibrium requires that the attacker (who may disable the net-

work by winning any single target) randomly allocate his forces to at most one target, rather

than to multiple targets. In fact, recent experimental work provides some support for this

behavior. Kovenock, Roberson and Sheremeta (2010) find that in experiments undertaken

with m = ∞ and n = 4, over 80% of attackers utilize a stochastic guerilla warfare strategy

that entails launching an attack on only a single target. (Contrary to the equilibrium pre-

diction, Kovenock et al. (2010) also find that with m = 1 attackers launch a single attack

almost 45% of the time.)

The case of m =∞ is an extreme benchmark case, playing a role for contests with sunk

expenditures similar to classical Bertrand competition in price-setting games with perfect

10Often, in games with discontinuous payoffs, such as winner-take-all contests with m = ∞, the modeler
must employ a judicious choice of a tie-breaking rule in order to avoid having to revert to the use of ε-
equilibrium concepts.
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substitutes. However, there is good reason to believe that cases involving finite but high

m are qualitatively closer to this benchmark than to the pure-strategy profiles examined in

Hausken (2008a). A complete treatment of simultaneous move games of attack and defense

in which the conditions in equation (11) are violated is still an open question. However, we

do know that for a single contest with linear costs, (the famous Tullock rent-seeking model),

a pure-strategy equilibrium exists only for m less than or equal to 2. For m greater than

2, as in the m = ∞ case, no pure-strategy equilibria exist. Although there has not been

a complete characterization of the equilibrium set for m > 2, except for Baye, Kovenock

and de Vries (1996) characterization for m = ∞, we do know that when m > 2 there exist

Nash equilibria that yield payoffs identical to the unique equilibrium payoffs when m = ∞
(Alcalde and Dahm 2010).

Unfortunately, the nonexistence of pure-strategy equilibrium and characterization of

mixed-strategy equilibria has been almost entirely overlooked in the contest-theoretic lit-

erature on attack and defense of networks of targets. In fact, as shown in Proposition 1, the

pure-strategy equilibria applied extensively in the literature exist only for a very restrictive

set of parameters. Clark and Konrad (2007) and Kovenock and Roberson (2010a) provide

a foundation for constructing the mixed-strategy Nash equilibria in the parameter ranges of

those models for which no pure-strategy equilibria exist. This characterization remains an

important area for future research.
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