
KRANNERT SCHOOL OF

MANAGEMENT

 Purdue University

 West Lafayette, Indiana

Cost-Sensitive Decision Trees with Completion Time

Requirements

By

Hung-Pin Kao

Kwei Tang

Jen Tang

Paper No. 1264

Date: September, 2010

Institute for Research in the

Behavioral, Economic, and

Management Sciences

 1

Abstract—In many classification tasks, managing costs and

completion times are the main concerns. In this paper, we assume
that the completion time for classifying an instance is determined
by its class label, and that a late penalty cost is incurred if the
deadline is not met. This time requirement enriches the
classification problem but posts a challenge to developing a
solution algorithm. We propose an innovative approach for the
decision tree induction, which produces multiple candidate trees
by allowing more than one splitting attribute at each node. The
user can specify the maximum number of candidate trees to
control the computational efforts required to produce the final
solution. In the tree-induction process, an allocation scheme is
used to dynamically distribute the given number of candidate
trees to splitting attributes according to their estimated
contributions to cost reduction. The algorithm finds the final tree
by backtracking. An extensive experiment shows that the
algorithm outperforms the top-down heuristic and can effectively
obtain the optimal or near-optimal decision trees without an
excessive computation time.

Index Terms—classification, decision tree, cost and time
sensitive learning, late penalty

I. INTRODUCTION
ecision trees are an attractive method for classification
tasks, because they can efficiently generate rules easy to

interpret and understand [1]. Many decision-tree induction
algorithms have been developed for a wide range of
applications, including medical diagnosis, fraud detection,
credit scoring, and direct marketing. The majority of existing
algorithms, such as ID3, CART, and C4.5, are greedy
heuristics for maximizing classification accuracy, which work
in a top-down manner using a statistic measure or information
gain as the criterion in selecting an attribute to produce further
splits [2].

In many classification applications, managing costs and
completion times are main concerns. For example, in
designing a medical diagnosis procedure, the costs of

Hung-pin Kao is with the Krannert School of Management, Purdue
University, West Lafayette, Indiana 47907, U.S.A. E-mail: hkao@purdue.edu,
Tel: 765-496-2240. Fax: 765-494-4360.

Kwei Tang is with the Krannert School of Management, Purdue
University, West Lafayette, Indiana 47907, U.S.A. E-mail:
ktang@purdue.edu, Tel: 765-494-4464. Fax: 765-494-4360.

Jen Tang is with the Krannert Graduate School of Management, Purdue
University, West Lafayette, IN 47907, U.S.A. E-mail: jtang@purdue.edu, Tel:
765-494-4497, Fax: 765-494-4360.

performing tests and the economic consequences incurred by
erroneous results could be dominating factors. Furthermore,
the completion time of a diagnosis procedure is critical for
some illnesses like heart attack and stroke, because the fatality
rate and chance of permanent disability increase dramatically
if treatment is delayed. Similar scenarios are found in fraud
detection, customer retention, and other applications.

The cost-sensitive (CS) decision tree is the research area
that explicitly considers cost minimization as the goal in
developing tree-induction algorithms. Two costs are
commonly considered: the cost of using attributes (attribute
cost) and the costs incurred by misclassification. Turney [3]
applied the genetic algorithm to search for a decision tree with
the lowest misclassification cost. Ling et al. [4] developed a
top-down heuristic for minimizing the sum of the attribute and
misclassification costs. Ling et al. [5] further proposed a lazy-
learning heuristic, which allows discounts in attribute costs
when several attributes can be evaluated together. For
additional references for the CS trees, please refer to Ling et
al. [5].

To our best knowledge, Arnt and Zilberstein [6] and Chen
et al. [7] are the only studies that explicitly consider both costs
and completion times in classification tasks. Arnt and
Zilberstein assumed an increasing cost function of the
completion time in addition to attribute and misclassification
costs. They used the Markov decision process to solve a cost-
minimization problem. Chen et al. [7] required all
classifications be finished before a common deadline. Their
top-down heuristic uses the cost-reduction rate (the cost
reduction per unit time) as the criterion for selecting splitting
attributes. After the tree has been developed, a local search is
performed to utilize slack times in the tree for possible
improvements.

We generalize the problem proposed by Chen et al. [7] by
assuming that the required completion times are determined
by class labels. This completion time requirement is
applicable to many classification tasks. For example, there are
several types of heart disease with different severity levels,
including coronary artery disease, heart attack, heart failure,
arrhythmia, etc. A heart attack is much more serious than
coronary artery disease and requires immediate medical
attention. Therefore, a shorter completion time should be set
for the diagnosis of a patient with a heart attack than one with
coronary artery disease. Similarly, in customer retention,
customers may be categorized according to their times to
churn. Customers who will soon switch to another service

Cost-Sensitive Decision Trees
with Completion Time Requirements

Hung-Pin KAO, Kwei TANG, and Jen TANG

D

 2

need to be identified more quickly than those who may stay
for a longer period of time. Similarly, in fraud detection, the
priority should be to identify more serious fraudulent cases in
a shorter time. To incorporate this requirement, we add late
penalties to the total cost considered in the tree induction. This
type of completion time requirement enriches the
classification problem, but, at the same time, poses a challenge
to developing algorithms for tree induction. For convenience,
we name the proposed research problem as the cost-sensitive-
with-late-penalty (CSLP) decision tree.

It is well known that the traditional top-down approach is
computationally efficient. However, it has significant
drawbacks. In particular, the criteria used in selecting splitting
attributes are “myopic” in nature, reflecting only instant
benefits at “current” tree nodes. As a result, the attributes
selected in early stages may have little value in the final tree.
Similarly, the tree growth may be stopped prematurely,
because the same criteria are used. For the problem under
consideration, an additional issue is the difficulty in
adequately assessing an attribute’s contribution to the late
penalty cost in early stages of the tree induction, because late
penalties may occur only at later stages. These issues motivate
the development of an innovative algorithm in this paper.

Essentially, our proposed algorithm produces multiple tree
candidates by allowing more than one splitting attribute at
each node in the tree-induction process. The user can specify
the maximum number of candidate trees to control the
required computational efforts. In the induction process, an
allocation scheme is used to dynamically distribute the given
number of candidate trees to splitting attributes according to
their estimated contributions to cost reduction. The algorithm
finds the grown tree with the minimum cost as the solution by
backtracking. Overall, it works like an exploration aiming to
locate the optimal solution in a limited but promising area in
the solution space. In contrast, the traditional top-down
approach forces a selection of one splitting attribute at a given
node and develops only one decision tree in the induction
process. For convenience, we use EXP as the name of our
proposed algorithm.

This paper is organized as follows. In section II, we define
the problem, and in section III, we present the proposed tree
induction algorithm with two illustrative examples. In section
IV, we perform an extensive experiment to evaluate the
performance of the algorithm. In section V, we summarize the
results and discuss possible extensions.

II. PROBLEM DEFINITION
Consider a training dataset consisting of N records with K

attributes, X1, X2, …, XK, and a class label (target variable), Y.
Let y1, y2, …, and yM be the levels of Y. The attributes are used
to develop a decision tree by a sequence of splits, and each
leaf of the tree is assigned a predicted label value for all the
instances at the leaf. For simplicity, we assume that all the
attributes are categorical and all the records do not contain
missing values.

Let Tj and Cj denote the time and cost, respectively, for
measuring attribute Xj, and Vk the deadline for classifying an
instance in class k. If it takes a time longer than Vk to classify
an instance in class k, a late penalty Pk is incurred. If a class j
instance is classified into class k, a misclassification cost of
CM(j, k) is incurred, where CM(j, k) = 0 if j = k.

For a given decision tree R with Q leaf nodes, we define the
follow notation: Leaf(R) as the set of leafs {l1, l2, …, lQ}; ψ(li)
the set of attributes used in the path from the root node to leaf
li; N(li) the number of instances at leaf li; N(yk, li) the number
of class k (Y = yk) instances at li.

Three costs are considered in developing a decision tree:
the misclassification cost (CM), attribute cost (CA), and late
cost (CL). We derive these costs for a given tree as follows. At
leaf li, in order to minimize the total misclassification cost
associated with the N(li) instances, the class label assigned to
the leaf, ,ˆ

il
Y is determined by:

∑
=

∈
×=

M

j
ijMMkl lyNkjCY

i
1},...,1{

).,(),(minargˆ (1)

Consequently, the total misclassification cost for the
instances at li is

∑
=

×=
M

j
ijlMiM lyNYjClC

i
1

).,()ˆ,()((2)

And the total misclassification cost associated with the tree
R is

.)()(
)(

∑
∈

=
RLeafl

iMM
i

lCRTC (3)

The total attribute cost for the instances at li is determined by
),()(

)(
i

lX
jiA lNClC

ij

×= ∑
∈ψ

 (4)

and the total attribute cost for the tree is
.)()(

)(
∑

∈

=
RLeafl

AA lCRTC (5)

The time for an instance to reach leaf li is given by
.)(

)(
∑
∈

=
ij lX

ji Tlt
ψ

 (6)

For an instance at li with Y = yk, the late penalty is Pj if t(li) >
Vk; and 0, otherwise. We define an indicator variable:

⎩
⎨
⎧

>
≤

= ,
)(if,1
)(if,0

),(
ki

ki
i Vlt

Vlt
klI (7)

using which, the total late penalty at li is given as

,),()(
1

∑
=

×=
M

k
ijiP klIPlC (8)

and the total late penalty for the tree is
.)()(

)(
∑

∈

=
RLeafl

iPP
i

lCRTC (9)

Combining the three cost components, the total costs for leaf li
and tree R are given, respectively, as

)()()()(iPiAiMi lClClClC ++= (10)
and

.)()(
)(

∑
∈

=
RLeafl

i
i

lCRTC (11)

 3

The optimal tree is the one with the minimum TC(R). In the
next section, we discuss the tree-induction algorithm with the
objective to find the optimal tree.

III. TREE-INDUCTION ALGORITHM

A. The EXP algorithm
We present the proposed algorithm for the CSLP decision

tree induction. We first discuss the structure of the algorithm
and then the allocation scheme of trees to the solution space.
Two examples are used to illustrate the algorithm.

Let qmax be the maximum number of candidate trees allowed
in the induction process. The algorithm starts with the root
node by using the EXP function in Figure 1 to allocate qmax to
the K attributes. This process is applied recursively at each
new node added to the tree. When no splitting attributes are
available, no sub-trees will be produced, and when the
available number of trees is 1 or smaller, a top-down myopic
heuristic is used to construct the sub-tree from the node. Once
all sub-trees are fully grown from a node, the sub-tree with the
smallest cost is selected as the “optimal” sub-tree rooted at the
node.

 Let q denote the number of trees available for allocation at
node n (q = qmax at the root node). The magnitude of q
determines the depth of the search at node n: a larger q implies
a more extensive search. Therefore, if the user gives a larger
qmax, the decision tree produced by the EXP algorithm is likely
to have a lower cost. However, it also requires more
computation time. When qmax is sufficiently large, the
algorithm is equivalent to an exhaustive search, and when qmax
is 1, it is basically a simple top-down heuristic.

==================

Insert Fig. 1 here
==================

Fig. 1. The EXP algorithm.

From the above description, it is evident that the key
element of the algorithm is the scheme for allocating the
available number of candidate trees at each new node in the
tree-induction process. We first derive the estimated instant
benefit (EIB) of a splitting attribute at a given node to be used
in the allocation scheme.

Let b(n, Xi) denote the net cost reduction resulting from
splitting n on Xi. We use children(n, Xi) to denote the set of
child nodes created from splitting n by Xi, and obtain:

.)()(),(
),(

∑
∈

−=
iXnchildrenl

i lCnCXnb (12)

After the split using Xi, the classification time of all instances
in n is t(n) + Ti. At this point, late penalties may not have been
realized for some instances, depending on their labels.
Assume Vk > t(n) + Ti. For the instances of class k at node n, it
is difficult to determine whether or how much the late penalty
will eventually be realized if the tree growth continues. Note
that, in the grown tree, the total late penalty for these instances
must be between 0 and kk PnyN ×),(. We pro-rate the penalty

cost according to the ratio of the attribute time, Ti, to the
deadline, Vk, in estimating the late penalty resulting from
splitting n on Xi. Let A(n, Xi) denote the estimated late penalty
by attribute Xi determined by:

∑
+>∈

××=
})(|{

)/(),(),(
TintVyy

kikki
jjk

VTPnyNXnA . (13)

Consequently, the EIB of using Xi as the splitting attribute at
n, denoted by B(n, Xi), is given by:

),(),(),(iii XnAXnbXnB −= . (14)
If all available splitting attributes have the same EIBs, we

will distribute q evenly among them. Otherwise, an attribute is
considered more preferable if it has a larger EIB and, thus, is
given a larger share of q. However, no available splitting
attributes should be excluded, even those with negative EIBs,
because of the possibility that using them may still lead to a
good result.

Let Bmin and Bmax be, respectively, the smallest and largest
EIBs of the splitting attributes available at the node under
consideration. We define for each available attribute:

)],,max([),(maxmin BzpBXnBd ii ×−−= (15)
where p > 0 and z > 0 are selected by the user. We propose
the following allocation scheme for assigning the number of
trees to an available attribute Xi:

./
),...,1(

∑
∈

×=
Kj

jii ddqq (16)

Note that [Bmin – p × max(z, Bmax)] represents the reference
value for measuring each attribute’s potential of yielding a
low-cost sub-tree by splitting on Xi, and z ensures that all di’s
are positive. The user can adjust p to control the sensitivity of
the allocation to the dispersion in B(n, Xi). When a small p is
used, the values of di’s tend to have a smaller variation,
leading to smaller differences in the allocation. Note that it is
possible, under the scheme, to allocate an excessive number to
a splitting attribute. We may ignore the unused number of
trees or distribute it to other attributes.

When q is equal to or less than 1, we use a top-down
heuristic to produce a sub-tree from n using B(n, Xi) as the
criterion in selecting splitting attributes. It is expected that the
selection of the splitting criterion does not affect EXP’s
performance as significantly as the allocation scheme does.
The first reason is that the heuristic algorithm usually is used
near the leaves of a decision tree, where the choices are
usually correct. Second, if the allocation scheme properly
places large numbers of trees on important splitting attributes,
finding optimal or near optimal trees are less dependent on the
heuristic method.

B. Examples
We use two examples to illustrate the proposed algorithm

and compare it with the brute-force search algorithm,
abbreviated by OPT(imum). The dataset, “Heart Cleveland”
(HRT296), is used in the first example, which contains the
heart disease diagnosis data from 296 patients.1 The class

1 The original dataset at UCI data mining repository has 303 records. We
removed 5 records because of missing values.

 4

label indicates the presence or absence of a heart disease, and
13 attributes include patients’ demographics and medical test
results. This dataset has been widely used for classification
benchmarking in machine learning. The “Hepatitis Domain”
dataset (HPT151) is used in the second example. It contains
diagnosis data of 151 hepatitis patients with two classes,
survivors and victims, and 19 attributes.2 The two datasets are
available at the UC Irvine Machine Learning Repository. All
numeric attributes are discretized, using the method by Fayyad
Irani [8]. The cutoff points are selected to maximize the
information gain and are tested against the MDLP criterion.

The cost and time parameters for the both datasets are given
in the Appendix under Setting HRT296-C and Setting
HPT151-C, respectively. Note that these parameters are
randomly generated, because the original datasets do not
contain the late penalty information. We will explain the
methods of generation in the next section, where we conduct
an extensive numerical evaluation of the algorithm.

The EXP algorithm with qmax = 200 and the brute-force
algorithm yield the optimal decision tree given in Part (a) of
Figure 2. We include the numbers of instances associated with
the classes and time information along the tree induction. We
observe that many attributes with short attribute times are
used, such as cp, sex, and age. Approximately 17.6% of the
instances shown in the dashed rectangle in the figure have
passed their respective deadlines, incurring an average late
penalty cost of $33.11 per instance. The overall
misclassification rate is 22.6%, and the average cost of
misclassification is $260.14. The average attribute cost is
$9.81, and the average total cost per instance is $303.05.
When qmax is set to 200, the EXP algorithm took 390
milliseconds to complete the induction.3 In comparison, it
requires 975 seconds for the brute-force search to find the
optimal decision tree.

For this example, the EXP algorithm finds the optimal tree,
when qmax is set at or above 200. As discussed, if qmax = 1, the
EXP algorithm is equivalent to a top-down heuristic based on
the estimated instant benefit as the attribute selection criterion.
Part (b) of Figure 2 shows the tree obtained by such an
approach. The tree is relatively smaller and has an average
cost of $339.45 (higher than the optimum by 12.0%). A
noticeable difference is observed at node #3, where the top-
down heuristic stops splitting because of a negative EIB. In
contrast, the EXP algorithm continues exploring the
possibility of reducing the cost although the cost increases
temporarily from $39,141 to $40,762.5 (the sum of $3,140 at
node #6, $29,650 at node #7, and $7,962.5 at node #8). As
shown in the optimal tree, the gains in classification accuracy
in the leaves under node #3 eventually justify the splits at
node #3.

==================

2 The original dataset consists of 155 records. Four records are removed

because of missing values.
3 We implemented the algorithms in Java on a PC with CPU Intel® Core™

2 Duo E6750 under Windows® Vista and JDK 1.6.0.

Insert Fig. 2 here
==================

Fig. 2. The decision trees generated by the EXP algorithm with HRT296
dataset (test case HRT296_C).

==================
Insert Fig. 3 here

==================
Fig. 3. The effect of qmax.

When a large number of attributes is encountered, a much

larger qmax is required for the EXP algorithm to find the
optimal tree. We use the second dataset, HPT151, with a
relatively large number of attributes to show the effects of
qmax. Part (a) of Figure 3 reports the average costs per instance
as we increase qmax from 100 to 12,000. For comparison, we
also plot a horizontal line near the top of the figure to indicate
the average cost achieved by the top-down heuristic (i.e., qmax
= 1). The total cost appears as a step function of qmax and
becomes steady after 10,000 since the optimal tree has been
found. Note that the total cost of the top-down approach is
84% higher than that of the optimal tree, and that the
difference is reduced to 28.8% for qmax = 200, and 8.1% for
qmax = 4,000.

Part (b) shows the run time as a function of qmax. The
algorithm ends at less than 15 milliseconds when qmax = 1. As
expected, the time increases when a large qmax is used. When
qmax = 4,000, the algorithm yields a solution within 8.1% from
the optimal tree in 10.1 seconds. When qmax = 10,000, the
EXP algorithm obtains the optimal decision tree in 17.0
seconds. The overall results suggest that, with a moderate
qmax, the algorithm can find a near optimal solution within a
reasonable time. In contrast, it requires 824.8 seconds for the
brute-force search to find the optimal solution.

The allocation scheme for distributing the number of
candidate trees should affect the performance of the EXP
algorithm. It is expected that a smaller qmax is required for
obtaining the optimal solution, if a more efficient allocation
scheme is used. To evaluate the performance of the proposed
allocation scheme, we compared it with an equal allocation
scheme, which distributes the number of candidate trees
evenly to all available splitting attributes. Figure 4 shows the
average per-instance costs of the two schemes as functions of
qmax. In the entire range, the even allocation performs better
only when qmax = 200. The equal allocation scheme yields the
optimal tree when qmax is at least 26,000, whereas only 10,000
is required for the proposed allocation scheme based on EIB.

The equal allocation method is similar to building a tree by
choosing a splitting attribute randomly. We find when qmax is
very small, e.g., 100, the EXP algorithm based on the equal
allocation method still significantly outperforms the top-down
heuristic, confirming the effectiveness of the proposed
strategy of allowing multiple candidate decision trees in the
tree- induction process.

 5

IV. EXPERIMENT
The results reported in the two examples suggest that the

EXP algorithm is effective in finding the optimal tree. In this
section, we perform an extensive experiment to evaluate the
algorithm by comparing it with the brute-force search, and the
top-down heuristic using EIB for selecting splitting attributes.
Four datasets from the UC Irvine Machine Learning
Repository with multiple cost and time settings are used in the
experiment.4 The setups of the experiment are discussed in the
next subsection.

A. Setups
The first two datasets, HRT296 and HPT151, have been

discussed in the last section. The third, BRT277, contains data
of breast cancer diagnoses, and the fourth, DBT768, diabetes
diagnoses. We have pre-processed the datasets by removing
missing values and discretizing numeric attributes. Table I
contains a brief description of the datasets after pre-
processing.

TABLE I
THE DATASETS USED FOR PERFORMANCE TESTS

==================
Insert TABLE I here

==================

We use the following three attribute cost and time settings:
A. The values are available in the literature.5
B. The attribute costs and times for demographic attributes

are set at $1 and 1 unit, respectively. Remaining costs
and times are randomly generated, respectively, from the
uniform distributions with ranges of [$5, $50] and [10
units, 100 units].

C. The attribute cost and time for demographic attributes are
set at $1 and 1 unit, respectively. Remaining costs and
times are randomly generated, respectively, from the
uniform distributions with ranges of [$5, $15] and [10
units, 100 units].

We refer to a test case as (dataset name)_(cost and time
setting). For example, HRT296_B represents dataset HRT296
under setting B. Since setting A is not available for the third
and fourth datasets, we have 10 test cases in total.

All the test cases, except HPT151_A, share the same
misclassification costs ($1,000 and $3,000) and late penalties
($100 and $300). Since the attribute costs for HPT151 used in
a previous study are exceptionally low, we change them to
$100 for negative instances and $300 for positive instances.
The late penalties are $10 and $30, respectively, for less and
more severe classes. To synthesize classification deadlines, we
first use the brute-force algorithm to find the optimal CS trees
and use 70% and 80% of its average completion time as the
deadlines of the less and more severe classes, respectively.

4 The datasets can be accessed at http://archive.ics.uci.edu/ml/datasets/ .
5 Previous test costs for BRT277 and DBT768 are unavailable. Therefore

we conducted experiments based only on settings B and C for these two
datasets.

The cost and time settings are given in the Appendix.
We use qmax = 20,000 for the test cases based on HPT151,

and use 1,000 in other cases, unless stated otherwise, and z =
10 and p = 1 for the tree-allocation scheme. The solutions
provided by the brute-force search (OPT) are used to evaluate
the EXP algorithm in its cost performance. The comparison
between the EXP algorithm and the top-down heuristic (TDH)
can show the benefits of producing multiple candidate trees in
the induction process. Note that using a brute-force search
may not be practical when the number of attributes is large. In
this experiment, the running time ranges from a few seconds
(HRT296) to more than one hour (HPT151).

B. Results
We use bootstrapping in our performance evaluations. For

each test case, 50 bootstrap replicates (with the same sample
size as the original) were generated from each of the original
datasets by simple random sampling with replacement. The
EXP algorithm, brute-force search, and a top-down heuristic
are applied on each replicate and the average costs per
instance are computed for comparisons.

The results are presented graphically by the box-plots in
Table II, and summary statistics are reported in Table III. In
general, the EXP and the brute-force search produce very
similar results, and their average costs are significantly lower
than those obtained by the top-down heuristic. For the datasets
with a smaller number of attributes, including HRT296,
BRT277, and DBT768, the solutions of the EXP algorithm are
within 0.02% of the optimal solutions given by the brute-force
algorithm. For HPT151, which has a large number of
attributes, the difference increases to 2.93% in setting A,
0.93% in setting B, and 2.24% in setting C. The EXP
algorithm did not obtain the optimal solution because the
given qmax is not large enough; thus, it has to rely on the top-
down approach to complete many lower parts of a decision
tree. However, the differences are small, especially
considering that the computation times of the EXP algorithm
are much lower than those of the brute-force search. For
example, the brute-force search requires 764 seconds on
average to generate the optimal trees for test case HPT151_A,
whereas the EXP algorithm takes only 26 seconds.

The results also indicate that the top-down heuristic does
not perform well in almost all the test cases. Although its
computational time is very short, the average per-instance cost
could be significantly higher than that of the optimal solution.
Using dataset HPT151 as an example, it takes less than 15
milliseconds to generate a solution. However, its average costs
in the three settings are 139.4%, 88.1%, and 151.3% higher
than those of the optimal trees.

TABLE II

THE DATASETS USED FOR PERFORMANCE TESTS
==================

Insert TABLE II here
==================

TABLE III

 6

SUMMARY STATISTICS FOR COMPARING THE THREE ALGORITHMS.
==================

Insert TABLE III here
==================

In summary, the experiment results support that the EXP

algorithm is capable of obtaining optimal or near optimal
CSLP trees in very reasonable times. We believe the concept
of producing multiple candidate trees in the induction process
is promising and can also be used to improve many existing
tree algorithms.

V. CONCLUSION
In this paper, we generalize the cost and time-sensitive

decision-tree problem proposed by Chen et al. [7] by
assuming that required completion times are determined by
class labels. This new problem has many potential application
fields, including medical diagnosis, customer retention, and
fraud detection. Our proposed algorithm for the problem
produces multiple candidate trees in the induction process.
The user can specify the maximum number of candidate trees
to control the required computational efforts. In the induction
process, an allocation scheme dynamically distributes the
given number of candidate trees to splitting attributes
according to their estimated contributions to cost reduction.
The algorithm finds the tree with the minimum cost as the
final solution by backtracking. An extensive experiment is
used to compare the proposed algorithm, brute-force search,
and a top-down heuristic. The results show that the algorithm
significantly outperforms the top-down heuristic and can
effectively obtain the optimal or near-optimal decision trees
without an excessive computation time.

There are two possible extensions of this paper to further
improve the EXP algorithm. The first is the development of an
adaptive allocation scheme to distribute candidate trees in the
tree induction process. For example, if EBIs have a very large
variation among available splitting variables at a node, the
allocation should be more even when q is large. However,
when q is small, we may need to focus on few splits with
better estimated instant benefits. An allocation scheme based
on this concept may improve the performance of the EXP
algorithm.

The second possible extension is on the searching strategy
of the algorithm. The current search strategy is a deterministic
process without considering the results found in the induction
process. If we find a tree with a very low cost during the
induction process, for example, it may be reasonable to invest
more computation resources (i.e., allocate more trees) to its
neighboring areas. Therefore, we may use a two-step process
to obtain candidate trees. In the first step, we find a number of
grown trees based on the EXP algorithm. In the second step,
local search is applied to their neighboring areas according to
their cost performances. We expect that this two-step process
is especially effective when qmax is small.

Finally, we may consider a different problem formulation.
In this paper, late penalty is used to incorporate the time

constraints in the model. We may consider the time
constraints directly and hope to control the percentages of
instances that pass the deadlines. Making this change in model
formulation is straightforward. However, developing
algorithms to solve the problem could be challenging.

APPENDIX
COST SETTINGS FOR HRT296

 Setting A Setting B Setting C
Cost Cost Time Cost Time Cost

A
ttr

ib
ut

es

age 1 1 1 1 1 1
sex 1 1 1 1 1 1
cp 1 1 1 1 1 1
trestbps 1 1 11 87 13 38
chol 7.27 240 40.5 52 9.5 15
fbs 5.2 240 12.5 55 13.5 78
restecg 15.5 30 7 38 13.5 98
thalach 102.9 60 26 98 7 55
exang 87.3 60 11.5 73 11 94
oldpeak 87.3 60 24 50 13.5 52
slope 87.3 60 34.5 52 8 58
ca 100.9 60 32.5 21 8.5 96
thal 102.9 60 5 12 11.5 39

C
la

ss
es

 Negative Mis. 1000 1000 1000
Late 100 44 100 104 100 96

Positive Mis. 3000 3000 3000
Late 300 50 300 119 300 110

COST SETTINGS FOR HPT151

 Setting A Setting B Setting C
Cost Cost Time Cost Time Cost

A
ttr

ib
ut

es

SEX 1 1 1 1 1 1
STEROID 1 1 10 70 11.5 38
ANTIVIRALS 1 1 42.5 77 10 15
FATIGUE 1 1 18 12 9 86
MALAISE 1 1 46.5 29 5.5 38
ANOREXIA 1 1 47 66 13 25
'LIVER BIG' 1 1 35 91 5 35
'LIVER FIRM' 1 1 7 20 9.5 77
'SPLEEN
PALPABLE' 1 1 35.5 30 8 50

SPIDERS 1 1 41.5 75 12.5 94
ASCITES 1 1 36 15 8 78
VARICES 1 1 8.5 38 9 76
BILIRUBIN 7.27 19 31 97 13.5 18
SGOT 7.27 21 24.5 90 12.5 56
ALBUMIN 7.27 23 18 87 14 16
HISTOLOGY 1 1 15 10 14.5 35

C
la

ss
es

 Negative Mis. 100 1000 1000
Late 10 18 100 163 100 225

Positive Mis. 300 3000 3000
Late 30 20 300 186 300 257

COST SETTINGS FOR BRT277

 Setting B Setting C
Cost Time Cost Time

A
ttr

ib
ut

es

age 1 1 1 1
menopause 15.5 77 13.5 84
tumor-size 13.5 24 11.5 19
inv-nodes 25 71 13.5 77
node-caps 37.5 85 5 44
deg-malig 47.5 31 15 11
breast 35.5 87 9 96
breast-quad 32.5 49 12.5 57

 7

'irradiat' 12 58 12 54

C
la

ss
es

 Negative Mis. 1000 1000
Late 100 227 100 225

Positive Mis. 3000 3000
Late 300 259 300 258

COST SETTINGS FOR DBT768
 Setting B Setting C

Cost Time Cost Time

A
ttr

ib
ut

es

preg 1 1 1 1
plas 17.5 50 13 57
pres 14 14 6 80
skin 20.5 82 13 100
insu 25.5 63 5.5 27
mass 43 83 15 90
pedi 36 54 12 29
age 1 1 1 1

C
la

ss
es

 Negative Mis. 1000 1000
Late 100 36 100 194

Positive Mis. 3000 3000
Late 300 42 300 222

REFERENCES
[1] M.J.A. Berry and G.S. Linoff, Data mining techniques: For marketing,

sales, and customer relationship management, Wiley Computer
Publishing, 2004.

[2] J. Han and M. Kamber, Data mining: Concepts and techniques, Morgan
Kaufmann, 2006.

[3] P.D. Turney, “Cost-sensitive classification: Empirical evaluation of a
hybrid genetic decision tree induction algorithm,” Journal of Artificial
Intelligence Research, vol. 2, 1995, pp. 369-409.

[4] C.X. Ling, Q. Yang, J. Wang and S. Zhang, “Decision trees with
minimal costs,” Proceedings of the twenty-first international conference
on Machine learning, ACM, 2004.

[5] C.X. Ling, V.S. Sheng and Q. Yang, “Test strategies for cost-sensitive
decision trees,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 18, no. 8, 2006, pp. 1055-1067.

[6] A. Arnt and S. Zilberstein, “Learning policies for sequential time and
cost sensitive classification,” Proceedings of the 1st international
workshop on Utility-based data mining, ACM, pp. 39-45.

[7] Y.L. Chen, C.C. Wu and K. Tang, “Building a cost-constrained decision
tree with multiple condition attributes,” Inf. Sci., vol. 179, no. 7, 2009,
pp. 967-979.

[8] U.M. Fayyad and K.B. Irani, “Multi-interval discretization of
continuous-valued attributes for classification learning,” Proceedings of
the International Joint Conference on Uncertainty in AI, pp. 1022-1027.

 8

Figures and Tables

Inputs:
 n – The node to split
 q – Maximum allowable number of sub-trees below n

Function EXP(n, q)
 If q ≤ 1 then
 build the sub-tree below n by a myopic algorithm
 exit this function
 End if

 allocate q to all splitting attributes
 For each attribute Xi
 Let qi be the allocated share of q
 If qi > 0 then
 Split node n by Xi
 For each child, c, of n
 Exp(c, qi)
 Next child

Save the resulted sub-tree and its cost
 End if
 Next attribute

 Let X* be the attribute yields the lowest cost

Set the sub-tree of n to the sub-tree resulting from
splitting on X*

End function
Fig. 1. The EXP algorithm.

 9

Fig. 2. The decision trees generated by the EXP algorithm with HRT296 dataset (test case HRT296_C).

(a) The optimal decision tree generated by both the EXP algorithm (qmax = 200) and the brute-force search algorithm.

cp=asympt
cp=type_angina cp=non_anginal

cp=atyp_angina

#2
$16,023
(16, 7)

#4
$54,083
(65, 18)

#5
$27,049
(40, 9)

#3
$39,141
(39, 102)

#1
$160,000
(160,136)

sex=female
sex=male

#6
$3,068
(33, 1)

#7
$32,098
(32, 17)

age≤54.5 age>54.5

#8
$6,058
(27,2)

#9
$13,040
(13,7)

t = 1
ŷ = ‘>50’

t = 2
ŷ = ‘<50’

t = 2
ŷ = ‘<50’

t = 2
ŷ = ‘>50’

age≤54.5 age>54.5

#10
$15,087
(24,5)

#11
$8,060
(8,12)

t = 3
ŷ = ‘<50’

t = 3
ŷ = ‘>50’

t = 1
ŷ = ‘>50’

(b) The decision tree generated by the EXP algorithm with qmax = 1 for the cost setting including late penalty.

 10

Fig. 3. The effect of qmax.

1 2 5 10 20 50 100

14
0

18
0

22
0

26
0

qmax (in 100)

Av
er

ag
e

co
st

(a) The average cost decreases as qmax increases. (The upper dashed line
indicates the average cost when qmax = 1, and the lower indicates the average
cost when qmax = ∞.)

1 2 5 10 20 50 100

qmax (in 100)

R
un

 ti
m

e
(s

ec
s)

0
5

10
15

(b) The run time of the EXP algorithm as a function of qmax.

 11

TABLE I
THE DATASETS USED FOR PERFORMANCE TESTS

Dataset # Attributes # Instancesa Class Distribution

1. Heart Cleveland
 (HRT296) 13 296 (303) Presence: 160

Absence: 136
2. Hepatitis Domain
 (HPT151)b 16 (19) 151 (155) Live: 120

Die:31
3. Breast Cancerc
 (BRT277) 9 277 (286) Non-recurrence: 196

Recurrence: 81
4. Diabetes
 (DBT768) 8 768 Negative: 500

Positive: 268
aWe consider only the instances without missing values. Either missing

values are imputed, or records containing many missing values are removed.
The numbers shown within the parentheses indicate the original dataset size
before removing instances with missing values.

bThe original dataset contains 19 Attributes. Two (‘PROTIME’ and ‘ALK
PHOSPHATE’) are deleted because of too many missing values. We also
deleted 4 instances with more than 4 missing values. The remaining missing
values are imputed with the value of either mean for a numeric attribute or
mode for a categorical attribute. After discretization, attribute ‘AGE’ has only
one level, and is therefore discarded.

cSome categorical variables in the original dataset have many levels. For
those attribute levels containing only a few observations, we combined the
adjacent ones manually to avoid a decision tree grown too shallow.

 12

TABLE II
THE DATASETS USED FOR PERFORMANCE TESTS

Dataset Cost setting A Cost setting B Cost setting C

HRT296

TDH EXP OPT

25
0

30
0

35
0

40
0

45
0

50
0

Av
er

ag
e

C
os

t

TDH EXP OPT

20
0

25
0

30
0

35
0

40
0

Av
er

ag
e

C
os

t

TDH EXP OPT

20
0

25
0

30
0

35
0

40
0

Av
er

ag
e

C
os

t

HPT151

TDH EXP OPT

5
10

15
20

25
30

35

Av
er

ag
e

C
os

t

TDH EXP OPT

10
0

20
0

30
0

Av
er

ag
e

C
os

t

TDH EXP OPT

50
10

0
20

0
30

0

Av
er

ag
e

C
os

t

BRT277

TDH EXP OPT

35
0

40
0

45
0

50
0

Av
er

ag
e

C
os

t

TDH EXP OPT

30
0

35
0

40
0

Av
er

ag
e

C
os

t

DBT768

TDH EXP OPT

45
0

50
0

55
0

60
0

Av
er

ag
e

C
os

t

TDH EXP OPT

30
0

35
0

40
0

Av
er

ag
e

C
os

t

 13

TABLE III
SUMMARY STATISTICS FOR COMPARING THE THREE ALGORITHMS

Test Case
Algorithm

TDH EXP OPT

HRT296_A

Min 238.00 228.33 228.33

Mean 336.68 (9.32%) 307.97 (0.00%) 307.97

Std Dev 49.28 35.06 35.06

Max 500.00 370.70 370.70

HRT296_B

Min 226.70 179.28 179.28

Mean 307.98 (37.40%) 224.15 (0.00%) 224.15

Std Dev 39.40 25.14 25.14

Max 439.19 290.55 290.55

HRT296_C

Min 238.00 198.83 198.83

Mean 320.95 (29.25%) 248.32 (0.00%) 248.32

Std Dev 39.09 26.91 26.91

Max 439.19 305.26 305.26

HPT151_A

Min 12.05 6.27 5.21

Mean 23.7 (139.39%) 10.19 (2.93%) 9.90

Std Dev 5.59 2.12 2.02

Max 36.10 14.49 13.16

HPT151_B

Min 117.96 105.40 103.49

Mean 253.9 (88.10%) 136.23 (0.93%) 134.98

Std Dev 56.15 22.13 22.24

Max 386.99 168.93 168.93

HPT151_C

Min 97.61 58.04 56.23

Mean 195.94 (151.27%) 79.73 (2.24%) 77.98

Std Dev 61.97 11.09 10.41

Max 358.99 98.22 96.48

BRT277_B

Min 338.48 321.41 321.41

Mean 443.99 (18.08%) 376.04 (0.01%) 376.02

Std Dev 38.17 30.41 30.43

Max 533.25 463.53 463.53

BRT277_C

Min 303.09 289.16 289.16

Mean 419.21 (22.02%) 343.56 (0.00%) 343.55

Std Dev 39.38 29.95 29.95

Max 495.04 412.91 412.91

DBT768_ B

Min 434.49 434.49 434.49

Mean 495.15 (1.77%) 486.65 (0.02%) 486.54

Std Dev 28.63 20.01 19.90

Max 606.77 539.24 539.24

DBT768_C

Min 298.96 287.85 287.85

Mean 376.64 (9.26%) 344.74 (0.01%) 344.71

Std Dev 25.05 17.53 17.50

Max 442.93 385.93 385.93

