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Abstract

In this paper we analyze the effects of restricted participation in a two-period gen-
eral equilibrium model with uncertainty in the second period and real assets. Similar to
certain arrangements in the market for bank loans, household borrowing is restricted by a
household-specific wealth dependent upper bound on credit lines in all states of uncertainty
in the second period.

We first establish that, generically in the set of the economies, equilibria exist and are
finite and regular. We then show that equilibria are generically suboptimal. Finally, we
provide a robust example demonstrating that the equilibrium allocations can be Pareto
improved through a tightening of the participation constraints.

Keywords: general equilibrium; restricted participation; financial markets; generic regularity;
real assets; Pareto suboptimality

JEL classification: D50, D53, D61

1 Introduction

In this paper we analyze a two-period general equilibrium model with incomplete financial mar-
kets and two key elements: (i) the competitive trading of real assets, where real assets have
payouts in terms of vectors of commodities, and (ii) household-specific inequality constraints
that restrict participation in the financial markets.
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While there exists a thorough literature on each of these key elements in isolation (see a
summary of the theoretical properties in Villanacci et al. [2002]), the literature has very little to
say when both elements of reality are considered together. More precisely, some contributions
which deal only with the existence problems are indeed available. Apart from the seminal paper
by Radner [1972], Seghir and Torres-Martinez [2011] and Gori et al. [2011] do provide existence
proofs in the case of some financial constraints dependending on some endogenous variables. The
main limitation of those results is that their analytical approaches seem not applicable to show
a basic, crucial result for any further analysis on properties of equilibria in a general equilibrium
context: generic regularity.

In fact, to the best of our knowledge, the only model of restricted participation with real
assets in which generic regularity is proven is from Polemarchakis and Siconolfi [1997]. Yet, in
that paper, the restriction sets for the asset choices are difficult to interpret. Specifically, each
household is exogenously associated with a linear subspace of the possible wealth transfers. Its
restriction set is then described by the orthogonal projection of that subspace on the (price
dependent) image of the return matrix.

What we offer is an analysis of economically meaningful constraints on households’ participa-
tion in financial markets and a general approach to determine which constraints can be analyzed
in a real asset setting.

The participation constraints described in our model, consistent with what occurs in the
market for bank loans, impose an upper bound on a household’s future debt in all states of
uncertainty in the final period. The upper bound on debt is household-specific and is determined
so that a household’s wealth after the repayment of the loan is never lower than a base level of
consumption expenditure. In fact, banks can get information on a household’s future income and
can then determine the size of a loan that the household can be reasonably expected to repay.
We show generic existence of equilibria and generic regularity, the latter being an indispensable
tool to both describe equilibria and to prove several important normative properties of equilibria.

The first property we show is that the equilibra are generically suboptimal. Additionally,
we conjecture that a form of generic constrained suboptimality holds. We are verifying this
conjecture in a companion paper, in which we restrict attention to the significant set of economies
in which a sufficiently high number of participation constraints are binding. Generically in
that set of economies, these equilibria are Pareto improvable through a local change of the
participation constraints. The general strategy that is used in that framework is described in
Carosi et al. [2009].

In the current paper, we describe a more direct approach to constrained suboptimality for
a specific economy. In particular, we present a robust example in the economy space whose
associated equilibria are such that using a more restrictive credit policy results in a Pareto
improvement. In other words, reducing the freedom of households to trade financial assets can
make all households better off.

We believe our analysis contains both technically and economically significant features. We
first discuss our technical contributions to the analysis of the problem of generic existence and
generic regularity of equilibria.

The seminal contribution for generic existence in a model with real assets is the paper by
Duffie and Shafer [1985]. To prove generic existence, they first set the dimension of the return
space equal to the number of available assets, define the resulting equilibrium a “pseudo equi-
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librium”, and show the existence of such an equilibrium. Finally, they prove that these pseudo
equilibria are true equilibria for a generic subset of household endowments and asset payouts.
With the inequality constraints that we use to model households’ restricted participation, the
household demand functions are in general not C1, and therefore the equilibrium manifold is
not C1 either. This fact prevents us from using the smooth analysis arguments from Duffie and
Shafer [1985]. Rather, we employ a fixed point argument based on the approach of Dierker [1974]
for the Walrasian model and later generalized and formalized by Husseini et al. [1990] for the
incomplete markets model with real assets. To the best of our knowledge, we provide the first
application of the methodology from Husseini et al. [1990].

Duffie and Shafer [1985] use a “fixed dimension return space” approach1 with results in terms
of the kernel of a well chosen linear function. In our model, characterizing equilibria using this
fixed dimension return space approach would allow us to verify the existence of appropriately
defined pseudo equilibria, but we are then unable to show that the pseudo equilibria are generi-
cally true equilibria.2 To circumvent this problem, we take a different approach by presenting a
natural characterization of fixed dimension return space equilibria in terms of the image of an
appropriately chosen linear function.

For those interested in the technical aspects of our proof, we preview the strategy used to
obtain the generic existence result. As previously discussed, once the definition of equilibrium
is introduced, we define a fixed dimension return space type of equilibrium (see the image -
symmetric equilibrium introduced in Definition 2 and its price normalized version in Definition
4). Then, as done in the approach followed by Duffie and Shafer [1985], we use a Mr. 1 trick,
i.e., we get rid of the explicit presence of the financial side of the economy using the introduction
of a specific household, Mr. 1, who behaves as a Walrasian consumer (see the image - Mr. 1
equilibrium described in Definition 5). After showing that all three concepts are equivalent, we
prove that the one in Definition 4 is a “true” equilibrium if a (standard) full rank condition of
the return matrix holds true - see Proposition 7.

The technical reason to introduce two different types of auxiliary equilibria is described by
the following logic. Using the Dierker [1974] approach in the form of the theorem proved by
Husseini et al. [1990], we are able to show the existence of an image - Mr. 1 equilibrium. Yet,
as mentioned above, we are then unable to complete the next step as we are unable to verify
that the projection function from the equilibrium set to the economy space is proper. This is
a required step for the genericity argument. We can verify properness by using the equivalent
concept of (normalized price) image-symmetric equilibrium in Definition 4.

We now discuss the economically significant features of both our model and our proof method-
ology. In terms of the type of participation constraints we employ, we believe they are realistic
and economically meaningful. They are meant to represent the market for bank loans. Consider
that legal requirements (or uncontractable social norms) are present that guarantee households
a base level of consumption expenditure. Thus, for all states of uncertainty, a household is only
able to repay previous debts if this leaves the household with at least this base level of con-
sumption expenditure. Knowing this, the financial markets only permit borrowing up the point
where the household is able to repay the loan and not be reduced to consumption expenditure

1This terminology is borrowed from Bich and Cornet [1998].
2Specifically, it is not clear how to show properness of the projection from the equilbrium set to the economy

space, since it is not possible to uncouple two multipliers and prove that they converge separately.
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below the base level.
To show the economic relevance of the constraints, we consider a simple example of our

model. For the particular economy chosen, the equilibrium allocation can be Pareto improved
by tightening the participation constraints in some states, without loosening the participation
constraints in any other states, for all households. This result may seem counter-intuitive, but
demonstrates the importance of general equilibrium price effects in financial markets. Thus,
restricting credit access may in fact make all households better off.

More generally, the analysis presented in the paper provides what we believe are crucial
conditions on the type of constraints for which generic regularity can be verified, at least following
what currently seems to be the only successful approach: the fixed dimension return space
approach. As will be discussed further in Section 2,3 both the kernel approach (that is used by
Duffie and Shafer [1985]) and the image approach (that we use here) require that the constraints
on the financial side of the economy are rewritten in terms of constraints on the real side,
specifically in terms of the values of the excess demands in each state. In the former approach,
the financial side simply disappears from the household maximization problems. In the latter
one, we must introduce fictitious asset demands and we recognize that constraints imposed on
the fictitious asset demands may not be equivalent to constraints imposed on the true asset
demands.

Future research is required to confirm this conjecture about the type of constraints that can
be employed in models with real assets. Given this negative result, any attempts to obtain
regularity for interesting models of collateral and default may be in vain. The reason is that
any known approaches to modeling collateral and default involve restrictions that differ from
the types of restrictions that we described above as being successful. Again, future research is
required in this direction.

The rest of the paper is organized as follows. In Section 2, we present the set up of the model.
In Section 3, we introduce some equivalent definitions of fixed dimension return space equilibria.
In Section 4, we state the results of existence of these equilibria, together with the generic
existence, generic regularity and generic suboptimality of true equilibria. Section 5 contains the
numerical example and the Appendix collects all of the proofs.

2 Set up of the model

Our model builds on the standard two-period, general equilibrium model of pure exchange with
uncertainty. In the commodity markets, C ≥ 2 different physical commodities are traded,
denoted by c ∈ C = {1, 2, . . . , C}. In the final period, only one among S ≥ 1 possible states of
the world, denoted by s ∈ {1, 2, . . . , S}, will occur. The initial period is denoted s = 0 and we
define the set of all states S = {0, 1, . . . , S} and the set of uncertain states S ′ = {1, . . . , S}. In the
initial period, asset markets open and A ≥ 1 assets are traded, denoted by a ∈ A = {1, 2, . . . , A}.

We assume A ≤ S. Finally, there are H ≥ 2 households, denoted by h ∈ H = {1, 2, . . . , H}.
The time structure of the model is as follows: in the initial period, households exchange com-
modities and assets, and consumption takes place. In the final period, uncertainty is resolved,
households honor their financial obligations, exchange commodities, and then consume com-

3See especially the part immediately after condition (12).
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modities.
We denote xc

h(s) ∈ R++ as the consumption of commodity c in state s by household h and
ec

h(s) ∈ R++ as the endowment of commodity c in state s owned by household h.4 We define

xh(s) = (xc
h(s))c∈C ∈ R

C
++, xh = (xh(s))s∈S ∈ R

G
++, x = (xh)h∈H ∈ R

GH
++ ,

eh(s) = (ec
h(s))c∈C ∈ R

C
++, eh = (eh(s))s∈S ∈ R

G
++, e = (eh)h∈H ∈ R

GH
++ ,

where G = C(S+1). Household h’s preferences are represented by a utility function uh : R
G
++ →

R. As in most of the literature on smooth economies we assume that, for every h ∈ H,

uh ∈ C2(RG
++); (1)

for every xh ∈ R
G
++, Duh(xh) ≫ 0 ; (2)

for every v ∈ R
G \ {0} and xh ∈ R

G
++, v D

2uh(xh) v < 0 ; (3)

for every xh ∈ R
G
++,

{
xh ∈ R

G
++ : uh(xh) ≥ uh(xh)

}
is closed in the Euclidean topology of R

G.
(4)

Let us denote by U the set of vectors u = (uh)h∈H of utility functions satisfying assumptions
(1), (2), (3), and (4). We denote by pc(s) ∈ R++ the price of commodity c in state s, by qa ∈ R

the price of asset a and by bah ∈ R the quantity of asset a held by household h. Moreover we
define

p(s) = (pc(s))c∈C ∈ R
C
++, p = (p(s))s∈S ∈ R

G
++, q = (qa)a∈A ∈ R

A,

bh = (bah)a∈A ∈ R
A, b = (bh)h∈H ∈ R

AH .

We denote by ya,c(s) ∈ R the units of commodity c delivered by one unit of asset a in state s
and we define

ya(s) = (ya,c(s))c∈C ∈ R
C , y(s) = (ya(s))a∈A ∈ R

CA, y = (y(s))s∈S′ ∈ R
CAS.5

Note in particular that, in state s, asset a promises to deliver a vector ya(s) of commodities.
For any m,n ∈ N \ {0}, let M (m,n) be the set of real m × n matrices and M

f (m,n) be
the set of real m × n matrices with full rank (equal to min {m,n}). Define the return matrix
function as follows

R : R
G
++ × R

CAS → M(S,A),

(p, y) 7→




p(1)y1(1) . . . p(1)ya(1) . . . p(1)yA(1)
...

. . .
...

. . .
...

p(s)y1(s) . . . p(s)ya(s) . . . p(s)yA(s)
...

. . .
...

. . .
...

p(S)y1(S) . . . p(S)ya(S) . . . p(S)yA(S)




=




r1(p, y)
...

rs(p, y)
...

rS(p, y)



.

4Given v = (v1, . . . , vN ), w = (w1, . . . , wN ) ∈ R
N , we write v ≫ w if vi > wi, ∀ i ∈ {1, . . . , N}, v ≥ w if

vi ≥ wi, ∀ i ∈ {1, . . . , N}. and v > w if v ≥ w and v 6= w. We further define the sets R
N
+ = {v ∈ R

N : v ≥ 0} and
R

N
++ = {v ∈ R

N : v ≫ 0}.
5We consider possibly negative yields. Notice however that all the results we obtain are still valid in the case

of positive yields.
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For future use we also define, for every p ∈ R
G
++,

Φ (p) =




p (0)
p (1)

. . .

p (S)


 ∈ M(S + 1, G).

A credit limit is the maximum amount that a household is allowed to borrow. A number
of aspects are taken into a account when evaluating the credit worthiness of a borrower, but
there are two basic components. One is the borrower’s current and projected ability to repay a
loan. This can be determined by looking at things like income, other debts that the borrower is
carrying, expenses, and future employment opportunities. Second is the borrower’s inclination
to repay debts, which is inferred from the borrower’s credit history, i.e., past repayment patterns.

The above considerations are formalized into our restricted participation framework and the
constraints that we impose limit the amount of future debt. In fact, we say that the amount
household h can borrow, i.e., q (−bh), must be such that the household can repay what is due
in all states in the final period. That amount due is

rs (p, y) (−bh) , ∀s ∈ S ′. (5)

Additionally, we assume that each household will not be able (due to legal restrictions) or
will not be willing to consume less than a given proportion γh (s) of its wealth in state s ∈ S ′.
In other words, there is a base level of consumption expenditure required for all households:

γh (s) p (s) eh (s) .

Then we require that the amount due in (5) has to be smaller than the difference between a
household’s endowment level and the base level of consumption expenditure:

(1 − γh (s)) p (s) eh (s) .

Therefore, defining αh (s) = 1 − γh (s), the borrowing constraints we impose are:

∀h ∈ H, ∀s ∈ S ′, −rs (p, y) bh ≤ αh (s) p (s) eh (s) , (6)

where αh (s) ∈ (0, 1) , ∀h ∈ H and ∀s ∈ S ′.
Including the participation constraint parameters along with the parameters governing the

asset structure and the household endowments and preferences, we define the set of economies
as

E = R
GH
++ × U × R

CAS × (0, 1)SH ,

with generic element (e, u, y, α) , where α = (αh)h∈H = (αh(s))h∈H,s∈S′ .

Definition 1. A vector (x∗, p∗, b∗, q∗) ∈ R
GH
++ × R

G
++ × R

AH ×R
A is an equilibrium for the

economy (e, u, y, α) ∈ E if
1. ∀h ∈ H , (x∗h, b

∗
h) solves the following problem:
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given (p∗, q∗, e, u, y, α)

max
(xh,bh)∈RG

++×RA
uh (xh)

s.t. p∗ (0) (xh (0) − eh (0)) + q∗bh ≤ 0 (7.1)

p∗ (s) (xh (s) − eh (s)) − (p∗ (s) ya (s))A

a=1 bh ≤ 0, ∀s ∈ S ′ (7.2)

− (p∗ (s) ya (s))A

a=1 bh ≤ αh (s) p∗ (s) eh (s) , ∀s ∈ S ′ (7.3)

(7)

2. (x∗, b∗) satisfies the market clearing conditions

H∑

h=1

(x∗h − eh) = 0 (8)

and
H∑

h=1

b∗h = 0. (9)

Let’s further consider the restrictions we chose to analyze and the technical reasons why
these constraints can be analyzed using our proof methodology. From Duffie and Shafer [1985],
the standard way to tackle the problem of generic existence of equilibria in the real asset model
is to fix the dimension of the return space so that the return matrix does not suffer a drop in
rank. We briefly describe this process. Define

Φ1 (p) =



p (1)

. . .

p (S)


 and z1h = x1

h − e1h,

with

x1

h = (xh(s))s∈S′ ∈ R
CS
++ , e1h = (eh(s))s∈S′ ∈ R

CS
++ .

In this fixed dimension return space approach, the budget constraints in the final period (7.2)
can be equivalently expressed as:

Φ1 (p) z1h ∈ L, (10)

where L is an A dimensional subspace of R
S. Condition (10) is equivalent to any of the following

conditions:
1.

∃M (L) ∈ M
f (S − A, S) such that M (L) · Φ1 (p) z1h = 0, (11)

where M(L) is such that kerM (L) = L;
2.

∃N (L) ∈ M
f (S,A) and ∃bh ∈ R

A such that Φ1 (p) z1h = N (L) · bh, (12)
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where N(L) is such that ImN (L) = L.
Duffie and Shafer [1985] use condition (11) . Here, we use condition (12) as well. With either

condition, it is not clear how to impose constraints directly on bh. In the first condition, bh
does not appear. In regard to the second condition, we show that for a “fictitious” (regular)
equilibrium, up to permutations of states, there exists E ∈ M (S − A,A) such that

[
I
E

]
bh = R(p, y)b′h =

[
R∗ (p, y)

R̂ (p, y)

]
b′h,

where R∗ (p, y) has full rank, bh is the asset demand in a fictitious equilibrium, and b′h is the
asset demand in the true equilibrium. Therefore, again up to permutations, we get that

b′h = [R∗ (p, y)]−1 bh.
6

The above condition indicates that imposing restrictions on the fictitious equilibrium asset
demand bh does not imply that the same restrictions will hold for the true asset demand b′h. For
example, the restriction bh ≥ 0 does not imply that b′h = [R∗ (p, y)]−1 bh ≥ 0. That explains
why the fixed dimension return space approach is likely not applicable for restrictions written
directly in terms of bh.

On the other hand, constraints on the physical quantity bah have little meaning as the future
yields depend upon future commodity prices. So constraints could be written for each asset on
the value qabah, but this presupposes that either lenders are not able to gain information about
the other assets in a household’s portfolio or do not care about this information.

The latter assumption is absurd as future repayment likelihoods depend upon all asset posi-
tions of a household, while the former assumption imposes an unrealistic information gap in this
market for bank loans. Thus, it appears more economically meaningful to consider constraints
imposed upon the payouts of all assets of a household in the final period.7

Finally, our methods allow us to conjecture that (similar to Polemarchakis and Siconolfi
[1997]) restricting excess demand in all states to a linear subspace of the column span of the
returns matrix also suffices to guarantee generic existence and regularity. The restriction that
we have in mind is:

Φ1 (p) z1h ∈ Lh (p) , (13)

where Lh (p) is a household-specific endogenous return space, which is a linear subspace of L.
The constraints of this form (13) fit with the fixed dimension return space approach, as we can
simply replace L in the previous analysis with Lh (p) . In fact, similar restrictions have been
considered in Balasko et al. [1990], in the case of nominal assets. We do not consider constraints
(13) any further in the present paper, but we are working with them in a companion paper.

6The asset demand in the fictitious equilibrium is equal to the asset demand in the true equilibrium, up to
a change of basis. The elements of the basis are the columns of R∗ (p, y) , which is an invertible matrix with A

states following the permutation of states.
7Observe that the methods of this paper would be equally effective in obtaining generic existence and

regularity, if we were to consider participation constraints as inequalities on initial period portfolio value
qbh = −p (0) (xh (0) − eh (0)) .
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3 Fixed dimension return space equilibria

As explained in the previous sections, we present some definitions of equilibria in which the
dimension of the feasible wealth transfer space L is fixed and equal to the number of available
assets, A.

The main difference between the concept of pseudo equilibrium by Duffie and Shafer [1985]
and the one proposed below in Definitions 2 and 4 is that in the former the space L appearing
in the household maximization problem is written as the kernel of a linear function, while in our
household maximization problem (see (15)) the space L is the image of a linear function.

Below, after introducing some preliminary definitions and facts, we present three equivalent
definitions of equilibria that are useful for our analysis. Indeed, as explained in Section 1, the
different steps in the proofs of Theorems 11 and 12 require a different definition of equilibrium.

We denote by GA,S the set of A dimensional vector subspaces of R
S. It can be shown that

GA,S is a Hausdorff, compact, and second countable (and therefore sequentially compact) metric
space and also a C∞ abstract manifold of dimension A (S − A) .8

Denoting by Σ the set of permutations of {1, . . . , S} , with generic element σ ∈ Σ, by Pσ the
corresponding permutation matrix and by IM the M -dimensional identity matrix, then for every
L ∈ GA,S, there exists σ−1 ∈ Σ, a neighborhood Vσ−1 of L, and a diffeomorphism9

ψσ−1 : Vσ−1 → M (S − A,A) (14)

such that L = ImPσ

[
−ψσ−1 (L)

IA

]
= ker [IS−A | ψσ−1 (L)] · Pσ−1 . Some related basic results are

listed in Appendix 6.1.
Define

Ah =



αh (1)

. . .

αh (S)


 .

Definition 2. A vector (x∗, p∗, b∗, q∗, L∗) ∈ R
GH
++ × R

G
++ × R

AH × R
A × GA,S is an image-

symmetric equilibrium for the economy (e, u, y, α) ∈ E if
1. ∀h ∈ H , (x∗h, b

∗
h) solves the following problem:

given (p∗, q∗, L∗, e, u, y, α)

max
(xh,bh)∈RG

++×RA
uh (xh)

s.t. −p∗ (0) (xh (0) − eh (0)) − q∗bh = 0 (15.1)

−Φ1 (p∗) (x1

h − e1h) + Pσ

[
−ψ (L∗)
IA

]
bh = 0 (15.2)

Pσ

[
−ψ (L∗)
IA

]
bh + Ah · Φ

1 (p∗) e1h ≥ 0 (15.3)

(15)

8See Kato [1995], page 198.
9From now on, for ease of notation, we will simply write ψ in place of ψσ−1 . Notice that we chose to start

with σ−1 instead of σ because in this way the definitions of equilibria below get simplified.
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2. (x∗, b∗) satisfies market clearing conditions (8) and (9);
3. ImR (p∗, y) ⊆ L∗, i.e.,

vec [IS−A | ψ (L∗)] · Pσ−1 · R (p∗, y) = 0. (16)

Define

p\ (s) = (pc (s))c 6=1 ∈ R
C−1
++ , for any s ∈ S, and p\ =

(
p\ (s)

)
s∈S ∈ R

G−(S+1)
++ ,

and similarly, for any h ∈ H, x
\
h(s), x

\
h, e

\
h(s) and e

\
h. Additionally, define

p\(01) = (pc (s))(s,c) 6=(0,1) ∈ R
G−1
++ , ∆G−1

++ = {p ∈ R
G
++ :

∑S

s=0

∑C

c=1 p
c (s) = 1},

and, for any h ∈ H,

e⋄h = (e1h (s))s∈S ∈ R
S+1
++ , e

\(01)
h = (ec

h (s))(s,c) 6=(0,1) ∈ R
G−1
++ , x

\(01)
h = (xc

h (s))(s,c) 6=(0,1) ∈ R
G−1
++ .

Moreover, 1N denotes an N dimensional vector whose components are all equal to 1; if no
confusion arises, we will write 1 in the place of 1N .

Remark 3. Observe that the number of admissible price normalizations for the equilibrium
concept presented in Definition 2 is S + 1 (one for each spot) and there are S + 1 Walras’
laws. Therefore, the number of significant equations (i.e., conditions (8) and (9) “without S+ 1
Walras’ laws”) is equal to the number of significant variables (i.e., spot by spot normalized good
prices p\ and asset prices q).

The above observations are formalized in Definition 4 below.

Definition 4. A vector
(
x∗, p∗\, b∗, q∗, L∗) ∈ R

GH
++×R

G−(S+1)
++ ×R

AH×R
A×GA,S is a normalized

price image-symmetric equilibrium for the economy (e, u, y, α) ∈ E if

1. ∀h ∈ H , (x∗h, b
∗
h) solves Problem (15) given

(
p∗ =

(
1, p∗\ (s)

)S
s=0

, q∗, L∗, (e, u, y, α)
)

;

2. b∗ satisfies market cleaning conditions (9) and

H∑

h=1

(
x
∗\
h − e

\
h

)
= 0;

3. Condition (16) holds true.

We now introduce the needed definition of image - Mr. 1 equilibrium.

Definition 5. A vector (x∗, p∗, L∗) ∈ R
GH
++ ×∆G−1

++ ×GA,S is an image - Mr. 1 equilibrium10

for the economy (e, u, y, α) ∈ E if
1a. ∀h ∈ H\{1} , x∗h solves the following problem:

10Among the various kinds of fixed dimension return space equilibria we introduce, the one that bears the
most resemblance to the original concept by Duffie and Shafer [1985] is Definition 5. However, we have elected
to call it “image - Mr. 1 equilibrium” instead of “pseudo equilibrium” to highlight the main difference between
this notation and the notion of image-symmetric equilibrium in Definition 2.
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given (p∗, L∗, e, u, y, α) ,
max

xh∈B
\b

h
(p∗,L∗)

uh (xh) (17)

where B
\b
h (p∗, L∗) =

{xh ∈ R
G
++ : ∃bh ∈ R

A such that −p∗ (0) (xh (0) − eh (0)) − 1·Pσ

[
−ψ (L∗)
IA

]
bh = 0 (18.1)

−Φ1 (p∗) (x1

h − e1h) + Pσ

[
−ψ (L∗)
IA

]
bh = 0 (18.2)

Pσ

[
−ψ (L∗)
IA

]
bh + AhΦ

1 (p∗) e1h ≥ 0 (18.3) }

(18)
1b. x∗1 solves the following problem:

given (p∗, L∗, e, u, y, α) ,

max
x1∈RG

++

u1 (x1)

s.t. −p∗ (0) (x1 (0) − e1 (0)) − 1·Φ1 (p∗) (x1

1 − e11) = 0 (19.1)

Φ1 (p∗) (x1

1 − e11) + A1Φ
1 (p∗) e11 ≥ 0 (19.2)

(19)

2. x∗ satisfies market clearing conditions

∑H

h=1

(
x
∗\(01)
h − e

\(01)
h

)
= 0 ; (20)

3. Condition (16) holds true.

In Appendix 6.2, we show that Definitions 2, 4, and 5 are in fact “allocation equivalent”, as
formally stated below.

Proposition 6. For a given economy (e, u, y, α) ∈ E , the following statements are equivalent:
1. x is an image-symmetric equilibrium allocation;
2. x is a normalized price image-symmetric equilibrium allocation;
3. x is an image - Mr. 1 equilibrium allocation.

Proposition 7 describes the relationship between fixed dimension return space equilibria and
“true” equilibria.

Proposition 7. If (x∗, p∗, b∗, q∗, L∗) ∈ R
GH
++ × R

G
++ × R

AH × R
A × GA,S is an image-symmetric

equilibrium for the economy (e, u, y, α) ∈ E and

rankR (p∗, y) = A, (21)

then there exist b∗∗ and q∗∗ such that (x∗, p∗, b∗∗, q∗∗) is an equilibrium for E .

Proof. See Section 6.3.
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4 Generic existence, regularity, and suboptimality

In this section, we first show existence of an image - Mr. 1 equilibrium - see Theorem 11. Then,
we can obtain the generic existence of a true equilibrium, after showing the generic regularity and
generic full rank condition of the return matrix for normalized price image-symmetric equilibria
- see Theorem 12.

As a preliminary step towards the application of a Brouwer like fixed point theorem to
prove Theorem 11 - see Appendix 6.5 - we show some basic properties of the demand function
associated with Definition 5.

Omitting for simplicity the dependence on utility functions, define

β1 : ∆G−1
++ × R

G
++ × (0, 1)S

⇉ R
G
++,

β1 (p, e1, α1) = {x1 ∈ R
G
++ : −p (x1 − e1) ≥ 0

Φ1 (p) (x1

1 − e11) + A1Φ
1 (p) e11 ≥ 0

u1 (x1) − u1

(
(1 − α1(s))e1(s))

S
s=0

)
≥ 0},

where we have set α1(0) = 3
4
, and for every h ∈ H\{1}

βh : ∆G−1
++ × R

G
++ × (0, 1)S × GA,S ⇉ R

G
++ × R

A,

βh (p, eh, αh, L) = {(xh, bh) ∈ R
G
++ × R

A : −p (0) (xh (0) − eh (0)) − 1 · Pσ

[
−ψ (L)
IA

]
bh ≥ 0

−Φ1 (p) (x1

h − e1h) + Pσ

[
−ψ (L)
IA

]
bh ≥ 0

Pσ

[
−ψ (L)
IA

]
bh + AhΦ

1 (p) e1h ≥ 0

uh (xh) − uh

(
1
4
eh

)
≥ 0} .

Remark 8. It is obvious that if (xh, bh) is a solution to

max(xh,bh)∈RG
++×RA uh (xh) s.t. (xh, bh) ∈ βh (p, eh, αh, L) , (22)

for some h ∈ H \ {1}, then xh is a solution to (17); and conversely if xh is a solution to (17),
then there exists bh such that (xh, bh) is a solution to (22).

Lemma 9. For any h ∈ H, βh is nonempty valued, convex valued, compact valued, closed and
lower hemi continuous.

Proof. The proof is presented in Appendix 6.4.

Proposition 10. The demand correspondences associated with Problems (17) and (19) are
continuous functions.

Proof. It follows from Remark 8, Lemma 9, the Maximum Theorem, and assumption (3).

Theorem 11. For every economy, an image - Mr. 1 equilibrium exists.

12



Proof. The proof is presented in Appendix 6.5.

Consider the Hausdorff topological vector space

V = R
GH
++ ×

[
C2(RG

++)
]H

× R
CAS × (0, 1)SH , (23)

endowed with the product topology of the natural topologies on each of the spaces in the Carte-
sian product. In particular, on the C2 function space, we consider the C2 compact-open topology.
Assume that E ⊆ V is endowed with the topology induced by V .

Theorem 12. There exists an open and dense set D ⊆ E such that, for every (e, u, y, α) ∈ D,
there is a (positive) finite number of associated equilibria which locally smoothly depend on the
elements of D.

Proof. First of all, observe that from Proposition 6 and Theorem 11, a normalized price image-
symmetric equilibrium exists. Moreover, from Proposition 7, it is enough to show that generically
rank condition (21) does hold true. The strategy of the proof is then to consider normalized
price image-symmetric equilibria and proceed through the following steps:

1. the associated extended equilibrium system is such that border line cases are rare;
2. the return matrix has generic full rank;
3. the associated projection from the equilibrium set to the economy space is proper;
4. apply Glöckner Theorem 24.
Each of the above steps is formalized and proven in Appendix 6.6.

The theorem below states the typical inefficiency of equilibria.

Theorem 13. If A < S, then there exists an open and dense set D̃ ⊆ E such that, for every
(e, u, y, α) ∈ D̃, every corresponding equilibrium allocation is not Pareto Optimal.

The proof of the above theorem follows a standard argument and therefore it is omitted.
Observe that in the statement of the above theorem, the qualification A < S is indeed a

necessary condition. If it were the case A = S, starting from a regular economy in the complete
market model with an associated Pareto Optimal equilibrium, and then adding “insignificant”
constraints, it would be immediate to construct an open set of economies in the restricted partic-
ipation model with the property that at least one associated equilibrium is still Pareto Optimal.

5 A numerical example

Given the proof of generic regularity of equilibria in Theorem 12, we can now compute an equi-
librium of our model using algorithms that utilize the theory of differential topology. Specifically,
the two equilibria computed in this section are numerically determined using homotopy meth-
ods, i.e., the HOMPACK suite of subroutines for Fortran 90, and Kubler [2007]. These methods
require generic regularity to work successfully.

With these two equilibria, a comparative statics analysis yields interesting conclusions. In
particular, the example shows that by tightening credit constraints, an anonymous planner
intervention can actually effect a Pareto improvement. The planner intervention works through

13



adjustments in the parameters governing the participation restriction (6): (αh (s))h∈H,s∈S′ ∈

(0, 1)SH . For this example, these parameters are household independent, so they are simply
(α (s))s∈S′ ∈ (0, 1)S . The planner intervention is also household independent and its tools are

given by τ(s) ∈
(
−1,−1 + 1

α(s)

)
, s ∈ S ′, so that the new parameters in (6) are defined as

α̂ (s) = (1 + τ (s)) · α (s) ∈ (0, 1), ∀s ∈ S ′.

Obviously, an intervention with τ = (τ (s))s∈S′ = 0, where 0 = (0, . . . , 0) ∈ R
S, implies no

change in either the parameters or the resulting equilibrium. Define the equilibrium obtained

following planner intervention as
(
x̂, p̂, b̂, q̂

)
, in contrast to the original equilibrium (x, p, b, q)

prior to planner intervention.
The example in this section demonstrates the following fact. For some values τ(s) ≤ 0, s ∈ S ′,

the resulting equilibrium allocation x̂ Pareto dominates the original equilibrium allocation x.
That is, for this particular economy, more regulation on the credit markets is employed in

order to make all households better off. Notice that, due to the generic regularity result and the
way the algorithm works, the example is robust to perturbation.

The economy is defined by:

• H = 3 households;

• C = 2 commodities traded in each state;

• S = 4 possible states of uncertainty tomorrow;

• A = 2 real assets.

The household endowments are given by:

e1h(0) e2h(0) e1h(1) e2h(1) e1h(2) e2h(2) e1h(3) e2h(3) e1h(4) e2h(4)
h = 1 1 7 1 0.5 7 1 7.5 6 1 7
h = 2 2 4 7 6.5 1 7 2 0.5 8 2
h = 3 9 1 4 5 4 4 2.5 5.5 3 3
Sum 12 12 12 12 12 12 12 12 12 12

The household utility functions are given by:

uh (xh) = γh(0) · log
(
x1

h(0)
)

+ (1 − γh(0)) · log
(
x2

h(0)
)

+
1

4

∑

s∈S′

[
γh(s) · log

(
x1

h(s)
)

+ (1 − γh(s)) · log
(
x2

h(s)
)]
,

where
γh(0) γh(1) γh(2) γh(3) γh(4)

h = 1 2/3 1/2 1/4 3/4 1/2
h = 2 1/3 1/4 3/4 1/2 1/4
h = 3 2/3 3/4 1/2 1/4 3/4

14



The assets are real assets, so each asset has payouts in terms of a vector of commodities in each
state s ∈ S ′. These vector of payouts are given by:

States \ Assets a = 1 a = 2
s = 1 (4, 0.5) (0.5, 3.6)
s = 2 (3.9, 0.5) (3.7, 0.5)
s = 3 (0.5, 3.8) (0.5, 3.8)
s = 4 (0.5, 3.7) (3.9, 0.5)

Finally, the parameters (identical for all households) governing the participation restriction (6)
are given by:

α(1) = 0.033
α(2) = 0.020
α(3) = 0.029
α(4) = 0.033 .

For this economy, the equilibrium11 is given by:

• Consumption

x1
h(0) x2

h(0) x1
h(1) x2

h(1) x1
h(2) x2

h(2) x1
h(3) x2

h(3) x1
h(4) x2

h(4)
h = 1 2.966 3.680 0.881 0.871 4.951 3.240 8.275 5.441 2.017 5.422
h = 2 1.615 4.778 6.266 7.305 3.133 4.811 1.338 0.988 6.107 4.084
h = 3 7.426 3.546 4.851 3.822 3.913 3.946 2.383 5.569 3.873 2.487

• Assets
b1h b2h

h = 1 0.334 −0.314
h = 2 0.225 −0.240
h = 3 −0.556 0.550

• Prices
p1(0) = 1 p2(0) = 0.622
p1(1) = 1 p2(1) = 0.973
p1(2) = 1 p2(2) = 0.982
p1(3) = 1 p2(3) = 1.205
p1(4) = 1 p2(4) = 0.781
q1 = 5.886 q2 = 5.941

• Utility values
u1 (x1) = 2.2473
u2 (x2) = 2.4142
u3 (x3) = 3.1676 .

(24)

11A unique equilibrium is guaranteed by our use of the Cobb-Douglas utility functions.
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Above is the original equilibrium. Following planner intervention, we will obtain a new
equilibrium. The planner intervenes according to:

τ(1) = 0
τ(2) = −0.22
τ(3) = 0
τ(4) = −0.17 .

This means that the parameters α̂(1) and α̂(3) remain unchanged compared to α(1) and α(3),
but α̂(2) is 22% lower compared to α(2) and α̂(4) is 17% lower compared to α(4) :

α̂(1) = 0.033
α̂(2) = 0.016
α̂(3) = 0.029
α̂(4) = 0.028 .

The credit constraints have just been tightened.
The equilibrium following planner intervention (again, unique12) is:

• Consumption

x̂1
h(0) x̂2

h(0) x̂1
h(1) x̂2

h(1) x̂1
h(2) x̂2

h(2) x̂1
h(3) x̂2

h(3) x̂1
h(4) x̂2

h(4)
h = 1 3.029 3.624 0.866 0.859 4.841 3.328 8.302 5.395 2.096 5.392
h = 2 1.619 4.784 6.215 7.363 3.233 4.717 1.327 1.007 6.005 4.174
h = 3 7.358 3.595 4.917 3.776 3.923 3.952 2.366 5.596 3.897 2.428

• Assets
b̂1h b̂2h

h = 1 0.301 −0.284
h = 2 0.237 −0.251
h = 3 −0.537 0.533

• Prices
p̂1(0) = 1 p̂2(0) = 0.627
p̂1(1) = 1 p̂2(1) = 0.973
p̂1(2) = 1 p̂2(2) = 0.985
p̂1(3) = 1 p̂2(3) = 1.180
p̂1(4) = 1 p̂2(4) = 0.795
q̂1 = 6.233 q̂2 = 6.305

• Utility values
u1 (x̂1) = 2.2603
u2 (x̂2) = 2.4259
u3 (x̂3) = 3.1686 .

(25)

12Again, a unique equilibrium is guaranteed by our use of the Cobb-Douglas utility functions.
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Comparing the utility values in (24) and (25), a Pareto improvement has been achieved.
The utility increases are 0.58% for household h = 1, 0.48% for household h = 2, and 0.03% for
household h = 3.

We now explain the intuition behind this Pareto improvement. Taken in isolation, a binding
constraint of the form (6) for a single household h and for a particular state s ∈ S ′ has well-
established properties. A reduction in the parameter αh(s) restricts the budget set for household
h, because the constraint has become tighter. This results in lower utility for household h.

However, consider what happens, as in the above example, when a reduction in the param-
eter αh(s) results in constraints binding in some states in which they previously did not bind.
Specifically, the following table illustrates this endogenous effect for the above example:

Constraint (6) is binding in states
Before intervention After intervention

h = 1 s = 4 s = 4
h = 2 s = 3 s = 3 and s = 4
h = 3 s = 1 s = 2

As can be seen from the table, for households h = 2 and h = 3, different constraints are binding
after the intervention compared to before the intervention. When the states of binding con-
straints “switch” following an intervention, the property described above for isolated constraints
is no longer valid. In particular, two effects now play a leading role in determining the equilib-
rium. First, portfolio effects are present as households adjust their portfolios across the states of
uncertainty where now the constraints may bind for different states. Second, general equilibrium
effects are present, whereby one household’s adjustments to the newly binding constraints must
affect the other households, through the relative commodity prices and asset prices, in order for
the market clearing conditions to be satisfied.

6 Appendix

6.1 Basic results for kernels and images

For any m,n ∈ N+, let L (Rm,Rn) be the vector space of linear functions from R
m to R

n. For
any l ∈ L (Rm,Rn), let [l] denote the matrix associated with l with respect to the canonical
bases in R

n and R
m.

The following result is well known.

Proposition 14. If L ∈ GA,S, then

1. a. ∃l1 ∈ L
(
R

A,RS
)

such that Im l1 = L;

b. ∃σ ∈ Σ and ∃M ∈ M (S − A,A) such that

[l1] = Pσ

[
−M
IA

]
;

c. M = ψσ−1 (L) , where ψσ−1 is a chart of an atlas of GA,S.
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2. a. ∃l2 ∈ L
(
R

S,RS−A
)

such that ker l2 = L;

b.
[l2] = [IS−A|M ] · Pσ−1 .

3. Let Y, Y ′ ∈ M
f (S,A) be given. Then

ImY = ImY ′ ⇔ there exists a unique C ∈ M
f (A,A) such that Y ′ = Y C.

6.2 Proof of Proposition 6

First of all, observe that the need to “hide” bh in Definition 5 is due to the fact that we want
to apply a fixed point theorem written in terms of x and p only (see Theorem 22). Setting

b̃ = (bh)
H
h=2 ∈ R

A(H−1), Definition 5 is obviously equivalent to the following definition.

Definition 15. A vector
(
x∗, p∗, b̃∗, L∗

)
∈ R

GH
++ ×∆G−1

++ ×R
A(H−1) ×GA,S is an image - Mr. 1

with asset demand equilibrium for the economy (e, u, y, α) ∈ E if
1a. ∀h ∈ H\{1} , (x∗h, b

∗
h) solves the following problem:

given (p∗, L∗, e, u, y, α)

max
(xh,bh)∈RG

++×RA
uh (xh)

s.t. −p∗ (0) (xh (0) − eh (0)) − 1·Pσ

[
−ψ (L∗)
IA

]
bh = 0

−Φ1 (p∗) (x1

h − e1h) + Pσ

[
−ψ (L∗)
IA

]
bh = 0

Pσ

[
−ψ (L∗)
IA

]
bh + AhΦ

1 (p∗) e1h ≥ 0

1b. x∗1 solves Problem (19);
2. x∗ satisfies market clearing conditions (20);
3. Condition (16) holds true.

Lemma 16. The maximization problems presented in Definitions 2, 4 and 15 are characterized
by Kuhn-Tucker conditions.

Proof. Sufficiency of Kuhn-Tucker conditions follows from the fact that the utility functions are
concave and the constraints affine.
Necessity of Kuhn-Tucker conditions follows from the so called “Weak reverse convex constraint
qualification” (see Mangasarian [1969], point 4, page 172 and Theorem 6, page 173).

Notice that, since the third constraint in the maximization problems of Definitions 2, 4 and 15
is the same13, it is enough and notationally lighter to show “equivalence” among those definitions

13The only exception is given by the (second) constraint for Mr. 1 in Definition 15, which does not contain bh.
However, it is immediate to see that the third constraint in the maximization problems of Definitions 2, 4 and 15
for h ∈ H \ {1} can be rewritten, just using the second constraint therein, like the constraint for Mr. 1. Hence,
the last constraints are equivalent in the above mentioned definitions.
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without that constraint. Consider then the equilibrium concepts presented in Definitions 2, 4
and 15 all of them without the last inequality constraint.

We are going to show equivalence among those concepts of equilibria showing that the three
associated extended systems are “allocation” equivalent, in the sense that the equilibrium allo-
cations satisfying such systems are the same.

More precisely, we proceed as follows.
1. We write the extended system associated with symmetric fixed dimension return space

equilibrium of Definition 2 - see System (27).
2. We show that it is possible to normalize prices of the numeraire commodity 1 in each state

in Definition 2, i.e., that Definitions 2 and 4 are allocation equivalent - see Lemma 17.
3. We write the extended system associated with image - Mr. 1 with asset demand equilib-

rium of Definition 15 - see System (28).
4. We show that it is possible to put commodity prices in the simplex and normalize S

multipliers in the extended system associated with Definition 2 - see Lemma 18.
5. Using Step 4, we show that Definitions 2 and 15 are allocation equivalent - see Lemma 19.

We now go through the five steps listed above.
1.

Define

R (L) = Pσ

[
−ψ (L)
IA

]
=



r1 (L)

...
rS (L)


 . (26)

For sake of simplicity, here we consider the case σ = Id. Moreover, in order to lighten
notation, we will sometimes denote the excess demand of household h by zh instead of xh − eh.

The extended system associated with Definition 2 is as follows:





. . .

Duh (xh) − λhΦ (p) = 0

λh

[
−q

R(L)

]
= 0

−Φ (p) zh +

[
−q

R(L)

]
bh = 0

. . .
∑

h zh = 0
∑

h bh = 0

vec [I | ψ(L)] · R (p, y) = 0

(27)

2.

Lemma 17. If (x, λ, b, p, q, L) , where ψ (L) = (msa)s∈{1,...,S−A}, a∈A, is an extended image-
symmetric equilibrium associated with (e, u, y) , then (x, λ′, b′, p′, q′, L′) is an extended image-
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symmetric equilibrium associated with (e, u, y) , where

λ′h = (λh (s) p1 (s))s∈S , b′h =
(

ba
h

p1(S−A+a)

)
a∈A

, p′ =
(

p(s)
p1(s)

)
s∈S

,

q′ =
(
qa p1(S−A+a)

p1(0)

)
a∈A

, ψ (L′) =
(
msa

p1(S−A+a)
p1(s)

)
s∈{1,...,S−A}, a∈A

.

Observe that (
p ′1 (s)

)
s∈S = 1S+1

and thus (x, λ′, b′, p′, q′, L′) is a normalized price image-symmetric equilibrium.

We omit the proof of Lemma 17 as well as that of Lemma 18 below, because they are
straightforward.

3.

The extended system associated with Definition 15 is as follows:





Du1 (x1) − µ1 (0) p = 0

pz1 = 0
...

Duh (xh) − µhΦ(p) = 0

µh

[
−1S · R(L)

R(L)

]
= 0

−Φ (p) (xh − eh) +

[
−1S · R(L)

R(L)

]
bh = 0

...
∑

h z
\(01)
h = 0

vec [I | ψ(L)] · R (p, y) = 0
∑

c,s p
c(s) − 1 = 0

(28)

4.

Lemma 18. If (x, λ, b, p, q, L) , where ψ (L) = (msa)s∈{1,...,S−A}, a∈A, is an extended image-
symmetric equilibrium associated with (e, u, y) , then (x, λ′, b′, p′, q′, L′) is an extended image-
symmetric equilibrium associated with (e, u, y) , where

λ′h =
(

λh(s)
λ1(s)

∑
c,s p

c(s)λ1 (s)
)

s∈S
, b′h =

(
λ1(S−A+a)∑
c,s pc(s)λ1(s)

· bah

)
a∈A

, p′ =
(

p(s)·λ1(s)∑
c,s pc(s)λ1(s)

)
s∈S

,

q′ =
(
qa λ1(0)

λ1(S−A+a)

)
a∈A

, ψ (L′) =
(
msa

λ1(s)
λ1(S−A+a)

)
s∈{1,...,S−A}, a∈A

.

Thus

λ′1 =
(∑

c,s p
c(s)λ1 (s)

)
· 1S+1 = λ′1 (0) · 1S+1,

∑
c,s p

′c(s) = 1, q′ = 1S · R (L′) . (29)

In this case we will call (x, λ′, b′, p′, q′, L′) an extended normalized (p, λ) image - symmetric
equilibrium.
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5.

The extended system associated with a normalized (p, λ) image - symmetric equilibrium is
displayed below. 




Du1 (x1) − (λ1(0) · 1S+1) Φ (p) = 0

(λ1(0) · 1S+1)

[
−q

R(L)

]
= 0 or q = 1S · R(L)

−Φ (p) z1 +

[
−q

R(L)

]
b1 = 0

...

Duh (xh) − λhΦ (p) = 0

λh

[
−q

R(L)

]
= 0

−Φ (p) zh +

[
−q

R(L)

]
bh = 0

...
∑

h z
\
h = 0

∑
h bh = 0

vec [I | ψ(L)] · R (p, y) = 0
∑

c,s p
c(s) − 1 = 0

(λ1(s) = λ1(0))S
s=1

It is immediate to prove the following lemma.

Lemma 19. 1. If (x, λ, b, p, q, L) is an extended normalized (p, λ) image - symmetric equilib-

rium, then
(
x, µ1(0), (µh)

H

h=2 , (bh)
H

h=2 , p, L
)

is an extended image - Mr. 1 with asset demand

equilibrium, with µ1(0) = λ1 (0) and, for h ≥ 2, µh = λh.

2. If
(
x, µ1(0), (µh)

H

h=2 , (bh)
H

h=2 , p, L
)

is an extended image - Mr. 1 with asset demand

equilibrium, then (x, λ, b, p, q, L) is an extended normalized (p, λ) image - symmetric equilibrium,

with q = 1 ·

[
−E
I

]
, b1 = −

∑H

h=2 bh, λ1 = µ1(0) · 1S+1 and, for h ≥ 2, λh = µh.

6.3 Proof of Proposition 7

Proof. Since rankR (p∗, y) = A and L∗ ∈ GA,S, then

dim ImR (p∗, y) = A = dimL∗. (30)

Since, by definition of image - symmetric equilibrium, ImR (p∗, y) ⊆ L∗, then ImR (p∗, y) = L∗.
Hence, from Proposition 14 in Appendix 6.1, ∃σ ∈ Σ, a neighborhood Vσ−1 of L and a function
ψ : Vσ−1 → M (S − A,A) such that

ImR (p∗, y) = L∗ = ImPσ

[
−ψ (L∗)
IA

]
(31)
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and there exists a full rank matrix C ∈ M (A,A) such that

R (p∗, y) = Pσ

[
−ψ (L∗)
IA

]
· C. (32)

Moreover,

[
0A×(S−A)|IA

]
Pσ−1 ·R (p∗, y) =

[
0A×(S−A)|IA

]
Pσ−1Pσ

[
−ψ (L∗)
IA

]
·C =

[
0A×(S−A)|IA

] [−ψ (L∗)
IA

]
·C,

and then
C =

[
0A×(S−A)|IA

]
Pσ−1 · R (p∗, y) .

Observe that:
1. (xh, bh) is a solution to Problem (7) in the definition of equilibrium if and only if it is a

solution to
max(xh,bh) uh(xh)

s.t. −Φ (p∗) zh +

[
−q∗

R (p∗, y)

]
bh = 0 (1)

R (p∗, y) bh + Ah · Φ
1 (p∗) e1h ≥ 0 (2)

(33)

which is the same as Problem (7) apart from the fact that conditions (1) and (2) there are
replaced by equalities.

2. Kuhn-Tucker conditions do characterize solutions to the above maximization problem.
Therefore, the extended system associated with equilibria consistently modified with the above
observation is as follows.





...

Duh (xh) − λhΦ (p) = 0

λh

[
−q

R (p, y)

]
+ ηhR (p, y) = 0

−Φ (p) zh +

[
−q

R (p, y)

]
bh = 0

min {αh (s) p (s) eh (s) + rs (p, y) bh, ηh (s)} = 0
...
∑

h zh = 0
∑

h bh = 0

(34)

Recalling the definition of R(L) in (26), the extended system associated with image - sym-
metric equilibrium is as follows.
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



...

Duh (xh) − λhΦ (p) = 0

λh

[
−q

R (L)

]
+ ηhR (L) = 0

−Φ (p) zh +

[
−q

R (L)

]
bh = 0

min {αh (s) p (s) eh (s) + rs (L) bh, ηh (s)} = 0
...
∑

h zh = 0
∑

h bh = 0

R (p, y) −R (L) · C = 0

The desired result follows from the comparison of the two systems, choosing

q∗∗ = q∗ · C and b∗∗h = C−1b∗h.

6.4 Proof of Lemma 9

We present the desired proof for h 6= 1. For h = 1, the argument is an easier version of the
presented proof.

1. βh is nonempty valued.
(eh, 0) ∈ βh (p, eh, αh, L).
2. βh is convex valued.
The constraint functions are either affine or quasi-concave (with respect to (xh, bh)).
3. βh is compact valued.
Namely, βh (p, eh, αh, L) is closed in R

G+A because, by 4. below, βh is closed.

Suppose it is not bounded. Then ∃
(
x

[n]
h , b

[n]
h

)
n∈N

∈ (βh (p, eh, αh, L))∞ such that
∥∥∥
(
x

[n]
h , b

[n]
h

)∥∥∥→

+∞. Consider 


(
x

[n]
h , b

[n]
h

)

∥∥∥
(
x

[n]
h , b

[n]
h

)∥∥∥




n∈N

whose elements belong to the unit sphere in R
G+A. Then, up to a subsequence,

(
x

[n]
h , b

[n]
h

)

∥∥∥
(
x

[n]
h , b

[n]
h

)∥∥∥
→
(
xh, bh

)
6= 0 with xh > 0.
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In fact, the last inequality follows from the fact that, for every n ∈ N, uh

(
x

[n]
h

)
− uh

(
1
4
eh

)
≥ 0.

Hence,

−p (0)

(
x
[n]
h

(0)∥∥∥
(
x
[n]
h

,b
[n]
h

)∥∥∥
− eh(0)∥∥∥

(
x
[n]
h

,b
[n]
h

)∥∥∥

)
− 1 · Pσ

[
−ψ (L)
IA

]
b
[n]
h∥∥∥

(
x
[n]
h

,b
[n]
h

)∥∥∥
≥ 0

−Φ1 (p) ·
x
[n]1
h∥∥∥

(
x
[n]
h

,b
[n]
h

)∥∥∥
+ Φ1 (p) ·

e1
h∥∥∥

(
x
[n]
h

,b
[n]
h

)∥∥∥
+ Pσ

[
−ψ (L)
IA

]
b
[n]
h∥∥∥

(
x
[n]
h

,b
[n]
h

)∥∥∥
≥ 0

and taking limits

−p (0)xh (0) − 1 · Pσ

[
−ψ (L)
IA

]
bh ≥ 0 (1)

−Φ1 (p) · xh + Pσ

[
−ψ (L)
IA

]
bh ≥ 0 (2)

(35)

or

−1 · Pσ

[
−ψ (L)
IA

]
bh ≥ p (0)xh (0) ≥ 0 (1)

Pσ

[
−ψ (L)
IA

]
bh ≥ Φ1 (p) · xh > 0. (2)

(36)

Then from (36), we get




−1 · Pσ

[
−ψ (L)
IA

]

Pσ

[
−ψ (L)
IA

]


 · bh > 0,

contradicting the fact that, as it is easy to prove, if λ ∈ R
S
++ and R ∈ M (S,A), then there

exists no b ∈ R
A such that

[
−λR
R

]
b > 0.

4. βh is closed.
We want to show that

〈
a.

(
p[n], e

[n]
h , α

[n]
h , L[n]

)
→
(
p, eh, αh, L

)

b.
(
x

[n]
h , b

[n]
h

)
∈ βh

(
p[n], e

[n]
h , α

[n]
h , L[n]

)

c.
(
x

[n]
h , b

[n]
h

)
→
(
xh, bh

)

〉
⇒
(
xh, bh

)
∈ βh

(
p, eh, αh, L

)
.
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From assumption b., we have that

−p[n] (0)
(
x

[n]
h (0) − e

[n]
h (0)

)
− 1 · Pσ

[
−ψ

(
L[n]
)

IA

]
b
[n]
h ≥ 0

−Φ1
(
p[n]
) (
x

[n]1
h − e

[n]1
h

)
+ Pσ

[
−ψ

(
L[n]
)

IA

]
b
[n]
h ≥ 0

Pσ

[
−ψ

(
L[n]
)

IA

]
b
[n]
h + A

[n]
h Φ1

(
p[n]
)
e
[n]1
h ≥ 0

uh

(
x

[n]
h

)
− uh

(
1
4
e
[n]
h

)
≥ 0.

Notice that, since L[n] → L, there exists σ such that L ∈ Vσ−1 and for sufficiently large n,
L[n] ∈ Vσ−1 , too. Hence in the above inequalities we wrote Pσ instead of Pσ[n] . Taking limits and
using assumptions (4), a. and c., we get the desired result.

5. βh is lower hemi continuous.

We want to show that for any
(
p[n], e

[n]
h , α

[n]
h , L[n]

)
n∈N

∈
(
∆G−1

++ × R
G
++ × (0, 1)SH × GA,S

)∞

such that
(
p[n], e

[n]
h , α

[n]
h , L[n]

)
→
(
p, eh, αh, L

)
, and for any

(
xh, bh

)
∈ βh

(
p, eh, αh, L

)
, there

exists
(
x

[n]
h , b

[n]
h

)
n∈N

∈
(
R

G
++ × R

A
)∞

such that

a. ∀n ∈ N,
(
x

[n]
h , b

[n]
h

)
∈ βh

(
p[n], e

[n]
h , α

[n]
h , L[n]

)
and

b.
(
x

[n]
h , b

[n]
h

)
→
(
xh, bh

)
.

We proceed as follows.
Step 1.

β̃h : ∆G−1
++ × R

G
++ × (0, 1)SH × GA,S ⇉ R

G
++ × R

A,

β̃h (p, eh, αh, L) = {(xh, bh) ∈ R
G
++ × R

A : −p (0) (xh (0) − eh (0)) − 1 · Pσ

[
−ψ (L)
IA

]
bh > 0

−Φ1 (p) (x1

h − e1h) + Pσ

[
−ψ (L)
IA

]
bh > 0

Pσ

[
−ψ (L)
IA

]
bh + AhΦ

1 (p) e1h > 0

uh (xh) − uh

(
1
4
eh

)
> 0} .

is lower hemi continuous.
Step 2. Clβ̃h = βh.
As Step 2. directly follows from the fact that βh is closed, we prove Step 1. only.
First of all observe that β̃h is nonempty valued as

(
1
2
eh, 0

)
∈ β̃h (p, eh, αh, L) .
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Moreover,

−p[n] (0)
(
xh (0) − e

[n]
h (0)

)
− 1 · Pσ

[
−ψ

(
L[n]
)

IA

]
bh → −p (0) (xh (0) − eh (0)) − 1 · Pσ

[
−ψ

(
L
)

IA

]
bh > 0

−Φ1
(
p[n]
)
· x1

h + Φ1
(
p[n]
)
· e

[n]1
h + Pσ

[
−ψ

(
L[n]
)

IA

]
bh → −Φ1 (p) · x1

h + Φ1 (p) · e1h + Pσ

[
−ψ

(
L
)

IA

]
bh > 0

Pσ

[
−ψ

(
L[n]
)

IA

]
bh + A

[n]
h Φ1

(
p[n]
)
e
[n]1
h → Pσ

[
−ψ

(
L
)

IA

]
bh + AhΦ

1 (p) e1h > 0

uh (xh) − uh

(
1
4
e
[n]
h

)
→ uh (xh) − uh

(
1
4
eh

)
> 0.

Notice that inequalities are strict because, by assumption,
(
xh, bh

)
∈ β̃h

(
p, eh, αh, L

)
. Then,

∃N ∈ N such that ∀n > N

−p[n] (0)
(
xh (0) − e

[n]
h (0)

)
− 1 · Pσ

[
−ψ

(
L[n]
)

IA

]
bh > 0

−Φ1
(
p[n]
)
· x1

h + Φ1
(
p[n]
)
· e

[n]1
h + Pσ

[
−ψ

(
L[n]
)

IA

]
bh > 0

Pσ

[
−ψ

(
L[n]
)

IA

]
bh + A

[n]
h Φ1

(
p[n]
)
e
[n]1
h > 0

uh (xh) − uh

(
1
4
e
[n]
h

)
> 0.

(37)

For n < N , choose an arbitrary
(
x

[n]
h , b

[n]
h

)
∈ β̃h

(
p[n], e

[n]
h , α

[n]
h , L[n]

)
6= ∅.

Since ∀n > N , inequalities in (37) do hold true, we also have that ∀n > N, ∃ε[n] ∈ R++ such
that ∀ (ξ, ζ) ∈ B

((
xh, bh

)
, ε[n]

)
we have that

−p[n] (0)
(
ξ − e

[n]
h (0)

)
− 1 · Pσ

[
−ψ

(
L[n]
)

IA

]
ζ > 0

−Φ1
(
p[n]
)
· ξ1 + Φ1

(
p[n]
)
· e

[n]1
h + Pσ

[
−ψ

(
L[n]
)

IA

]
ζ > 0

Pσ

[
−ψ

(
L[n]
)

IA

]
ζ + A

[n]
h Φ1

(
p[n]
)
e
[n]1
h > 0

uh (ξ) − uh

(
1
4
e
[n]
h

)
> 0.

(38)

For any n > N , choose

x
[n]
h = xh + 1√

G+A
min

{
ε[n]

2
, 1

n

}
· 1,

b
[n]
h = bh + 1√

G+A
min

{
ε[n]

2
, 1

n

}
· 1.
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Then, d
((
xh, bh

)
,
(
x

[n]
h , b

[n]
h

))
= min

{
ε[n]

2
, 1

n

}
< ε[n]. Therefore, from (38),

(
x

[n]
h , b

[n]
h

)
∈

β̃h

(
p[n], e

[n]
h , α

[n]
h , L[n]

)
. Moreover,

0 ≤ lim
n→+∞

d
((
xh, bh

)
,
(
x

[n]
h , b

[n]
h

))
≤ lim

n→+∞

1

n
= 0,

i.e.,
(
x

[n]
h , b

[n]
h

)
→
(
xh, bh

)
, as desired. �

6.5 Proof of Theorem 11

The proof of Theorem 11 requires some preliminary results before proceeding.

Define ∆G−1
+ = {p ∈ R

G
+ :
∑S

s=0

∑C

c=1 p
c(s) = 1} and ΠG−1 = {p ∈ R

G :
∑S

s=0

∑C

c=1 p
c(s) =

1}. In what follows, we take for given an economy (e, u, y, α) .

From Proposition 10, we can define the following continuous functions.

xh : ∆G−1
++ × GA,S → R

G, for h ∈ H,

x1 (p, L) = arg max (19),

xh (p, L) = arg max (17), for h ∈ H \ {1},

and
z : ∆G−1

++ × GA,S → R
G, (p, L) 7→

∑

h∈H
(xh(p, L) − eh) . (39)

Define also
ψ : ∆G−1

+ × GA,S → R
SA, (p, L) 7→ R(p, y). (40)

We say that a vector (p∗, L∗) is a reduced image - Mr. 1 equilibrium for the economy(
e, u, y, α

)
∈ E , if there exists x∗ such that (x∗, p∗, L∗) is an image - Mr. 1 equilibrium for that

economy.

Proposition 20. A vector (p∗, L∗) is a reduced image - Mr. 1 equilibrium for the economy(
e, u, y, α

)
∈ E if

1. z (p∗, L∗) = 0 and
2. 〈ψ (p∗, L∗)〉 ⊆ L∗.

In the next result we list some properties of the function z in (39) we will need in the proof
of Lemma 23.

Lemma 21. 1. z is continuous;
2. z satisfies Walras’ law;
3. z is bounded from below;
4. z satisfies the boundary condition, i.e., if (p[n], L[n]) → (p̄, L̄) with p̄ ∈ ∂∆G−1

+ , then
‖z(p[n], L[n])‖ → ∞.
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Proof. 1. It follows from Proposition 10.
2. It follows from household budget constraints.
3. From market clearing, for every s, c, zc (s) is bounded below by −

∑
h∈H e

c
h(s).

4. It follows from the budget constraint and the strict monotonicity of uh.

In the proof of Theorem 11 we are going to use the following result contained in Husseini et
al. [1990].

Theorem 22 (A Grassmannian Brouwer-like fixed point theorem). Let HN be an N-dimensional
affine subspace, C ⊂ HN a compact convex subset with nonempty relative interior and let

Φ : C × GA,S → HN , Ψ : C × GA,S → R
AS

be continuous functions such that Φ(∂C, L) ⊆ C,∀L ∈ GA,S. Then there exists (p̄, L̄) such that

Φ(p̄, L̄) = p̄, 〈Ψ(p̄, L̄)〉 ⊆ L̄.

A crucial role in the application of the above theorem is played by the following lemma. We
present the proof of the lemma in the case, analyzed in the present paper, in which the return
space is described as a Grassmannian manifold. In fact, Husseini et al. [1990] presented instead
the proof in the case of Stiefel manifolds.

Lemma 23. There exists a continuous function α : ∆G−1
+ ×GA,S → [0, 1] such that the function

φ : ∆G−1
+ × GA,S → ΠG−1 defined by

φ(p, L) = α(p, L) ((pc (s) + pc (s) zc (s) (p, L)))s,c + (1 − α(p, L))u, (41)

where u = ( 1
G
, . . . , 1

G
) ∈ R

G, satisfies

1. φ(∂∆G−1
+ , L) ⊆ ∆G−1

+ , ∀L ∈ GA,S;

2. φ(p, L) = p⇔ z(p, L) = 0.14

Proof. Define

Vj =

{
(p, L) ∈ ∆G−1

++ × GA,S : zj(p, L) > 0, pj <
1

G

}
, j ∈ {1, . . . , G}

and K =
(
∆G−1

++ × GA,S

)
\
(⋃G

j=1 Vj

)
. We are going to prove that K is closed in ∆G−1

+ × GA,S.

Since GA,S is a metric space, also ∆G−1
+ ×GA,S is a metric space. Thus it is enough to prove that

K is sequentially closed, i.e., that the limit point of any convergent sequence of elements of K
belongs to K.

Rewriting K as follows

K =

{
(p, L) ∈ ∆G−1

++ × GA,S : ∀j ∈ {1, . . . , G}, zj(p, L) ≤ 0 or pj ≥
1

G

}

14Notice that, although z in (39) is defined only on ∆G−1
++ × GA,S , the function φ is defined on ∆G−1

+ × GA,S

because, by construction, α
(
∂∆G−1

+ × GA,S

)
= 0 and thus φ

(
∂∆G−1

+ × GA,S

)
= u.
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and recalling that GA,S is compact, and thus closed, it is clear that the only way in which
the limit point (p̄, L̄) of a sequence (p[n], L[n]) of elements of K does not belong to K is that
p̄ ∈ ∂∆G−1

+ . However this is prevented by the boundary condition and the continuity of z on
K. Indeed, if p̄ ∈ ∂∆G−1

+ , then there exists j ∈ {1, . . . , G} such that p̄j = 0. Hence there exists

n̄ ∈ N such that, for every n ≥ n̄, p
[n]
j < 1

G
. By definition of K and recalling that z is bounded

from below, we then have −
∑

h∈H eh(j) ≤ zj(p
[n], L[n]) ≤ 0 and thus, by the continuity of z,

it holds that −
∑

h∈H eh(j) ≤ zj(p̄, L̄) ≤ 0. On the other hand, by the boundary condition,
zj(p

[n], L[n]) → +∞. The contradiction is found.
Notice that K ∩

(
∂∆G−1

+ × GA,S

)
= ∅ and that ∂∆G−1

+ ×GA,S is closed in ∆G−1
+ ×GA,S. Recalling

that any metric space is normal15 and that on normal spaces the Urysohn Lemma16 applies, there
exists a continuous function α : ∆G−1

+ ×GA,S → [0, 1] such that α(K) = 1 and α(∂∆G−1
+ ×GA,S) =

0. Let us then check that the function φ in (41) has ΠG−1 as codomain and satisfies 1. and 2.
As regards the codomain of φ, fix (p, L) ∈ ∆G−1

+ × GA,S. Then
∑G

j=1 pj = 1 and recalling that z
obeys Walras’ law, it holds that

G∑

j=1

φj(p, L) =
G∑

j=1

(
α(p, L)(pj + pj zj(p, L)) + (1 − α(p, L))

1

G

)
=

α(p, L)
G∑

j=1

(pj + pj zj(p, L)) + (1 − α(p, L))
G∑

j=1

1

G
= α(p, L)

G∑

j=1

pj zj(p, L) + 1 = 1,

i.e., φ(∆G−1
+ × GA,S) ⊆ ΠG−1, as desired.

In regard to 1., as we already know that φ(∂∆G−1
+ × GA,S) ⊆ ΠG−1, in order to show that

φ(∂∆G−1
+ ×GA,S) ⊆ ∆G−1

+ , it is enough to check that φj(p, L) ≥ 0, for every (p, L) ∈ ∂∆G−1
+ ×GA,S

and j ∈ {1, . . . , G}. Since α(∂∆G−1
+ × GA,S) = 0, it holds that, for (p, L) ∈ ∂∆G−1

+ × GA,S,
φj(p, L) = 1

G
≥ 0.

Let us finally prove 2. Assume that z(p, L) = 0 and show that φ(p, L) = p. If z(p, L) = 0
then zj(p, L) ≤ 0 for every j and so (p, L) ∈ K. Hence, α(p, L) = 1 and thus φj(p, L) =
pj + pj zj(p, L) = pj, for every j, as desired.

Assume now that φ(p, L) = p and show that z(p, L) = 0. Notice that

∆G−1
+ × GA,S =

(
∂∆G−1

+ × GA,S

)
∪K ∪

(
G⋃

j=1

Vj

)

and that ∂∆G−1
+ ×GA,S, K and

⋃G

j=1 Vj are pairwise disjoint. If (p, L) ∈ ∆G−1
+ ×GA,S, then there

are three cases to consider, i.e., (p, L) ∈ ∂∆G−1
+ × GA,S, (p, L) ∈ K and (p, L) ∈ Vj∗ , for some

j∗ ∈ {1, . . . , G}. We claim that only in the second case it may happen that φ(p, L) = p. Indeed,
in the first case φ(p, L) =

(
1
G
, . . . , 1

G

)
/∈ ∂∆G−1

+ . In the third case, by definition of Vj∗ , we would
have

pj∗ = φj∗(p, L) = α(p, L)(pj∗ + pj∗ z(j
∗)(p, L)) + (1 − α(p, L))

1

G
>

15A topological space X is called normal if for any pair of closed disjoint subsets C1 and C2 of X there exists
a pair of open disjoint subsets O1 and O2 of X, with O1 ⊃ C1 and O2 ⊃ C2.

16We recall that the Urysohn lemma says that given two disjoint closed subsets C1 and C2 of a normal space
X, there exists a continuous function f : X → [0, 1] such that f(C1) = 0 and f(C2) = 1.
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α(p, L)(pj∗ + pj∗ z(j
∗)(p, L)) + (1 − α(p, L))pj∗ = pj∗ + α(p, L)pj∗ z(j

∗)(p, L) ≥ pj∗ ,

a contradiction. Thus φ(p, L) = p only if (p, L) ∈ K and in this case, as α(p, L) = 1, it
follows that, for every j ∈ {1, . . . , G}, pj = φj(p, L) = pj + pj zj(p, L), from which, since pj > 0,
we have zj(p, L) = 0, as desired.

Proof of Theorem 11 . We want to apply Theorem 22, identifying Φ and Ψ with φ in (41) and
ψ in (40), respectively. ΠG−1 is an affine subspace of R

G and ∆G−1
+ ⊂ ΠG−1 is clearly a compact,

convex subset with nonempty relative interior. φ is a continuous function from Lemma 21 and
from the fact that α is a continuous function from Lemma 23. Again from the latter lemma, we
have that φ(∂∆G−1

+ , L) ⊆ ∆G−1
+ , ∀L ∈ GA,S. Finally, from Theorem 22 and Proposition 20, the

desired result follows. �

6.6 Proof of Theorem 12

Let V be a topological Hausdorff vector space, V ⊆ V be an open set and f : V → R
n be a

function. We say that f ∈ C0(V,Rn) if f is continuous, while f ∈ C1(V,Rn) if it is continuous,
there exists the limit

df(v, w) = lim
ε→0

f(v + εw) − f(v)

ε
, ∀v ∈ V,w ∈ V ,

and the function df : V × V → R
n is continuous.

Given any (not necessarily open) set X ⊆ V , and f : X → R
n, we say f ∈ C0(X,Rn)

if f is continuous with respect to the topology induced by V on X, while, as in the finite
dimensional setting, f ∈ C1(X,Rn) if for every v0 ∈ X there exists an open neighborhood of
v0 in V , say V (v0), and a function f : V (v0) → R

n such that f ∈ C1(V (v0),R
n) and, for every

v ∈ V (v0) ∩X, f(x) = f(x).
Those definitions allow to state the following implicit function theorem which is a simplified

version of Theorem 2.3 in Glöckner [2006].

Theorem 24. Let us consider f : O × V → R
n, where O is an open subset of R

n and V
is an open subset of a topological Hausdorff vector space V . Assume f ∈ C1(O × V,Rn) and
let (x0, v0) ∈ O × V such that f(x0, v0) = 0 and Dxf(x0, v0) is invertible.17 Then there exist
O(x0) ⊆ O open neighborhood of x0, V (v0) ⊆ V open neighborhood of v0 and g : V (v0) → O(x0)
such that

1. g ∈ C1(V (v0), O(x0)),

2. g(v0) = x0,

3. {(x, v) ∈ O(x0) × V (v0) : f(x, v) = 0} = {(x, v) ∈ O(x0) × V (v0) : x = g(v)}.

Proof of Theorem 12.
Step 1.

17Note that if f ∈ C1(O × V,Rn) then, for every v ∈ V , f(·, v) : O → R
n, x 7→ f(x, v), belongs to C1(O,Rn)

and thus, for every (x, v) ∈ O × V, Dxf(x, v) is well defined.
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Define, for each σ ∈ Σ,

Ξσ = R
GH
++ × R

(S+1)H × R
AH × R

SH × R
G
++ × R

A × Vσ−1 , (42)

with generic element

ξ =
(
(xh, λh, bh, µh)h∈H , p, q, L

)
= (x, λ, b, µ, p, q, L) ,

and the function
Fσ : Ξσ × E → R

dim(Ξσ),

Fσ (ξ, e, u, y, α) =




(43.1) Dxh(s)uh(xh) − λh(s)p(s)

(43.2) −Φ(p) (xh − eh) +




−q

Pσ

[
−ψ(L)
IA

]

 bh

(43.3) λh




−q

Pσ

[
−ψ(L)
IA

]

+ µhPσ

[
−ψ(L)
IA

]

(43.4) min

{
µh, Pσ

[
−ψ(L)
IA

]
bh +AhΦ1 (p) e1h

}

(43.5)
H∑

h=1

(
x
\
h − e

\
h

)

(43.6)
H∑

h=1

bh

(43.7) p1(s) − 1

(43.8) vec [IS−A | ψ (L)] · Pσ−1 · R (p, y)




(43)

where ψ : Vσ−1 → M(S − A,A) is the diffeomorphism in (14), with Vσ−1 ⊆ GA,S open.
For simplicity and without loss of generality, from now on we consider the case Pσ = Id, so

that Fσ becomes F : Ξ × E → R
dim(Ξ).

We now show that border line cases are rare. For every h ∈ H, we define S1
h,S

2
h and Ŝ1

h so

that {1, . . . , S} = S1
h ∪ S2

h, with
(
S1

h \ Ŝ1
h

)
∩ S2

h = ∅ and Ŝ1
h ⊆ S1

h, in order to have

s ∈ S1
h\Ŝ

1
h ⇒ m (s) · bh + αh (s) · p (s) eh (s) = 0

s ∈ Ŝ1
h ⇒ m (s) · bh + αh (s) · p (s) eh (s) = 0 and µh (s) = 0

s ∈ S2
h ⇒ µh (s) = 0,

where we have denoted by m(s) the s-th row of

[
−ψ(L)
IA

]
.
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Define ŷ = (ya,1(s))a∈A, s∈{1,...,S−A} and the full rank matrix

B =




p1(1)
. . .

p1(1)
. . .

p1(S −A)
. . .

p1(S −A)




.

The computation of the desired (partial) Jacobian matrix is presented in the table below,
where the following conventions are adopted.

(a) The symbol ⊚ denotes a matrix which is insignificant for our argument, while no symbol
means 0. For size convenience, just in the table below, we set

R (q) =




−q
−ψ(L)
I


 and R =

[
−ψ(L)
I

]
.

(b) The ∗ next to a matrix indicates that it is a full row rank matrix.
(c) The desired full rank result is obtained as follows. In each super-row, use the starred

matrix to clean up that super-row, being sure that in that super-column there are only zero
matrices. An order in which the appropriate elementary (super) column operations have to be
performed is the one indicated in the last column of the table.

32



D2u1∗
[
−p(0)

0

] [
0

−Φ1(p)

] ⊚ 5

−Φ(p) R(q) Φ(p1)∗ ⊚ ⊚ 3

qT RT ∗ RT 7

⊚
[
Z1

1

∣∣ 0
]
∗

⊚ ⊚ ⊚ 2

[
0
∣∣ I

S2
1

]
∗

8

. . .
. . .

.

.

.

D2uH∗
[
−p(0)

0

] [
0

−Φ1(p)

] ⊚ 5

−Φ(p) R(q) Φ(p1)∗ ⊚ 3

qT RT ∗ RT 7

⊚
[
Z1

H

∣∣ 0
]
∗

⊚ ⊚ 2

[
0
∣∣ I

S2

H

]
∗

9

0I\ · · · 0I\ I∗ 4

I · · · I∗ 6

1∗ 10

[
I
Ŝ1
1

∣∣
0

∣∣
0

]
∗

8

. . .
.
.
.

[
I
Ŝ1

H

∣∣
0

∣∣
0

]
∗

9

B∗ ⊚ 1



where, for h ∈ H, we have set Z1
h equal to the square diagonal matrix with elements p(s)eh(s),

for s ∈ S1
h, on the diagonal. Moreover

Φ
(
p1
)

=




p1 (0)
p1 (1)

. . .

p1 (S)


 .

Step 2.
After having shown that border line cases are rare, we are going to prove that in a full

measure subset of R
GH
++ × R

CAS, the return matrix R(p, y) has full rank. Actually, we are going

to show that its square A-dimensional submatrix R̂(p, y) has full rank, where

R̂(p, y) =




p(S −A+ 1)y1(S −A+ 1) · · · p(S −A+ 1)ya(S −A+ 1) · · · p(S −A+ 1)yA(S −A+ 1)
...

...
...

p(S −A+ a)y1(S −A+ a) . . . p(S −A+ a)ya(S −A+ a) . . . p(S −A+ a)yA(S −A+ a)
...

...
...

p(S)y1(S) . . . p(S)ya(S) . . . p(S)yA(S)



,

by showing that 0 is a regular value for the function (F,G) : Ξ×E ×R
A → R

dim(Ξ)+(A+1), where

G : Ξ × E × R
A → R

A+1, (ξ, e, u, y, α, d) 7→ (d · R̂(p, y), dd− 1).

Calling T the Jacobian matrix in the previous page, we then have to show that the following
matrix [

T ⋆ 0

0 N R̂(p, y)
0 0 2dT

]

has full rank, where the last two columns are the derivatives with respect to ̂̂y and d, respectively,

with ̂̂y defined hereinafter.
As d = (d(S−A+a))a∈A is such that dd = 1, then there exists ā ∈ A such that d(S−A+ā) 6=

0. Then we set ̂̂y = (ya,1(S − A+ ā))a∈A ∈ R
A. Notice that

d · R̂(p, y) =




∑A

j=1 d(S −A+ j)p(S −A+ j)y1(S −A+ j)
...∑A

j=1 d(S −A+ j)p(S −A+ j)ya(S −A+ j)
...∑A

j=1 d(S −A+ j)p(S −A+ j)yA(S −A+ j)




and thus

N =




d(S −A+ ā)p1(S −A+ ā)
. . .

d(S −A+ ā)p1(S −A+ ā)
. . .

d(S −A+ ā)p1(S −A+ ā)



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which has clearly full rank. This concludes the proof of the step.
Step 3.
The proof is given in Proposition 25 below.
Step 4.
Apply Theorem 24.

�

Recalling the definition of Ξσ in (42), we rewrite the function Fσ : Ξσ ×E → R
dim(Ξσ) in (43)

as

Fσ (ξ, e, u, y, α) =




(44.1) Dxh(s)uh(xh) − λh(s)p(s)

(44.2)

−p(0)(xh(0) − eh(0)) − qbh

−p(s)(xh(s) − eh(s)) −
A∑

a=1
mσ−1(s)ab

a
h, σ−1(s) ∈ {1, . . . , S −A}

−p(s)(xh(s) − eh(s)) + b
σ−1(s)−(S−A)
h , σ−1(s) ∈ {S −A+ 1, . . . , S}

(44.3)
−λh(0)qσ−1(s)−(S−A) −

S−A∑
σ−1(s)=1

(λh(s) + µh(s))mσ−1(s)(σ−1(s)−(S−A))+

+λh(s) + µh(s), σ−1(s) ∈ {S −A+ 1, . . . , S}

(44.4) min

{
µh, Pσ

[
−ψ(L)
IA

]
bh +AhΦ1 (p) e1h

}

(44.5)
H∑

h=1

(
x
\
h − e

\
h

)

(44.6)
H∑

h=1

bh

(44.7) p1(s) − 1

(44.8) vec [IS−A | ψ (L)] · Pσ−1 · R (p, y)




(44)
where L ∈ Vσ−1 and ψ(L) = (msa)s∈{1,...,S−A}, a∈A ∈ M(S − A,A).

We also recall that a function f : A → B, with A and B topological spaces, is proper if, for
every K ⊆ B compact set, f−1(K) ⊆ A is compact as well. We also recall that any proper and
continuous function is closed, i.e., it maps closed sets onto closed sets.

Proposition 25. Fσ is continuous on Ξσ × E and

π :
⋃

σ∈Σ

F−1
σ (0) → E , (ξ, e, u, y, α) 7→ π (ξ, e, u, y, α) = (e, u, y, α)

is proper.

Proof. The continuity of Fσ is immediate. In order to show that π is proper, we have to prove that
each sequence (ξ[n], e[n], u[n], y[n], α[n])n∈N in

⋃
σ∈Σ F−1

σ (0), such that (e[n], u[n], y[n], α[n]) converges
in E , admits a converging subsequence in

⋃
σ∈Σ F−1

σ (0). Since GA,S is sequentially compact, let
us assume that

(e[n], u[n], y[n], α[n], L[n]) → (e, u, y, α, L) ∈ E × GA,S.
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Therefore there exists σ ∈ Σ such that L ∈ Vσ−1 and for sufficiently large n, L[n] ∈ Vσ−1 , too.
Without loss of generality we can assume that Pσ = Id, so that Fσ simply becomes

F (ξ, e, u, y, α) =




(45.1) Dxh(s)uh(xh) − λh(s)p(s)

(45.2)

−p(0)(xh(0) − eh(0)) − qbh

−p(s)(xh(s) − eh(s)) −
A∑

a=1
msab

a
h, s ∈ {1, . . . , S −A}

−p(s)(xh(s) − eh(s)) + b
s−(S−A)
h , s ∈ {S −A+ 1, . . . , S}

(45.3) −λh(0)qa −
S−A∑
s=1

(λh(s) + µh(s))msa + λh(S −A+ a) + µh(S −A+ a)

(45.4) min

{
µh,

[
−ψ(L)
IA

]
bh +AhΦ1 (p) e1h

}

(45.5)
H∑

h=1

(
x
\
h − e

\
h

)

(45.6)
H∑

h=1

bh

(45.7) p1(s) − 1

(44.8) vec [IS−A | ψ (L)] · R (p, y)




(45)
Then it suffices to show that, up to a subsequence, (ξ[n])n∈N converges to a certain ξ ∈ Ξ :
indeed the condition F(ξ, e, u, y, α) = 0 follows by the continuity of F . As we are going to use
a diagonal argument, every time we say that a sequence converges we mean it has a converging
subsequence. Let us start with the convergence of x[n]. For a fixed h ∈ H, we know that, for
every n ∈ N,

(
x

[n]
h , b

[n]
h

)
is solution to the problem

max
(xh,bh)

u
[n]
h (xh)

s.t. −p[n] (0)
(
xh (0) − e

[n]
h (0)

)
− q[n]bh = 0 (1)

−Φ1
(
p[n]
) (
x1

h − e
[n]1
h

)
+

[
−ψ(L[n])

IA

]
bh = 0 (2)

[
−ψ(L[n])

IA

]
bh + A

[n]
h Φ1

(
p[n]
)
e
[n]1
h ≥ 0 (3)

and then, since (e
[n]
h , 0) belongs to the constraint set, it has to be u

[n]
h (x

[n]
h ) ≥ u

[n]
h (e

[n]
h ). Since

(e
[n]
h )n∈N converges to eh ∈ R

G
++, it holds that the compact set Eh =

{
e
[n]
h

}
n∈N

∪ {eh} is a subset

of R
G
++ and we have

u
[n]
h (x

[n]
h ) ≥ u

[n]
h (e

[n]
h ) ≥ min

xh∈Eh

u
[n]
h (xh) ≥ min

xh∈Eh

uh(xh) − ε[n],

for a suitable sequence (ε[n])n∈N in R++ such that ε[n] → 0 if n → ∞, by the definition of the
topology on C2(RG

++). Indeed we can define, for every n ∈ N,

ε[n] = max
w∈Eh

∣∣u[n]
h (w) − uh (w)

∣∣.
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Let x∗h ∈ Eh be such that minxh∈Eh
uh(xh) = uh(x

∗
h), and let 1 = (1, . . . , 1) ∈ R

G and δ > 0 be
small enough such that x∗h − 2δ1 ∈ R

G
++. Obviously, since by (2), uh(x

∗
h) > uh(x

∗
h − δ1), there

exists n1 such that n ≥ n1 implies uh(x
∗
h) − ε[n] ≥ uh(x

∗
h − δ1) and thus, for every n ≥ n1,

u
[n]
h (x

[n]
h ) ≥ uh(x

∗
h − δ1). (46)

Of course, because of the validity of S + 1 Walras’ laws in our model, we can also assume that,
for every n ≥ n1,

0 ≪ x
[n]
h ≤

H∑

h=1

e
[n]
h ≤

H∑

h=1

eh + 1.

Our purpose now is to prove that for infinite values of n it is uh(x
[n]
h ) ≥ uh(x

∗
h − 2δ1). Let

x̂h ∈
[
0,
∑H

h=1 eh + 1
]

be a cluster point of (x
[n]
h )n≥n1 . Then we can assume x

[n]
h → x̂h. Consider

any x̃h ∈ R
G
++ such that uh(x̃h) = uh(x

∗
h − 2δ1). If we take n large enough, by (46), it is

u
[n]
h (x

[n]
h ) − u

[n]
h (x̃h) ≥ 0. Then, for n sufficiently large,

0 ≤ u
[n]
h (x

[n]
h ) − u

[n]
h (x̃h) ≤ Dxh

u
[n]
h (x̃h)(x

[n]
h − x̃h)

=
(
Dxh

u
[n]
h (x̃h) −Dxh

uh(x̃h)
)
(x

[n]
h − x̃h) +Dxh

uh(x̃h)(x
[n]
h − x̃h).

Taking the limit as n→ ∞ in the previous inequality, we get

Dxh
uh(x̃h)(x̂h − x̃h) ≥ 0.

Then
x̂h ∈

⋂

x̃h∈{y∈RG
++:uh(y)=uh(x∗

h
−2δ1)}

{
y ∈ R

G : Dxh
uh(x̃h)(y − x̃h) ≥ 0

}
. (47)

Since the right hand side of (47) is exactly {y ∈ R
G : uh(y) ≥ uh(x

∗
h − 2δ1)}, which is a subset

of R
G
++ by (4), then x̂h ∈ R

G
++ and the proof is complete. As regards the convergence of λ[n],

from (45.1), (45.7) and (2) we find that, for every h ∈ H and s ∈ S,

λ
[n]
h (s) = Dx1

h
(s)u

[n]
h (x

[n]
h ) → Dx1

h
(s)uh(xh) = λh(s) ∈ R++,

since Dx1
h
(s)u

[n]
h → Dx1

h
(s)uh uniformly on compact subsets of R

G
++. Then, from (45.1) and (2), it

follows that, for every s ∈ S,

p[n](s) =
Dxh(s)u

[n]
h (x

[n]
h )

λ
[n]
h (s)

→
Dxh(s)uh(xh)

λh(s)
= p(s) ∈ R

C
++

and thus (p[n])n∈N converges to an element p ∈ R
G
++.

By (45.2) we then immediately get the convergence of b
[n]
h to an element bh ∈ R

A.

Let us now check the convergence of µ
[n]
h . Let us set S ′

h = {s ∈ S ′ : µ
[n]
h (s) → 0} and S ′′

h = S ′\S ′
h.

We have only to show that µ
[n]
h (s) is convergent for s ∈ S ′′

h . From (45.3) it follows that

λ
[n]
h (0)q[n]b

[n]
h = −

S−A∑

s=1

A∑

a=1

(λ
[n]
h (s)+µ

[n]
h (s))m[n]

sa b
[n]a
h +

A∑

a=1

(
λ

[n]
h (S − A+ a) + µ

[n]
h (S − A+ a)

)
b
[n]a
h =
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−
S−A∑

s=1

A∑

a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h +

A∑

a=1

λ
[n]
h (S − A+ a)b

[n]a
h −

∑

s∈{1,...,S−A}∩S′
h

A∑

a=1

µ
[n]
h (s)m[n]

sa b
[n]a
h +

∑

s∈{S−A+1,...,S}∩S′
h

µ
[n]
h (s)b

[n](s−(S−A))
h −

∑

s∈{1,...,S−A}∩S′′
h

A∑

a=1

µ
[n]
h (s)m[n]

sa b
[n]a
h +

∑

s∈{S−A+1,...,S}∩S′′
h

µ
[n]
h (s)b

[n](s−(S−A))
h .

If for s ∈ S ′′
h , µ

[n]
h is bounded above, then it admits a convergent subsequence and we are done.

Suppose otherwise. Then, µ
[n]
h is not bounded above and there exists a subsequence converging

to +∞. Notice that if s ∈ S ′′
h there exists n(s) ∈ N such that µ

[n]
h > 0, for all n ≥ n(s) and thus∑

am
[n]
sa b

[n]a
h = α

[n]
h (s)p[n](s)e

[n]
h (s), if s ∈ {1, . . . , S −A} and b

[n](s−(S−A))
h = −α

[n]
h (s)p[n](s)e

[n]
h (s),

if s ∈ {S−A+1, . . . , S}. Set then n∗ = max{n(s) : s ∈ S ′′
h} and for n ≥ n∗ the above expression

becomes

−
S−A∑

s=1

A∑

a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h +

A∑

a=1

λ
[n]
h (S − A+ a)b

[n]a
h −

−
∑

s∈{1,...,S−A}∩S′
h

A∑

a=1

µ
[n]
h (s)m[n]

sa b
[n]a
h +

∑

s∈{S−A+1,...,S}∩S′
h

µ
[n]
h (s)b

[n](s−(S−A))
h −

−
∑

s∈{1,...,S−A}∩S′′
h

µ
[n]
h (s)α

[n]
h (s)p[n](s)e

[n]
h (s) +

∑

s∈{S−A+1,...,S}∩S′′
h

µ
[n]
h (s)(−α

[n]
h (s)p[n](s)e

[n]
h (s)) =

−

S−A∑

s=1

A∑

a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h +

A∑

a=1

λ
[n]
h (S − A+ a)b

[n]a
h −

∑

s∈{1,...,S−A}∩S′
h

A∑

a=1

µ
[n]
h (s)m[n]

sa b
[n]a
h +

+
∑

s∈{S−A+1,...,S}∩S′
h

µ
[n]
h (s)b

[n](s−(S−A))
h −

∑

s∈S′′
h

µ
[n]
h (s)α

[n]
h (s)p[n](s)e

[n]
h (s)

and thus from (45.2) we obtain

−λ
[n]
h (0)p[n](0)(x

[n]
h (0)−e

[n]
h (0)) = λ

[n]
h (0)q[n]b

[n]
h = −

S−A∑

s=1

A∑

a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h +

A∑

a=1

λh(S−A+a)b
[n]a
h −

−
∑

s∈{1,...,S−A}∩S′
h

A∑

a=1

µ
[n]
h (s)m[n]

sa b
[n]a
h +

∑

s∈{S−A+1,...,S}∩S′
h

µ
[n]
h (s)b

[n](s−(S−A))
h −

∑

s∈S′′
h

µ
[n]
h (s)α

[n]
h (s)p[n](s)e

[n]
h (s).

Letting n→ ∞ we find

S−A∑

s=1

A∑

a=1

λh(s)msab
a

h −

A∑

a=1

λh(S −A+ a)b
a

h − λh(0)p(0)(xh(0)− eh(0)) = −
∑

s∈S′′
h

µh(s)αh(s)p(s)eh(s)

and thus, if µh(s) = +∞ for some s, we would find that the left hand side should be −∞, which
is impossible, as all its terms are finite. Thus µh(s) ∈ R, for every s, as desired.
Finally, from (45.3) we easily get that also qa is convergent, for every a ∈ A. The proof is
complete.
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