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Abstract

This paper addresses the e�ects of indeterminacy on the volatility of asset

prices in a stochastic overlapping generations model with 3-period lived agents.

With complete markets, the only indeterminacy is due to the selection of initial

conditions for the economy. As with deterministic economies, the equilibrium

set converges to the steady state in the long run. With incomplete markets,

not only do the initial conditions introduce indeterminacy, but additionally

each period a continuum of state price vectors can be selected as equilibrium

continuation values. This additional indeterminacy in each period generates

long-run price behavior that depends on both the fundamentals of the economy

and the endogenous price expectations of agents. Using our innovative compu-

tational methodology, we characterize the entire set of sequential equilibria for

an incomplete markets economy. Our numerical simulations suggest that asset

price volatility has substantial welfare e�ects, persists in the long run, and is

primarily driven by the endogenous price expectations of agents and not by

endowment risk.
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1 Introduction

Using a stochastic overlapping generation (OLG) model with 3-period lived agents,
this paper characterizes the degree of indeterminacy in settings with both complete
and incomplete �nancial markets. In the case of incomplete markets, indeterminacy
is introduced in each period as the vector of possible equilibrium state prices is a
manifold of dimension equal to the market de�ciency (states of uncertainty minus
number of assets). The characterization of indeterminacy in this setting is carried
out by computing the entire set of sequential equilibria, and then running simula-
tions of the economy by using a �xed selection rule to select sequences of equilibrium
variables from the set.

It is well known that a deterministic OLG economy may have a continuum of
equilibria [though not the �rst contribution, see Kehoe and Levine (1990) for the
cleanest treatise on the issues involved]. To avoid such indeterminacy, strong su�-
cient conditions are required for the uniqueness of the equilibrium in these economies.
In an OLG model with a single commodity and homogeneous 2-period lived agents,
Gale (1973) shows that the su�cent condition for uniqueness is gross substitution in
consumption. This result has been extended to a multi-commodity economy where
homogeneous 2-period lived agents have either log-linear preference [Balasko and
Shell (1981)] or inter-temporally separable preferences [Geanakoplos and Polemar-
chakis (1984); Kehoe and Levine (1984)]. Kehoe, Levine, Mas-Colell, and Woodford
(1991) further extend these results to a multi-commodity, heterogeneous agent, non-
monetary, pure-exchange economy and show that gross substitutability of excess
demand ensures the determinacy of perfect-foresight equilibria.

Unlike the deterministic OLG model, less is known about indeterminacy in the
stochastic OLG model. General conditions for either the existence or nonexistence
of indeterminacy in this setting are unavailable. Several papers provide examples
showing the existence of a continuum of stationary Markov equilibria in a stochas-
tic OLG economy (Farmer and Woodford, 1984; Spear, Srivastava, and Woodford,
1990).1 Our paper, however, suggests that it is short-sighted to only look at station-
ary Markov equilibria. By only looking at stationary Markov equilibria, the volatility
of aggregate variables (such as prices) will be solely determined by the distribution
of the exogenous shock, and not by individual endogenous variables, which could be
much more volatile. Our paper characterizes the entire set of sequential equilibria
by making an appropriate selection from the equilibrium transition correspondence,
and in doing so, we observe that asset prices are an order of magnitude more volatile

1As is standard in the macroeconomic literature, a stationary Markov equilibrium is often

referred to simply as a recursive equilibrium.
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compared to the set of stationary Markov equilibria.
Indeterminacy is not a phenomenon that is unique to the OLG model. It is

often used as a mechanism to explain the propagation e�ects of business cycle. In
monetary models, indeterminacy has been used to explain the transmission of money
through the economy. In growth theory, there are models that use indeterminacy to
explain the di�erence in growth paths across economies with identical fundamentals
[c.f. Benhanbib and Farmer (1998) for a comprehensive survey]. The existence
of indeterminate equilibria poses challenge for economists conducting comparative
statics analysis, meaning that care is taken to choose models with a determinate
equilibrium. However, the su�cient condition for uniqueness in the class of OLG
models considered in this paper is the property of gross substitution in consumption,
which is a property that has been empirically refuted [Mankiw, Rotemberg and
Summers (1985)].

Within the class of OLG models with 3-period lived agents, previous papers have
only characterized equilibria in a local neighborhood around the steady state and
have done so by linearizing the equilibrium conditions in that neighborhood (Kehoe
and Levine, 1990). Of course, the properties of the linearized system are only valid
in that open neighborhood of the steady state. Since we do not in practice know the
size of this open neighborhood, then we cannot credibly claim that the properties of
the linearized system hold globally. Gomis-Porqueras and Haro (2003) present some
techniques to characterize all manifolds of a given dynamic OLG model, but their
method is only applicable to deterministic models.

In this paper, we characterize the global properties of the system by characteriz-
ing the entire set of sequential equilibria using the novel methodological contribution
from Feng et al. (2012). Our approach provides a measure of the size of indeter-
minacy by �rst computing the numerically obtained equilibrium set (in which the
equilibrium transition is a correspondence), and then running simulations that select
equilibrium variables from the correspondence according to a pre-speci�ed selection
rule. The baseline economy considered in our analysis is a generalization of the de-
terministic economy from Kehoe and Levine (1990), which was speci�cally chosen
since the equilibrium set of the deterministic economy was shown by the authors to
be indeterminate. We introduce a stochastic endowment process into the Kehoe and
Levine (1990) economy, meaning that the endowments at each stage of the life cycle
follow a Markov process.

A standard hypothesis, notably in the works of Spear, Srivastava, and Woodford
(1990) and Wang (1993), is that in a deterministic OLG setting, the set of equilibria
is indeterminate and yet all equilibria in the set converge asymptotically to the
steady state. This fact has been numerically veri�ed by Feng (2012). Numerical
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simulations in that paper reveal that all equilibrium paths, which are selections from
the equilibrium transition correspondences, do in fact converge to the steady state.
The equilibrium paths are completely characterized by the initial period conditions.
This paper proves that these same properties hold for a stochastic OLG economy
with complete markets.

With incomplete markets, as with complete markets, the selection of initial con-
ditions introduces indeterminacy into the model. Additionally, indeterminacy is
introduced in all subsequent periods since the vector of equilibrium state prices is
not uniquely de�ned under incomplete markets. The period-by-period indeterminacy
means that the equilibrium transition is a correspondence, not a function.

While the indeterminacy caused by the initial conditions has no e�ect on the long
run behavior of the economy, the equilibrium transition correspondence introduces
persistent indeterminacy with signi�cant implications for welfare and asset prices.
These implications are characterized through a series of simulations of the economy.
In each simulation, we maintain consistency in our period-by-period selection of
equilibrium variables from the transition correspondence by specifying a selection
rule. For example, one selection rule speci�es that the asset price di�erence across
successive periods is minimized. This particular selection rule is shown to generate
a consumption equivalent welfare gain of 1.3% over an alternative selection rule.

Using our methodology, we can quantify the volatility of asset prices above and
beyond the volatility from the Markov endowment process. To proceed in this direc-
tion, we introduce sunspots into our theoretical framework. In the baseline model,
a Markov process determines which of the states is realized in each period, and each
possible state corresponds to a distinct endowment level for each agent. This is in-
trinsic uncertainty, namely uncertainty about the fundamentals of the economy. In
the model with sunspots, we maintain the same Markov process, but now each state
contains identical fundamentals. This is extrinsic uncertainty, namely uncertainty
that does not a�ect the fundamentals. Over several consistent selection rules, we
show that the sunspot model has nearly as much asset price volatility as the baseline
model with intrinsic uncertainty. From this comparative exercise, we conclude that
only 10% (depending upon the selection rule) of asset price volatility is caused by
the Markov endowment process, with the remaining volatility owing only to agents'
expectations of prices and the indeterminacy generated by incomplete markets.

The remainder of the paper is organized as follows. Section 2 introduces the
model and shows how we extend the Kehoe and Levine (1990) setting by introduc-
ing a Markov endowment process. Section 3 provides the theory that supports the
computational procedure and describes how the simulations are conducted. Sections
4 presents the results of the simulations, including the analysis of the e�ects of inde-
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terminacy on the long run behavior of the economy. Section 5 shows how the method
can be applied to compute the set of stationary Markov equilibria, and analyzes how
much of the long run behavior of the economy is omitted when imposing the station-
ary Markov equilibrium concept. Section 6 concludes, and the Appendix contains
further details on the numerical algorithm.

2 Model

The model contains discrete time periods t ≥ 0, and in every period, a new
cohort of agents enters the economy. Each cohort consists of a representative agent
that remains in the economy for 3 periods. The overlapping generations model
contains stochatic endowment realizations. Time and uncertainty are represented
by a countably in�nite tree Σ. Each node of the tree, σ ∈ Σ, is a �nite history of
shocks σ = st = (s0, s1, ..., st), where the initial shock s0 is randomly determined
with known probabilities π (s0) . The agents are identi�ed by the history of shocks
at birth, σ = st, and the age of the agent, a ∈ {0, 1, 2}. For convenience, an agent of
age a = 2 in period s0 is given the birth period s−2, while an agent of age a = 1 in
period s0 is given the birth period s−1.

At each history st, a single consumption good is traded. The process of shocks
{st} is assumed to be a Markov chain with �nite support S = {1, ..., S} . From the
Markov chain, de�ne π(st+k|st) as the conditional probability that history st+k is
realized given that the current history is st. Further, allow the notation st+1 ≥ st

to indicate that st+1 = (st, s)s∈S contains all S successor nodes of the history st.
Likewise st+2 ≥ st indicates that st+2 = (st, s, s′)s,s′∈S contains all S2 histories that
can be observed 2 periods after the history st.

2.1 Financial assets

For each history st, there exist N short-lived assets with �xed payouts in terms
of the consumption good in all successor histories (st, s)s∈S . The number of assets
N ≤ S, where N = S refers to a complete markets asset structure and N < S refers
to an incomplete markets asset structure. The N assets are indexed by a superscript
j = 1, ..., N. The equilibrium price of asset j in history st is denoted qj(st). The row
vector q(st) contains the asset prices of all N assets. The asset payouts are a Markov
chain such that the payout of asset j traded in history st is given by rj = (rj(s))s∈S
for each of the S possible realizations (st, s)s∈S in period t + 1. Additionally, de�ne
r (s) =

(
r1(s), ..., rN(s)

)
as the vector of portfolio payouts for the realization s. The

5



asset payouts can be collected into the S ×N payout matrix

R =
(
r1, ..., rN

)
= (r (s))s∈S .

The payout matrix is assumed to be a nonnegative and full rank matrix.
Let θja(s

t) denote the amount of asset j purchased by an agent of age a in history
st. Market clearing for assets requires that the net asset holdings of all agents alive
at history st must be zero:

∑1
a=0 θ

j
a(s

t) = 0 ∀j = 1, ..., N. It should be noted that
nobody is willing to purchase assets from agents of age a = 2 as they will no longer
be in the economy in the following period to ful�ll their commitment. The column
vector θa(s

t) contains the entire portfolio of all assets positions of the agent of current
age a in history st.

2.2 Household behavior

An agent born at node st has endowment and makes consumption decisions at all
contingent histories st, (st, s)s∈S , and (st, s, s′)s,s′∈S . An agent's individual endow-
ments follow a Markov process that only depends on the shock and age, i.e., for all
a ∈ {0, 1, 2} and all histories st, ea(s

t+a) = ea(st+a).
For an agent born in history st, de�ne the lifetime contingent consumption vector

as c(st) =
(
c0(st), (c1(st, s))s∈S , (c2(st, s, s′))s,s′∈S

)
∈ R1+S+S2

+ . The agent preferences

are assumed to be identical and are represented by the time-separable utility function
U : R1+S+S2

+ → R

U(c(st)) =
∑2

a=0
βa
∑

st+a≥st
π(st+a|st)u(ca(s

t+a)) (1)

The one-period utility u satis�es the following conditions:

Assumption 2.1 The one-period utility function u : R+ → R∪{−∞} is increasing,
strictly concave, and continuous. These functions are also continuously di�erentiable
at every interior point c > 0.

For simplicity, de�ne θ(st) =
(
θ0(st), (θ1(st, s))s∈S

)
∈ RN(1+S) as the entire vector

of lifetime contingent portfolios for an agent born in history st. Similarly, de�ne the
asset prices q(st) =

(
q(st), (q(st, s))s∈S

)
∈ RN(1+S)

+ as the vector of contingent asset
prices that an agent born in history st will observe in its lifetime. Given asset prices
q(st), an agent born at node st solves
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max
c(st),θ(st)

U(c) (2)

s.t.

c0(st) + q(st) · θ0(st) ≤ e0(st)

c1(st+1) + q(st+1) · θ1(st+1) ≤ e1(st+1) + r (st+1) θ0(st) ∀st+1 ≥ st

c2(st+2) ≤ e2(st+2) + r (st+2) θ1(st+1) ∀st+2 ≥ st

The model contains both a representative agent born in period t = −2 (identi�ed
by birth history s−2) and a representative agent born in period t = −1 (identi�ed by
birth history s−1). Both agents only solve an optimization problem in period t = 0,
where the asset positions θ1(s−1) and θ0(s−1) are �xed parameters of the model.
Market clearing requires that θ1(s−1) + θ0(s−1) = 0.

2.3 Equilibrium

De�nition 1 A sequential competitive equilibrium (SCE) is given by a collection of
prices and choices of individuals {q(st), θ(st), c(st)} such that:

(i) For each st, taking as given the prices q(st), the representative agent born in
st solves (2).

(ii) Market clearing for each st :∑1

a=0
θa(s

t) = 0. (3)

The existence of a SCE can be veri�ed by standard methods [e.g., Balasko and
Shell (1980); Schmachtenberg (1988)]. Moreover, the cited authors prove that every
sequence of equilibrium asset prices {q (st)} is uniformly bounded.

In a deterministic version of the OLG model, it is known [e.g., Kehoe and Levine
(1990)] that a continuum of SCE may exist. The previous literature has veri�ed
the existence of such indeterminacy for the deterministic setting by linearizing the
model around the steady state. They show that when a continuum of SCE exist,
they are characterized completely by the initial asset positions θ1(s−1) and θ0(s−1).
Despite the fact that the equilibrium set is indeterminate, every equilibrium in that
set converges asymptotically to the steady state. Thus, the indeterminacy does not
have any long run implications.

Our computation methodology allows us to compute all SCE in a stochastic set-
ting, not only those contained within the open neighborhood for which the lineariza-
tion method is valid. This is important, because the method is able to show that
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the long run dynamics of SCE are vastly di�erent in a stochastic setting compared
to the deterministic setting.

3 Computation Methodology

In this section, we introduce the transition correspondence that we use to char-
acterize the set of SCE. We refer to the correspondence as the "Markov equilibrium
correspondence." We then provide theoretical results to justify the computational
method and simulation techniques that we will employ to numerically approximate
the set of SCE.

3.1 Computation

Recall that market clearing in any history st is given by θ0(st)+θ1(st) = 0. Using
this fact, we can rewrite the budget constraints faced by agents of all 3 ages alive in
history st :

c0(st)− q(st) · θ1(st) ≤ e0(st) (4)

c1(st) + q(st) · θ1(st) ≤ e1(st)− r (st) θ1(st−1) (5)

c2(st) ≤ e2(st) + r (st) θ1(st−1) (6)

It is clear that the asset position of the household who was born at st−1, θ1(st−1),
and the current shock st summarize the state of the economy.

We de�ne shadow values of investment in each asset as follows:

mj
(
θ1(st−1), st

)
:= qj(st)uc(c1(st)). (7)

Let's assume that theN−dimensional vectorm (θ1(st−1), st) = {mj (θ1(st−1), st)}
N
j=1

is �xed, the previous asset positions θ1(st−1) are known, and the current shock st

is known. The current period variables
{
qj(st), θj1(st)

}N
j=1

, which number 2N, are

determined by the following 2N equilibrium equations:

mj
(
θ1(st−1), st

)
= qj(st)uc

[
e1(st)− q(st) · θ1(st)− r (st) θ1(st−1)

]
(8)

mj
(
θ1(st−1), st

)
= β

∑
st+1∈S

π(st+1|st)uc
[
e2(st+1) + r (st+1) θ1(st)

]
rj (st+1) (9)

where equation (8) is the de�nition of m and holds ∀j = 1, ..., N, and (9) are the
�rst order conditions (with respect to asset choices) of the age a = 1 agent and hold
∀j = 1, ..., N.
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The state variables m (θ1(st−1), st) must also be consistent with the �rst order
conditions (with respect to asset choices) of the age a = 0 agent. This yields the
following S2(N − 1) + SN equilibrium equations:

mj(θ1(st−1),st)
qj(st)

=
m1(θ1(st−1),st)

q1(st)
∀ (st−1, st) ∈ S2

qj(st−1)uc [e0(st−1) + q(st−1) · θ1(st−1)] = β
∑
st∈S

π(st|st−1)
m1(θ1(st−1),st)

q1(st)
rj (st)

. (10)

The second equation of (10) holds ∀j = 1, ..., N and for all possible shocks st−1 ∈ S.

De�nition 2 The Markov equilibrium correspondence V∗ : RN×S→ RN is de�ned
such that for any history st :

V∗
(
θ1(st−1), st

)
=

{
m
(
θ1(st−1), st

)
:

(10) are satis�ed and

∃
{
qj(st), θj1(st)

}N
j=1

satisfying (8) and (9)

}
.

Theorem 3 The Markov equilibrium correspondence V∗ characterizes the entire set
of SCE. Speci�cally, any SCE corresponds to a sequence of selections from the Markov

equilibrium correspondence, where the remaining variables
{
qj(st), θj1(st)

}N
j=1

are de-

terminate solutions of (8) and (9).

Proof. Fix a history st. De�ne ξ =
{
qj(st), θj1(st)

}N
j=1

as the variables and ψ =({
θj1(st−1),mj (θ1(st−1), st)

}N
j=1

, {e1(s), e2(s)}s∈S
)
as the parameters. Variables are

elements of the open set Ξ and parameters are elements of the open set Ψ. We will
de�ne the mapping Φ : Ξ × Ψ → R2N such that Φ (ξ, ψ) = 0 i� (8) and (9) are
satis�ed. In particular, the mapping is de�ned by (ξ, ψ) 7→

q1(st)mj (θ1(st−1), st)− qj(st)m1 (θ1(st−1), st) ∀j = 2, ..., N
m1 (θ1(st−1), st)− q1(st)uc [e1(st)− q(st) · θ1(st)− r (st) θ1(st−1)]
mj (θ1(st−1), st)− β

∑
st+1∈S π(st+1|st)uc [e2(st+1) + r (st+1) θ1(st)] rj (st+1) ∀j = 1, ..., N

.

De�ne the projection ρ : Ξ×Ψ→ Ψ as the parameters ψ such that for some ξ ∈ Ξ :
Φ (ξ, ψ) = 0. This proof will demonstrate that ψ is a regular value of ρ, meaning that
ρ−1 (ψ) contains only regular points of ρ. Using Sard's Theorem [see Villanacci et
al. (2002)], then over a generic subset of parameters, the set of variables solving (8)
and (9) is �nite and for each solution, there exists a C1 bijection from an open set of
parameters to an open set of those solution variables. Further, the bijections across
each of the solutions are disjoint, meaning that the solutions are locally unique. The
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properties of �nite and locally unique are precisely what is meant by a determinate
solution.

The mapping ρ is trivally proper [see Villanacci et al. (2002) for further details].
The proof requires the veri�cation that the derivative matrix Dξ,ψΦ (ξ, ψ) has full
row rank. The derivative matrix Dξ,ψΦ (ξ, ψ) is of the form[

M1 M2

0 M3

]

where the N × N submatrix M1 =

[
{mj (θ1(st−1), st)}

N
j=2 IN−1

−uc [·] + q1(st)ucc [·]
∑

j
mj

m1 θ
j
1(st) 0

]
has

full rank provided that −uc (·) + q1(st)ucc (·)
∑

j
mj

m1 θ
j
1(st) 6= 0. Taking the deriva-

tive with respect to e1(st) guarantees that full rank holds over a generic subset
of parameters (speci�cally, the endowment e1(st)). The N × N submatrix M3 =

−βRT

.. 0 0
0 π(st+1|st)uc [·] 0
0 0 ..

R has full rank given that R has full rank (full col-

umn rank) and uc [·] > 0 by Assumption 2.1. Thus, the derivative matrixDξ,ψΦ (ξ, ψ)
has full row rank, completing the argument.

The correspondence V∗ is recursively de�ned as the �xed point of an operator
B : V→ B(V) that links state variables to future equilibrium states. This operator
incorporates all equilibrium conditions: (8), (9), and (10). The Euler equation is
given by:

qj · uc (c0) = β
mj

+ (θ1, s)

qj+
, (11)

where the prices qj+ satisfy (8) and (9).
The following result is proved in Feng et al. (2012).

Theorem 4 (convergence) Let V0 be a compact-valued correspondence such that
V0 ⊃ V∗. Let Vn = B (Vn−1) , n ≥ 1. Then, Vn → V∗ as n→∞. Moreover, V∗ is
the largest �xed point of the operator B, i.e., if V = B(V), then V ⊂ V∗.

Let's assume that the initial conditions (θ1(s−1), s0) of the economy are �xed. The
initial conditions have dimensionNS. By de�nition of V∗, there existsm (θ1(s−1), s0) ∈
V∗ (θ1(s−1), s0) . Thus the degree of indeterminacy introduced by the initial condi-
tions has dimension SN and is completely summarized by the vector m (θ1(s−1), s0) .

The 2N unknowns
{
qj(s0), θj1(s0)

}N
j=1

are the determinate solutions to the following
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system of 2N equations:

mj (θ1(s−1), s0) = qj(s0)uc [e1(s0)− q(s0) · θ1(s0)− r (s0) θ1(s−1)] (12)

mj (θ1(s−1), s0) = β
∑
s1∈S

π(s1|s0)uc [e2(s1) + r (s1) θ1(s0)] rj (s1) (13)

where equation (12) is the de�nition of m, and equation (13) is the �rst order con-
dition for agent born in period t = −1.

In any future period st, the known variables are the previous period asset positions{
θj1(st−1)

}N
j=1

. What are unknown are the SN asset prices {qj(st−1, s)}j=1,...,N
s∈S , the

SN asset positions {θj(st−1, s)}j=1,...,N
s∈S , and the S2N shadow values {mj (θ1(st−2, s−), s)}j=1,...,N

s−,s∈S .
By construction, the shadow values depend upon the realizations in consecutive pe-
riods. The total number of unknowns is S2N + 2SN.

The equilibrium equations include the S2(N − 1) + SN equations in (10). With
mj (θ1(st−1), st) as unknown variables, the second set of equations are the SN equa-
tions in (9), which must be satis�ed ∀j = 1, ..., N and for all possible shocks st ∈ S.
The third set of equations are variations from (8) and must be satis�ed for all con-
secutive shocks (st−1, st) ∈ S (S2 equations):

m1
(
θ1(st−1), st

)
= q1(st)uc

[
e1(st)− q(st) · θ1(st)− r (st) θ1(st−1)

]
. (14)

The equations (14) are simply the de�nition of m and use the relation in the �rst
equation of (10). The total number of equations is S2N + 2SN, same as the total
number of unknowns.

In settings with either complete or incomplete markets, the indeterminacy intro-
duced by the initial conditions (of degree SN) is present. From Theorem 3, any
additional indeterminacy, which may arise period-by-period, is entirely due to the
Markov equilibrium correspondence. If this correspondence is a function, then no
additional indeterminacy arises. The degree of additional indeterminacy equals the
dimension of indeterminacy in the image of the correspondence.

3.1.1 Complete markets

With complete markets, given Assumption 2.1, the equilibrium consumption is
such that the shadow valuem (θ1(st−1), st) is constant across all time periods, regard-
less of uncertainty realization. This implies that the correspondence V∗ (θ1(st−1), st)
maps into a singleton (a 0−dimensional set). No additional indeterminacy is intro-
duced into the economy beyond the indeterminacy of the initial conditions (θ1(s−1), s0) .
Thus, the total degree of indeterminacy equals SN. The economy is observationally
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equivalent to the deterministic economy and has the same long run properties. The
Markov endowment process is neutralized with complete markets and the only �uc-
tuations in the economy result from the initial conditions, which we know will vanish
in the long run from the study of deterministic economies by Feng (2012).

The e�ects of indeterminacy on the long run economy in deterministic OLG
model, as documented in Feng (2012), can be summarized as follows:

1. The indeterminacy is indexed by the initial conditions and all equilibrium paths
asymptotically converge to the same steady state.

2. The choice of initial conditions results in di�erent transition paths and di�erent
welfare implications.

3.1.2 Incomplete markets

The shadow values are proportional to the equilibrium state prices (equivalently
known as stochastic discount factors in the �nance literature). In a standard 2-period
setting with incomplete markets, the state prices are not uniquely determined, but
belong to a manifold of dimension equal to the market de�ciency (S−N). The exact
same outcome occurs in this stochastic OLG model with incomplete markets. The
additional indeterminacy that is added each and every period is proportional to the
market de�ciency S −N. This is exactly represented in the dimension of the image
of the Markov equilibrium correspondence.

There is no theoretical basis to make comparisons of the degree of indeterminacy,
or its welfare consequences, across economies. Such comparisons require the compu-
tational approximation of the Markov equilibrium correspondence. This is achieved
using the methodological contribution in Feng et al. (2012). The next subsection
discusses how this approximation takes place, but more importantly the types of
simulations of the economy that are carried out. The type of simulations are im-
portant, because we are fundamentally tasked with choosing continuation variables
from a continuum of possible values.

3.2 Simulation

We apply the numerical algorithm detailed in Feng (2012) to approximate the
equilibrium set V∗. It is well established that the presence of rounding and truncation
errors makes it infeasible to numerically compute the exact equilibrium in �nite time.
Following Kubler and Schmedders (2005), we construct a Markov ε-equilibrium as a
collections of policy function and transition function such that the maximum error
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in agents' equilibrium conditions are bounded by some bound ε > 0. The Markov
ε-equilibrium of Kubler and Schmedders (2009) is an approximation of a stationary
Markov equilibrium, but a Markov ε-equilibrium can in principle be constructed as an
approximation to any SCE. The concept of a Markov ε-equilibrium carries meaning
as Kubler and Polemarchakis (2004) verify that in the limit as ε → 0, a Markov
ε-equilibrium approaches a SCE.

In the �nal section of results, we de�ne a second Markov ε-equilibrium to approx-
imate a stationary Markov equilibrium. Our numerical simulations suggest that by
focusing on stationary Markov equilibria, a subset of SCE, we are missing nearly all
of the important long run dynamics of the economy. Thus, besides the issue that
stationary Markov equilibria have been shown to not exist in some OLG settings
[e.g., Kubler and Polemarchakis (2004)], we focus on the computation of SCE to
fully understand the long run dynamics, particularly related to asset price volatility,
of the economy.

De�nition 5 A Markov ε-equilibrium is de�ned in terms of a �nite state space Θ,
a Markov correspondence V : ΘN × S→ RN , and ε > 0, such that:

1. for any (θ, s,m) ∈ graph(V) under the action of operator B, we can generate
a sequence {q(st), θ(st), c(st)} satisfying (8) and (9) with the Euler equation
residuals from (11) bounded above by ε.

2. for any (θ, s,m∗) ∈ graph(V∗) and ε > 0, there exists (θ, s,m) ∈ graph(V)
such that dist {m,m∗} < ε and we can generate a SCE {q(st), θ(st), c(st)} based
on (θ, s,m) by applying operator B.

In all numerical examples we considered, we are able to characterize the Markov
correspondence V at any given ε > 0.

The numerical simulations are run under 4 di�erent selection rules. The selection
rules specify certain properties that the continuation variables must satisfy. The
properties are held constant across all time periods of a particular simulation.

1. Maximize di�erence in asset prices

We choosem (θ1(st−1), st) from the image of the Markov correspondence V (θ1(st−1), st)
such that (8) and (9) are satis�ed and q(st) is such that the di�erence |q(st)− q(st−1)|
is maximized. Formally, we pick m (θ1(st−1), st) such that

q(st−1, st) ∈ arg max
∣∣q(st−1, st)− q(st−1)

∣∣ (15)

s.t.

m
(
θ1(st−1), st

)
∈ V

(
θ1(st−1), st

)
(8) and (9) are satis�ed
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In our numerical simulations, we consider an economy with a single asset, so
the maximization problem (15) is easy to solve. Further, for the economy with
N = 1 and S = 2 (as considered in our simulations), the maximum dimension
of the image of V equals the market de�ciency (S −N = 1) times the number
of possible states (S = 2) for a total dimension of 2. Thus, by choosing an asset
price value q(st−1, st) for each state st that solves (15), we have a determinate
solution period-by-period.

2. Minimize di�erence in asset prices

We choose m (θ1(st−1), st) from the equilibrium set V (θ1(st−1), st) such that
all contemporaneous equilibrium conditions are satis�ed and the corresponding
q(st) is such that the di�erence |q(st)− q(st−1)| is minimized.

3. Maximize di�erence in asset holdings

We choose m (θ1(st−1), st) from the equilibrium set V (θ1(st−1), st) such that
all contemporaneous equilibrium conditions are satis�ed and the corresponding
θ1(st) is such that the di�erence |θ1(st)− θ1(st−1)| is maximized.

4. Minimize di�erence in asset holdings

We choose m (θ1(st−1), st) from the equilibrium set V (θ1(st−1), st) such that
all contemporaneous equilibrium conditions are satis�ed and the corresponding
θ1(st) is such that the di�erence |θ1(st)− θ1(st−1)| is minimized.

4 Indeterminacy and Asset Price Volatility

In this section, we simulate an economy that is derived from Kehoe and Levine
(1990). From the simulation we obtain important implications of indeterminacy on
the long run behavior of the economy.

4.1 Numerical speci�cations

There is an exogenous shock that a�ects the endowments of the household. We
assume that the shock takes two values: good and bad. Given the shock realization,
the endowments of the age a = 2 agent change, while the other endowments remain
unchanged. Speci�cally, we assume {ea(st)}2

a=0 = {3, 12, 1± ε}, where ε = 0.05. The
transition matrix that governs the Markov chain is given by
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π =

[
0.95 0.05
0.05 0.95

]
.

The utility function is given by: u(c) = c1−σ

1−σ − 1, where σ = 4.
There is a single bond available for trade. At each st, the bond is in zero net

supply. Its price is denoted by q(st) ∈ R+, and agent a's bond-holding is θa(s
t) ∈ R

for a ∈ {0, 1}.
At the root node, s0, a representative age a = 2 agent is present (born in state

s−2) and a representative age a = 1 agent is present (born in state s−1). The initial
conditions of the economy are the bond holdings that these two agents bring into
that initial state s0 : θ1(s−1) and θ0(s−1), where market clearing requires θ1(s−1) +
θ0(s−1) = 0.

We solve for the entire set of SCE and present the Markov correspondence in
Figure 1. Figure 1 clearly demonstrates that the image of the Markov correspondence
is a 2-dimensional manifold for each of the 2 shocks. This veri�es the theoretical fact
that the dimension of the image of V equals the market de�ciency (S−N = 1) times
the number of possible states (S = 2) for a total dimension of 2.

4.2 Simulation results

We choose the initial conditions so that θ1(s−1) = 3.0 and the initial shock in
state s0 is the bad shock, meaning e2 (s0) = 1− ε. Simulations last for 5, 000 periods
and the �rst 1, 000 periods are ignored when computing simulated moments and
simulated conditional moments.

4.2.1 E�ects of the selection rules

We run simulations under each of the 4 selection rules introduced at the end of
the previous section. Comparing simulation 1 and simulation 2, the average welfare
(equal weights provided to all agents) is 3.96% higher in simulation 1 compared to
simulation 2, with a consumption equivalent welfare gain of 1.3%. Recall simulation 1
seeks to maximize the di�erence in asset prices, while simulation 2 seeks to minimize
this di�erence. The maximum di�erence in asset prices allows for greater risk sharing
on the part of agents.

Clearly, in a stochastic setting, the simulated unconditional variances will be
strictly positive, given that the prices and bond holdings adjust when the shock
changes. Our interest is in determining the long run behavior of asset prices, condi-
tioning on the realization of uncertainty. The simulated conditional variances capture
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this e�ect. As evident from Table 2, these variances are strictly positive and roughly
as large as the simulated unconditional variances, suggesting that the variance is
driven by the indeterminacy of the equilibrium set rather than by the Markov en-
dowment process.

Table 1: Simulation results for 4 selection rules: unconditional moments
std(θ) mean(θ) std(q) mean(q) mean(U) max(ee)

Sim. 1 0.4166 3.6953 0.2351 0.8421 −0.0073 4.5 ∗ 1e−5

Sim. 2 0.2184 3.6902 0.1061 0.8232 −0.0071 4.5 ∗ 1e−5

Sim. 3 0.4847 3.8492 0.1984 0.7618 -0.0071 4.5 ∗ 1e−5

Sim. 4 0.2000 3.6776 0.1075 0.8296 -0.0071 4.5 ∗ 1e−5

std(q|0) mean(q|0) std(q|1) mean(q|1)
Sim. 1 0.2121 0.9034 0.2411 0.7876
Sim. 2 0.0890 0.8812 0.0927 0.7717
Sim. 3 0.2092 0.8176 0.1739 0.7123
Sim. 4 0.0799 0.8880 0.1022 0.7777

Table 2: Simulation results for 4 selection rules: state contigent moments

4.2.2 Robustness check on initial conditions

We analyze the e�ects of the initial conditions on the behavior of the economy.
For each of the following experiments, we remain consistent by applying the same
selection rule (chosen from one of the 4 possibilities previously introduced) for both
the benchmark economy and for economies with di�erent initial conditions. Recall
that the benchmark economy speci�es {θ1(s−1), s0,m0} = {3.0, 1− ε, 5.50}. In what
follows, we only mention the di�erences from the benchmark. The �rst experiment
speci�es m0 = 5.10, the second chooses s0 such that e2 = 1 + ε, while the third one
picks θ1(s−1) = 4.3128. After we drop the �rst 1, 000 periods, the simulated moments
are identical to those for the benchmark economy.

4.2.3 Excess volatility in asset pricing

Our conjecture in this paper is that indeterminacy generates excess volatility
in the asset prices. In the economy we are computing, the endowment of the age
a = 2 agents �uctuates 5% around it long-term average, while under simulation 1,
the standard deviation for asset prices is roughly 30% of the long-term average. The
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�rst direction we take to decompose asset price volatility into the volatility owing
to changes in fundamentals (endowments) and volatility owing to indeterminacy
(self-ful�lling beliefs of agents) is to consider two economies with a determinate
equilibrium. Both determinate economies are nearby "less-risky" versions of our
benchmark economy.

For the �rst economy, we reduce the parameter for agent risk-aversion from σ = 4
to σ = 3.2, while keeping all other parameters unchanged. For the second economy,
we reduce the endowment inequality across generations by specifying an endowment
process of e = {3, 8, 2±5%}. For both economies, the equilibrium set is determinate.
We compute these models and simulate the economies. The simulated moments are
given in Table 3. For both determinate economies, the standard deviation for asset
prices is less than 10% of the long-term average.

Model std(θ) mean(θ) std(q) mean(q)
σ = 3.2,e = {3, 12, 1± 5%} 0.0431 5.0300 0.0132 0.3306
σ = 4.0,e = {3, 8, 2± 5%} 0.0441 2.7297 0.0306 0.3455

Table 3: Simulation results for determinate economies

4.2.4 Sunspot equilibrium

The second direction we take to isolate the contributing e�ects on asset price
volatility is to introduce sunspots into our benchmark economy. We maintain the
same Markov chain, but the shocks are now states of extrinsic uncertainty, mean-
ing that the endowments remain unchanged, rather than states of intrinsic uncer-
tainty. Simply, regardless of the state realization, the endowment process is given by
{ea(st)}2

a=0 = {3, 12, 1}. There still remain S = 2 states of uncertainty, and agents
need not have the same price expectations for both states. If the price expectations
di�er, then any asset price volatility is owing only to the indeterminacy, since the
fundamentals (endowments) remain unchanged.

Not surprisingly, we can apply the same theoretical insights previously discussed
to verify that the image of the Markov correspondence is indeterminate. Using our
computation methodology, we can characterize the same 4 simulations that were
previously considered.

The results are presented in Tables 4 and 5. We compare the simulated asset
price variances in Table 4 with the corresponding values in Table 1 (for the case
with endowment risk). In simulations 3 and 4, the asset price variances without
endowment risk are more than 90% of the respective values with endowment risk.
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Table 4: Simulation of sunspot equilibrium

std(θ) mean(θ) std(q) mean(q) mean(U)
Sim. 1 0.3081 3.7740 0.1297 0.7828 -0.0070
Sim. 2 0.2042 3.6749 0.1079 0.8307 -0.0071
Sim. 3 0.5181 3.8791 0.1943 0.7489 -0.0071
Sim. 4 0.1740 3.6664 0.0980 0.8340 -0.0071

std(q|0) mean(q|0) std(q|1) mean(q|1)
Sim. 1 0.1386 0.7803 0.1212 0.7851
Sim. 2 0.1083 0.8345 0.1074 0.8273
Sim. 3 0.2002 0.7407 0.1887 0.7562
Sim. 4 0.0898 0.8324 0.1047 0.8354

Table 5: Simulation results for sunspot equilibrium, state contigent moments

This strongly suggests the �rst order determinant of asset price volatility is the
indeterminacy of equilibria.

The reason that we have focused your attention on simulations 3 and 4 is because
these simulations are run by making selections using asset holdings as the criterion.
Thus, the selection rule does not directly a�ect the measure of interest: asset price
variances. With simulations 1 and 2, this is not the case.

5 Stationary Markov equilibria

Finally, we seek to apply our computation methodology to approximate the set
of stationary Markov equilibria. This equilibrium concept has been the focus of
previous studies, including Farmer and Woodford (1984) and Spear, Srivastava, and
Woodford (1990). We �rst introduce the stationary Markov de�nition and discuss
how the computation methodology can be applied as a special case of our previously
discussed approach. We then provide simulation results that strongly suggest that
important long run dynamics of the economy are ignored by only computing the
set of stationary Markov equilibria. In our simulations, the asset price volatility is
an order of magnitude smaller when limiting our analysis to the set of stationary
Markov equilibria.

De�nition 6 A stationary Markov equilibrium is described by continuous functions

f θ : RN × S → RN and fq : RN × S → RN such that for every (θ1(s−1), s0) , there
exists a SCE with θ1(st) = f θ (θ1(st−1), st) and q(st) = fq (θ1(st−1), st) .
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The initial conditions (θ1(s−1), s0) continue to introduce indeterminacy of degree
SN as in all other settings considered in this paper. We discuss the computational
methodology and theory in the context of incomplete markets. With complete mar-
kets, such an approach is not required since the only indeterminacy in the system is
caused by the initial conditions.

The computational algorithm assumes that a stationary Markov equilibrium ex-
ists. We recognize that the non-existence of stationary Markov equilibria is a ques-
tion of theoretical importance, but as our objective is only to compare the asset
price volatility in a speci�c numerically simulated economy, we are content with ap-
plying the algorithm and adopting the numerical solution as an ε−approximation to
a stationary Markov equilibrium.

The iterative method begins by specifying a grid of intervals for all asset positions
Θ = Θ1×...×ΘJ , where Θj ⊂ R is an interval. Using Theorem 3, the policy functions
f θ and fq are determinate functions of (m (θ1(st−1), st) , θ1(st−1), st) . That is, once
the vector m (θ1(st−1), st) is known, then θ1(st) and q(st) are �nite and locally unique
solutions to the standard equilibrium equations (8) and (9).

De�ne fm : Θ×S→ RN as the stationary transition function that maps (θ1(st−1), st) 7→
m (θ1(st−1), st) . The stationary Markov equilibrium concept requires that not only
is fm time-invariant, but that it is a selection from the equilibrium Markov corre-
spondence V ∗. Our method constructs approximates this transition function using
an iterative method.

De�ne the determinate policy function f θ|m : RN × S→ Θ as the asset positions
determined as a function of shadow values m (θ1(st−1), st) . If we can show that
f θ|m ◦ fm : Θ×S→ Θ is surjective, then we know that fm is a stationary transition
function. Under the assumption that a stationary Markov equilibrium exists, there
exists a nonempty ergodic set Θ∗ 6= ∅ that corresponds to the equilibrium Markov
correspondence V ∗. The objective of the algorithm is to approximate this set of asset
positions that serves as the range for the stationary transition function fm.

For any grid of intervals Θn, de�ne the updated grid of intervals Θn+1 as the
image of f θ|m over all possible θ−1 ∈ Θn, all possible states s ∈ S, and all possible
m ∈ V

(
θ−1 , s

)
. Here, as in the previous section, V is the Markov correspondence

obtained via numerical approximation. Thus, the lower boundary of the interval Θj
n

is de�ned as min
(θ−1 ,s)∈Θn−1×S,m∈V (θ−1 ,s)

θj1(s), where θ1(s) = f θ|m (m, s) is the determinate

implicit function of the system (8) and (9). In a similar manner, the boundaries (both
upper and lower) can be speci�ed for each of the intervals.

The updated grid of intervals satis�es Θn+1 ⊃ Θ∗ for all n ∈ N and limn→∞Θn ⊃
Θ∗. This means that the stationary set Θ = limn→∞Θn 6= ∅. Without a stationary
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Markov equilibrium, the approximated set Θ = limn→∞Θn may not be well-de�ned
(our numerical simulations for the economy reveal that the approximated set Θ is
nonempty).

Given this stationary set, there exists a stationary transition function fm such
that the stationary Markov equilibrium functions f θ and fq can be de�ned.

The methodological approach guarantees that the transition function fm is a
stationary selection from V. It does not claim that such a function is unique. The
numerical simulations suggest that a continuum of possible transition functions fm

can be found as stationary selections from the Markov correspondence V. This is not
surprising given Figure 1, which demonstrates a continuum of possible continuation
values for all possible state variables.

Our simulations present 2 polar cases of stationary Markov equilibria. Simulation
A characterizes the stationary Markov equilibrium in which the stationary transition
function fm takes the highest possible continuation values m from the image of the
Markov correspondence V, while simulation B characterizes the stationary Markov
equilibrium when fm selects the lowest values for m.

Table 6 shows that no matter which polar case is considered, the asset price
volatility is at least an order of magnitude smaller than the asset price volatility of
the SCE. This strongly suggests that it will be misleading if we implement policy
based only on the computation of stationary Markov equilibria.

std(θ) mean(θ) std(q) mean(q)
Simulation A 0.0789 2.9794 0.0330 1.3215
Simulation B 0.0188 5.5682 0.0030 0.2069

Table 6: Simulation of stationary Markov equilibria

6 Conclusion

In this paper, we study the e�ects of indeterminacy in a stochastic OLG model
with incomplete �nancial markets. In order to derive the implications of the inde-
terminacy on the long run behavior of the economy, we numerically characterize the
entire set of sequential competitive equilibria. Numerical simulations indicate that
the selections from the equilibrium transition correspondence have important welfare
e�ect. We require the selection rule to be consistent across all time periods and show
that the welfare di�erence between selection rules can be as high as 1.3% in terms of
consumption equivalent. Additionally, the simulations reveal that the primary factor
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generating asset price volatility is the indeterminacy of the equilibrium set, where
the Markov endowment process plays a secondary role. This suggests that in models
with indeterminate equilibria, agents' expectations of prices are the factors that drive
the allocation of resources, and it is only in understanding the e�ects of indetermi-
nacy that we can propose and implement welfare-improving policies. Suggestions for
welfare-improving policies in this class of models are left for future research.

References

Balasko, Y. and K. Shell, �The overlapping-generations model, I - The case of pure
exchange without money,� Journal of Economic Theory 23, 281-306 (1980).

Benhabib, J. and R. E. A. Farmer, �Indeterminacy and sunspots in macroeconomics,�
Handbook of Macroeconomics, vol. 1, Part A, pp 387-448 (1999).

Farmer, R. E. A., M. Woodford �Self-ful�lling prophecies and the business cycle,�
Macroeconomic Dynamics 1: 740-769 (1997).

Feng, Z., �Tackling indeterminacy in the overlapping generations model,� Mathemat-
ical Methods of Operations Research, forthcoming (2012).

Feng, Z., J. Miao, A. Peralta-Alva and M. Santos, �Computing nonoptimal dynamic
competitive equilibria,� (2012).

Gale, D., �Pure exchange equilibrium of dynamic economic models,� Journal of Eco-
nomic Theory 6: 12-36 (1973).

Galor, D., H. E. Ryder, �Existence, uniqueness, and stabiity of equilibrium in an
overlapping-generations model with productive capital,� Journal of Economic Theory
49: 360-375 (1989).

Galor, O., �A two-sector overlapping-generations model: A global characterization
of the dynamical system,� Econometrica 60 (6): 1351-1386 (1992).

Geanakoplos and Polemarchakis, �Walrasian indeterminacy and Keynesian macroe-
conomics,� Review of Economic Studies 53: 755-779 (1984).

Gomis-Porqueras, P. and A. Haro, �Global dynamics in macroeconomics: an overlap-
ping generations example,� Journal of Economic Dynamics and Control 27 (11-12):
1941-1959 (2003).

21



Kehoe, T., D. K. Levine, �Regularity in overlapping generations exchange economics,�
Journal of Mathematical Economics 13: 69-93 (1984).

Kehoe, T. and D. K. Levine, �The economics of indeterminacy in overlapping gener-
ations models,� Journal of Public Economics 42: 219-243 (1990).

Kehoe, T., D. K. Levine, A. Mas-Colell, and M. Woodford, �Gross substitutability
in large-square economics,� Journal of Economic Theory 54: 1-25 (1991).

Kubler, F., H. Polemarchakis, �Stationary Markov equilibria for overlapping genera-
tions,� Economic Theory 24, 623-643 (2004).

Kubler, F., K. Schmedders, �Uniqueness of steady states in models with overlapping
generations,� Journal of the European Economic Association, Papers and Proceed-
ings (2009).

Peralta, A., M. Santos, �Problems in the numerical simulation of models with het-
erogeneous agents and economic distortions,� Journal of the European Economic
Association 8: 617-25 (2010).

Schmachtenberg, R., "Stochastic overlapping generations models with incomplete
markets 1: Existence of equilibria," Discussion paper no. 363-88, Department of
Economics, University of Mannheim (1988).

Spear, S. E., S. Srivastava, and M. Woodford, �Indeterminacy of stationary equilib-
rium in stochastic overlapping generations models,� Journal of Economic Theory 50:
265-284 (1990).

Villanacci, A., L. Carosi, P. Benevieri, and A. Battinelli, Di�erential Topology and
General Equilibrium with Complete and Incomplete Markets. Boston, Kluwer (2002).

Wang, Y. , �Stationary equilibria in an overlapping generations economy with
stochastic production,� Journal of Economic Theory 61, 423-435 (1993).

22



7 Appendix

7.1 Numerical Algorithm

The vector of possible values for bond-holding and shocks are given by Θ̂ =
{
θi10
}Nθ
i1=1

,

Ŝ =
{
si20
}Ns
i2=1

, and for each pair of the bond-holding and shock grids,
(
θi10 , s

i2
0

)
, we

also de�ne a �nite vector of possible values for V̂µ,ε
0

(
θi10 , s

i2
0

)
=
{
mi1,i2,j

0

}Nv
j=1

.2 Notice,

limNθ→∞ Θ̂ = Θ, limNv→∞ V̂µ,ε
0

(
θi10 , s

i2
0

)
= Ṽµ,ε

0

(
θi10 , s

i2
0

)
. Finally, we construct the

discrete version of operator Bh,µ,N by eliminating points that cannot be continued
(in the Euler equation, for a predetermined tolerance ε > 0) as follows:

1. Given
(
θi10 , s

i2
0

)
, pick a point mi1,i2,j

0 in the vector V̂µ,ε
0

(
θi10 , s

i2
0

)
. From mi1,i2,j

0

we can determine the values of
(
θi1,i2,j+ , qi1,i2,j

)
by solving for

mi1,i2,j
0 −

(
e1(si20 ) + θi10 − qi1,i2,jθ

i1,i2,j
+

)
= 0. (16)

qi1,i2,j · uc
(
mi1,i2,j

0

)
− β

∑
s+

π(s+|s0)uc
(
e2(s+) + θi1,i2,j+

)
= 0 (17)

Thus, if for all m+ ∈ V̂µ,ε
0 (θi1,i2,j+ , s+) =

{
ml

+(θi1,i2,j+ , s+)
}NV
l=1

we have

min
m+∈{ml+}NVl=1

∥∥∥qi1,i2,j · uc (e0(si20 )− qi1,i2,jθi1,i2,j+

)
− β

∑
π(s+|si20 )uc (m+)

∥∥∥ > ε

(18)
then V̂µ,ε

1

(
θi10 , s

i2
0

)
= V̂µ,ε

0

(
θi10 , s

i2
0

)
−mi1,i2,j

0 .

2. Iterate over all possible valuesmi1,i2,j
0 ∈ V̂µ,ε

0

(
θi10 , s

i2
0

)
, and all possible

(
θi10 , s

i2
0

)
∈

Θ̂× Ŝ.

3. Iterate until convergence is achieved sup
∥∥∥V̂µ,ε

n − V̂µ,ε
n−1

∥∥∥ = 0.

At the limit of the above algorithm, we have limn→∞ V̂µ,ε
n = V̂µ,ε∗ .

7.2 Figure

2Notice the portfolio of the household has S components in stochastic case. In the case of two

shocks, θ0 = (θ0,1, θ0,2).
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}
at given {θt, st}.
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