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This paper studies theoretically and experimentally how success in prior interaction affects cooperation in 
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shows the cooperation rate increases from 8 percent in a baseline one-shot IPD to 42 percent when the 
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and chat coding results using a natural language classification game both show that successful prior 
interaction increases individuals’ concerns for their out-group.  
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1. Introduction 

Costly practices adopted by organizations, as well as observations by researchers of organization 

and community governance, suggest a widely-held belief that prior interactions can significantly affect 

inter-group cooperation. This paper studies theoretically and experimentally the hypothesis that prior 

interactions may influence individuals’ concerns for the welfare of members of their out-group and affect 

cooperation in a one-shot inter-group prisoner’s dilemma (hereafter IPD). Many interactions between 

groups resemble an IPD. The economics department and the business school of a university may need to 

decide whether to cooperate on a joint infrastructure project, such as an economics laboratory. Members of 

the marketing department and the engineering department of a firm may need to work together to develop 

a new product. Many environmental management problems require the cooperation of different groups. 

Whenever the material incentives are such that ‘Defect’ is the dominant strategy for both groups, but ‘Both 

Cooperate’ Pareto dominates ‘Both Defect,’ the interaction between the two groups is an IPD. 

Unfortunately, achieving cooperation in an IPD can be challenging. For example, Griffin and Hauser (1996) 

discuss how failures of cooperation between the marketing and the engineering departments in product 

development are common and can lead to significant losses for firms.  

 Consistent with the belief that successful prior interactions can promote cooperation in subsequent 

challenging interactions, some organizations actively invest in costly activities that promote social 

interactions for members from different units and divisions. HP and Tandem Computers pioneered the 

Silicon Valley Friday afternoon beer bust (Jacobson, 1998; Rao and Scaruffi, 2011), and HP also instituted 

daily company-wide coffee breaks to promote organization-wide social interactions (Rao and Scaruffi, 

2011). Some organizations have their members participate in Outward Bound outdoor adventures that 

require intense team work (Knez and Camerer, 2000). Discussing the lessons from a large number of cases 

regarding inter-group collaboration in environmental management, Wondolleck and Yaffee (2000) observe 

that prior success in dealing with problems with strong common interest (Wondolleck and Yaffee, 2000, 

p.141) and informal inter-group social interactions such as field trips to conservation sites (Wondolleck and 

Yaffee, 2000, p.160-161) can provide an important foundation in dealing with more challenging problems 

facing groups.  

Given the prominence of the conjecture that “prior interactions matter” in affecting inter-group 

cooperation, this paper investigates theoretically a possible microfoundation and experimentally tests 

whether it has empirical support. Specifically, inspired by the literature in psychology and economics on 

how identity and in-group out-group differences affect cooperation (Tajfel and Turner, 1979; Akerlof and 

Kranton, 2000; Chen and Li, 2009), this paper proposes and experimentally tests the prior interaction 

hypothesis for the IPD. This hypothesis states that successful prior inter-group interactions that produce 

rewards for members from different groups, even those that have no impact on the material payoff of a 
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subsequent IPD played by these groups, can still increase cooperation in the IPD. This is because such 

successful prior interactions increase individuals’ concerns for the welfare of their out-group and make 

cooperating with the out-group a more desirable action psychologically. 

Building on Chen and Li (2009), we develop a group-contingent social preferences model for a 

(symmetric) IPD played by two n-player groups, in which every player is inequity averse (Fehr and Schmidt, 

1999), but every player is more envious of or less charitable towards members of their out-group. Each 

group’s decision is determined by majority rule. Not surprisingly, if social preferences are sufficiently 

strong, this IPD with group-contingent social preferences and pivotal voting has three equilibria: Everyone 

Cooperates, Everyone Defects, and a mixed-strategy equilibrium. As elaborated in Section 3, the two pure-

strategy equilibria that feature either full Cooperation or Defection do not organize the data particularly 

well for relevant studies of  the prisoner’s dilemma. The mixed-strategy equilibrium, however, generates a 

counter-intuitive and implausible prediction that cooperation will decrease if individuals become more 

charitable or less envious of their out-group.  

We then consider decision errors and study the Quantal Response Equilibria (QRE) of the IPD. We 

do this for the following reasons. Playing the IPD with majority and pivotal voting requires individuals to 

make non-trivial strategic calculations. When individuals are playing the IPD only once and for the first 

time, they may make mistakes or have uncertain social preferences. Previous work has shown that the QRE 

can account for decision errors and stochastic preferences and can be consistent with observed behavior 

that is incompatible with counter-intuitive predictions of Nash equilibrium in many experimental games 

(see, for example, Goeree and Holt, 2001; Cason and Mui, 2005; Levine and Palfrey, 2007; Battaglini et 

al., 2010 and the references cited there).1 In addition, the use of QRE enables us to utilize previous work 

on the QRE and equilibrium selection (McKelvey and Palfrey, 1995; Turocy, 2005) to provide conditions 

under which an increase in pro-social concerns for the other group increases cooperation in this model of 

the IPD that has multiple equilibria. 

We also report a laboratory experiment to study empirically whether successful prior interaction 

increases individuals’ concerns for their out-group and promotes cooperation in the IPD. The experiment 

implements a one-shot minimum effort coordination game as the prior interaction. Subjects are randomly 

assigned to different three-person groups, and they play an initial game to build group identity. We find 

that in a Baseline treatment in which two three-person groups play a one-shot IPD, only 8.3% of subjects 

cooperate. In the Inter-group Coordination treatment, the six members from two groups play a one-shot, 

six-person minimum effort coordination game prior to playing the one-shot IPD. Subjects achieve the 

                                                            
1 The probabilistic choice of the QRE can be interpreted as reflecting decision errors or stochastic preferences (or preference 
“shocks”). These different interpretations result in the same mathematical model. For brevity, in the text we will typically refer to 
decision errors. 
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efficient outcome in all six-person coordination games, and this successful prior interaction increases 

subjects’ cooperation rate in the IPD to 41.7%. A post-experiment survey and chat coding results of 

communication by subjects that use a natural language classification game (Houser and Xiao, 2011) both 

show that compared to the Baseline treatment, subjects in the Inter-group Coordination treatment show a 

stronger concern for the welfare of their out-group.  

 

2. Related Literature 

 Following the seminal contribution by Akerlof and Kranton (2000, 2010), recent studies in 

economics have shown that identity induced in the laboratory can affect behavior. Researchers have found 

that common group identity increases contributions in public goods games (Eckel and Grossman 2005), 

facilitates coordination in the battle of sexes game (Charness et al., 2007) and the minimum effort game 

(Chen and Chen, 2011), and increases relation-specific investment (Morita and Servátka, 2013). Hargreaves 

Heap and Zizzo (2009) find that playing against trustors from the out-group reduces the return rates of 

trustees in a trust game. Chen and Li (2009) study how identity affects social preferences, and find that 

subjects are more envious of and less charitable to out-group members. Delaney and Jacobson (2014) 

consider a public good game in which contributions to a public good by in-group members benefit the in-

group but hurt the out-group. They report experimental evidence that the presence of negative downstream 

externalities to the out-group reduces contributions by in-group members by half when they have closer 

contact with the out-group.  

The importance of group boundaries is emphasized in the emerging economics contributions on 

identity discussed above. Somewhat surprisingly, both the theoretical and experimental work discussed 

above focuses on how identity and group boundaries affect the strategic interactions in which all decision-

makers are individuals (who may belong to different groups). Our paper, instead, considers how identity 

and group boundaries affect the strategic interactions in which each decision-maker is a group.  

Our paper is also related to contributions that emphasize how social preferences can transform a 

prisoner’s dilemma (PD) into a stag hunt game that has multiple equilibria in which Both Cooperate Pareto 

dominates Both Defect (see, for example, the early work of Sen, 1967; and Farrell and Rabin, 1996; Knez 

and Camerer, 2000; Ahn et al., 2001; Basu, 2010). As Ellingsen et al. (2012) have pointed out, in the 

presence of social preferences it is possible that while the game form (which summarizes the objective 

features of strategies and payoffs) faced by the players is a prisoner’s dilemma, the game (which involves 

von Neumann-Morgenstern utilities) being played is actually a stag hunt game.  

In his study regarding how endogenous evolution of moral values affects cooperation, Tabellini 

(2008) also considers a one-shot individual PD in which agents care both about material payoff and the 

psychological utility from taking the morally correct action of cooperating and the PD again is transformed 
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to a stag-hunt game in utilities. Outside the context of the PD, Dufwenberg et al. (2016) show how social 

preferences can transform a land conflict social dilemma into a coordination game with Pareto-ranked 

equilibria. They present experimental evidence supporting this argument, and use this insight to construct 

a new policy to reduce land conflict.  

All the work discussed above on the PD as a stag hunt game in utilities focuses on the individual 

PD. In contrast, we are interested in the inter-group PD. We report novel evidence that prior interaction 

increases individual’s concerns for their out-group and promotes inter-group cooperation in the IPD. This 

evidence strengthens the case for studying how endogenous changes in social preferences can affect 

cooperation in PD-like situations.  

Our work also relates to Sobel’s (2005) observation about social preferences and repeated 

interactions. Sobel (2005, p. 420) argues that besides the familiar folk theorem and reputational arguments 

that emphasize, respectively, foregone future benefits in deterring cheating and players’ uncertainty about 

their opponent’s motive, there is a need to study a third mechanism regarding how repetition affects 

cooperation: “A history of positive interaction with someone leads you to care about that person’s welfare.” 

Sobel makes this point in the context of repeated play of the same stage game, while our study focuses on 

how prior success in a one-shot coordination game affects cooperation and concerns for the out-group in 

the one-shot IPD. Using a modified dictator game with an Individual-Team-Individual treatment and an 

Individual-Individual-Individual treatment, Crawford and Harris (2018) showed that interactions with other 

subjects when making decisions in the team dictator game affect subjects’ preferences, as revealed by their 

choices in the individual dictator game that took place after the team dictator game. 

This study also contributes to an emerging experimental economics literature that studies 

“sequential spill-over effects” in games, which investigates how the play of a first game may affect behavior 

in an unrelated second game. Knez and Camerer (2000) show that achieving the efficient outcome in a 

repeated seven-action minimum effort coordination game increases cooperation in a later three-action 

(multiple step) repeated PD compared to a control treatment. Ahn et al. (2001) report a similar result when 

the repeated coordination game is a two-action stag hunt game and the subsequent repeated game is the 

standard PD. Similar sequential positive spill-over effects have also been found involving other games (see, 

for example, Devetag, 2005; Brandts and Cooper, 2006; Cason et al., 2012).2 

All these studies consider games in which every decision maker is an individual, and subjects play 

both the first game (the “prior interaction” in our terminology) and the second game (the “target interaction” 

                                                            
2 Researchers have also studied spill-over effects when subjects play two games simultaneously, see, for example, Bednar et al. 
(2012); Cason et al., (2012); and Falk et al. (2013), and the references cited there. Liu et al. (forthcoming) report an experiment in 
which each subjects plays a common historical game with two different matches for 100 rounds. After 100 rounds, the subject 
switches to a new game with one match but continues playing the historical game with the other match. They find behavioral 
spillover in their experiment.  
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in our terminology) multiple times, either in a fixed partner matching in which a subject interacts with the 

same subject, or in a random matching environment in which a subject interacts with a randomly chosen 

subject each time. None of these studies focus on whether the prior interaction increases individuals’ 

concerns for members of their out-group. Our finding is novel as it shows that success in achieving the 

efficient outcome in a one-shot inter-group coordination game can increase cooperation in a subsequent 

one-shot IPD, through increasing individuals’ concerns for the out-group.  

Finally, this study adds to a surprisingly small economics literature on the IPD. A sizable literature 

in psychology has shown that groups cooperate less than individuals in the IPD (see, for example, Insko et 

al., 1990; Schopler et al., 2001; Gong et al. 2009 and the references cited there). While many studies in 

economics investigate behavior in the individual PD, very few study the IPD. Charness and Sutter (2012) 

and Kugler et al. (2012) recently survey the fast-growing experimental literature on individual versus group 

decision making in economics. Virtually none of this work (covered either in Charness and Sutter (2012) 

or their on-line Appendix on Suggested Further Reading, or in Kugler et al. (2012)) studies the IPD.3  Most 

studies in the small IPD literature focus on the repeated IPD (Bornstein et al., 1994; Insko et al., 1998; 

Goren and Bornstein, 2000; Kroll et al., 2013, Kagel and McGee, 2016; Cason and Mui, 2019). Halevy et 

al. (2008) extends the IPD to allow players to choose between contributing to helping in-group members 

and hurting out-group members. Weisel and Zultan (2016) show that group identity is enhanced when 

subjects perceive their group as under threat by another group. Our study is the first that links the recent 

literature of identity economics and the importance of prior interaction to the under-studied IPD.  

 

3. The Model   

The purpose of this section is to study the comparative static question of how an increase in 

individuals’ concerns for their out-group members’ welfare affects the equilibrium cooperation rates in the 

IPD. We use a model of the IPD with social preferences and majority voting, and equilibrium selection 

arguments, to address these issues.  

  

                                                            
3 Charness et al. (2007) is one of the studies discussed by Charness and Sutter (2012) that investigates the PD. In that study, a 
subject plays the individual PD with another subject, but in one treatment a subject also gets one-third of the sum of the payoffs 
received by members of his/her (randomly induced) in-group. Almost all the work regarding the IPD discussed by Kugler et al. 
(2012) are from the psychology literature on the discontinuity effect. Exceptions include Morgan and Tindale (2002) (who consider 
PDs in the individual vs. individual condition, the group vs. group condition, and the individual vs. group condition) and Charness 
et al. (2007). Exploiting the fact that the Swiss military randomly assigns candidates for training program to different platoons, 
Goette et al. (2012) compares the behavior of individuals in such randomly assigned social groups to those of individuals in 
randomly assigned minimum groups. They find that the former cooperate more in the PD, but they consider the PD played by 
individuals. Chakravarty et al. (2016) study how Hindu and Muslim subjects in rural India play the individual stag hunt game and 
the individual PD differently with in-group and out-group members. In their experiment, subjects play the PD followed by the stag 
hunt game and the spill-over effect from one game to the other is not their focus.  
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3.1 The Inter-group Prisoner’s Dilemma with group-contingent social preferences  

Consider an IPD played by two groups. Each group consists of an odd number of 2 1n m   

players, with m  is a positive integer.4 A group’s decision is determined by majority voting, and members 

of each group cast their votes between Cooperate (C) and Defect (D) simultaneously. In making her decision, 

an individual needs to take into account how members from both her in-group and out-group will vote. 

Every member of a group always gets the same material payoff. In Table 1, the material payoff of each 

member of the two groups is given as a function of the decisions made by each group, through the majority 

voting rule. This game can be analyzed as a 2n  players voting game. 

We make the standard assumptions:  

 T R P S    (1) 

 2R T S   (2) 

Equation (1) guarantees that if players are only concerned about their material payoff, then a pivotal player 

will always vote for D and  ,C C  Pareto dominates  ,D D . Equation (2) implies that  ,C C  is the 

total-surplus maximizing outcome.  

 

  Group 2 

  Cooperate Defect 

Group 1 
Cooperate R, R S, T 

Defect T, S P, P 

 

Table 1: The Inter-group Prisoner’s Dilemma Game Form 

If individuals are only concerned about their material interests, then achieving cooperation in the 

one-shot IPD can be difficult. As discussed above, however, social preferences can transform a prisoner’s 

dilemma into a stag hunt game that has multiple equilibria, including Both Cooperate and Both Defect.  

There are many different forms of social preferences that can transform the IPD into a stag hunt 

game. The objective of our study is not to investigate which specific form of social preferences best explains 

behavior in the IPD. Our goal, instead, is to use a particular form of social preferences to illustrate the prior 

interaction hypothesis. For our purpose, we adapt the model of group-contingent social preferences that 

Chen and Li (2009) develop in their pioneering experimental work on identity and social preferences, as 

                                                            
4 When n  is even, we need to consider the implications of different tie-breaking rules (such as the flip of a coin, or a cooperate 
(or defect) default rule when tie occurs). For brevity, we do not consider even-sized groups here. Our results also apply for the 
model with 0m  . In this degenerate case, the IPD model becomes the individual PD. However, we do not examine the individual 
PD experimentally in this paper. 
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that model provides a natural way to capture the idea that individuals may have a stronger concern for the 

welfare of their in-group members than out-group members. Chen and Li (2009) assumes that individuals 

have identical social preferences that take into account both distributional and efficiency concerns 

introduced by Charness and Rabin (2002), and they report experimental evidence that subjects are more 

envious and less charitable to members of their out-group. In the context of the IPD, the social preferences 

considered in Charness and Rabin (2002) and the simpler specification of inequity aversion (Fehr and 

Schmidt, 1999) will generate similar results. For simplicity, in the following analysis, we assume that the 

2 n  agents in the IPD have identical group-contingent preferences and are inequity averse. Individuals’ 

preferences are given by the utility function:  

     , , ; , 1, 2;O
j j k j j kv n nw n j k j k         , (3) 

where  .,.,.jv  is the utility of a player in group j , j  is the material payoff received by a player in group 

j , k  is the material payoff received by each player in group k , and  Ow n  is the weight that a player 

in group j  puts on the material payoff of each of the n  players in her out-group. The reasons that jv  

depends on j  and k  according to (3) are as follows. 

Since members of a group in the IPD always receive the same material payoff, the effect of social 

preferences only arise from the possible difference in a player’s payoff and those of her out-group members. 

We represent these features through the term  Ow n  in (3), as 

    1

2 1
Ow n r s

n
  


, (4) 

where 

  0   , (5) 

and 1r   if j k  , and  0r   otherwise. Similarly, 1s   if j k   , and 0s   otherwise. If an agent 

has a higher material payoff than an agent in her out-group, then the extent that she is charitable to an agent 

in her out-group is given by the charity parameter . If an agent has a lower material payoff than an agent 

in her out-group, then the extent that she is envious of an agent in her out-group is given by the envy 

parameter . A rise in   and/or   (which is negative) will lead to an increase in an agent’s 

concerns for the out-group members. 

Applying the social preferences specification (3) through (5) to the IPD in Table 1 results in the 

IPD with group-contingent social preferences (hereafter often simply referred to as the IPD) given in Table 

2.  

 




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  Group 2 

  Cooperate Defect 

Group 1  

Cooperate 
,R R     ,

2 1 2 1

n n
S T S T T S

n n
    

 
 

Defect    ,
2 1 2 1

n n
T T S S T S

n n
    

 
 

,P P  

 

Table 2: The IPD with Group-Contingent Social Preferences 

  

 

3.2 Nash equilibrium  

We focus on the quasi-symmetric Nash equilibria of the IPD, in which all players in the same group 

will choose Cooperate with the same probability.5 It turns out that the properties of the Nash equilibria, as 

well as the logit equilibria of the IPD (to be introduced in Section 3.3), depend on which one of the following 

four mutually-exclusive cases is satisfied:  

   0
2 1

n
R T T S

n
      

, (6) 

    0
2 1 2 1

n n
R T T S P S T S

n n
                  

, (7) 

    0
2 1 2 1

n n
P S T S R T T S

n n
                  

, (8) 

or 

    0
2 1 2 1

n n
P S T S R T T S

n n
                  

. (9) 

                                                            
5 This assumption makes it unnecessary to consider hybrid mixed-pure strategy equilibria, in which all members of a group 
cooperate with a probability strictly between zero and one, while members of the other group are divided into two subgroups, one 
who cooperate with certainty and one who defect with certainty. See Palfrey and Rosenthal (1983) and Cason and Mui (2005) for 
a discussion of the implausibility of such equilibria in the participation games.  
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To interpret these conditions, consider the IPD with given material payoff parameters  , , ,P R S T . 

When the value of    is sufficiently low and (6) is satisfied, the extent of social preferences is not strong 

enough that the prediction is similar to the pure self-interest model, which is a special case (with 0   ) 

of this IPD. In this case, a pivotal player will always choose D, and   ,D D  is the unique pure-strategy 

equilibrium.6  

When agents’ concerns for the out-group increases—that is, when    and/or    increase—we 

move from (6) to (7), (8), or (9). When (7), (8) or (9) is satisfied, if an agent is the pivotal decision maker 

of her group and the other group cooperates, then she strictly prefers to cooperate. While D will give her a 

higher material payoff, it will also lead her to suffer from a psychological disutility because her material 

payoff is higher than that of the members of the other group. When (7), (8) or (9) holds, this disutility is 

significant enough (with   0
2 1

n
R T T S

n
      

) to make D unattractive, and the IPD becomes a 

coordination game with Pareto ranked equilibria. Focusing on quasi-symmetric equilibria, this game has 

two pure-strategy Nash equilibria: Everyone Cooperates and Everyone Defects, and a mixed-strategy Nash 

equilibrium. If Everyone Defects is selected as the equilibrium, then players in both groups will all defect 

and one should observe no cases where one group cooperates while the other group defects.  If Everyone 

Cooperates is selected as the equilibrium, then players in both groups will all cooperate and one should 

again observe no cases where one group cooperates while the other group defects. Neither of these pure 

strategy equilibria organize the data in relevant studies particularly well, as most find that while Defect is 

the most common choices, Cooperate is chosen with a non-trivial probability.7 

On the other hand, the mixed-strategy equilibrium can potentially account for the dominant 

incidence of both groups defect but with a non-trivial incidence of one group cooperates and the other group 

defects. This equilibrium, however, generates counter-intuitive comparative statics predictions. To derive 

the mixed-strategy Nash equilibrium, let  0,1, ...,x n  denote the number of players who vote for C in a 

player’s out-group. A player who is pivotal in her group will be willing to randomize iff the utility difference 

                                                            
6 More precisely, we are actually focusing on trembling hand perfect Nash equilibrium in our analysis. As common in voting games, 
there also exists a pure-strategy Nash equilibrium Everyone Cooperates that involves the use of weakly-dominated strategy. In this 
equilibrium, because every player is non-pivotal, every player is indifferent between choosing the weakly dominated strategy C 
and D. Hence, Everyone Cooperates can be supported as a Nash equilibrium. This equilibrium, however, in not robust, as any 
positive probability of any member in his group choosing D will make a player strictly prefer D to C.   
7 As pointed out above, existing studies on the IPD mainly focus on the repeated IPD so the predictions of our model for the one-
shot game does not apply. Studies of one-shot PD played by two individuals (which is a special case of our model in which the size 

of each “group” is 1n  ) find that while Defect is the most common choice, Cooperate is often chosen with a non-trivial probability 
(see, for example, Horton etal., 2011; Khadjavi and Lange, 2013; Capraro et al. 2014; and the references cited there). As shown 
below, in our Baseline treatment, while the majority of individuals chose Defect in the one-shot IPD, 12.5% of individuals chose 
Cooperate, and the outcome of one group cooperating while the other group defecting occurred two out of twelve times.  
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between choosing C and D is zero. Thus, the equilibrium probability of choosing C, *q , is given by 

 

      

      

* *

0

* *

1

1
2 1

1
2 1

m x n xn
x

x

n x n xn
x

x m

n
q q P S T S

n

n
q q R T T S

n











 

               
                




, (10) 

where     * *

0

1
m x n xn

x
x

q q




  is the probability that an agent’s out-group will defect (with m or less 

members of the group voting C), while     * *

1

1
n x n xn

x
x m

q q


 

  is the probability that her out-group 

will cooperate. In the Appendix, we show that when focusing on quasi-symmetric equilibria in which 

members of the same group cooperates with the same probability, the IPD has a unique mixed-strategy 

equilibrium that is symmetric in which members of both groups cooperate with the same probability when 

condition (7), (8) or (9) holds. Furthermore, Proposition 1 states the counter-intuitive predictions of the 

mixed-strategy equilibrium of the IPD. (All proofs of the results in the main text are given in Appendix A). 

 

Proposition 1. 

At the unique symmetric mixed-strategy equilibrium of the IPD,   

(a) 
*

0
q







; 

(b) 
*

0
q







.  

Summing up, while the mixed-strategy equilibrium in a model incorporating group-contingent 

social preferences alone can explain why cooperation can occur in the IPD, it generates the counter-intuitive 

and implausible prediction that greater concerns for the out-group members will decrease cooperation.  

 

3.3 Quantal Response Equilibrium 

 Motivated by the observation that decision makers may make mistakes or experience preference 

shocks, especially in an unfamiliar strategic environment, McKelvey and Palfrey (1995) developed the 

concept of QRE. Subsequent work shows that the QRE can account for observed behavior that is 

incompatible with counter-intuitive predictions of Nash equilibrium in many experimental games (Goeree 

and Holt, 2001; Cason and Mui, 2005; Levine and Palfrey, 2007; Battaglini et al., 2010). Both decision 
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errors and preference shocks can be important in the one-shot IPD in our experiment. We therefore consider 

the QRE of the IPD with group-contingent social preferences, and focus on the logistic quantal response 

function and the corresponding logit equilibrium.8   

Let ij  be the probability that agent i  in group j  will cooperate. Let

   1 1, ..., , ... , , ..., ,j ij nj k nk ij ij        be the strategy profile adopted by the 2n  agents, where ij  

denote the strategy chosen by agents other than agent ij . The logistic quantal response function of player 

ij ,  ij ijg  , specifies player ij ’s probability of playing C as a function of  ij  and is defined as:  

  
 

       

1,

1, 0, 0, 1,

1
, 1,..., , 1, 2

1

ij ij

ij ij ij ij ij ij ij ij

u

ij ij u u u u

e
g i n j

e e e

 

      




   
   

     
 

 (11) 

where  1, ijij
u   (resp.  0, ijij

u  ) is agent ij ’s expected utility when she cooperates (resp. defects) 

and others play ij . The logit precision parameter   captures how sensitive an agent’s decision is to the 

utility difference between playing C and D: 0   implies that actions consist of all errors and the quantal 

response involves randomization with probability 0.5 between C and D, while     means that there is 

no error and she will choose the best response to others’ strategies. Other than these extreme cases, the RHS 

of (11) implies that a player will better respond: she will choose both C and D with a positive probability, 

and the action that gives her a higher expected utility will be played with a higher probability. The logit 

equilibrium is a strategy profile  * *,ij ij  satisfying the fixed point conditions:  

  * * , 1,..., , 1, 2ij ij ijg i n j       (12) 

Focusing on the symmetric logit equilibrium such that every agent cooperates with the same 

probability ( , 1,..., , 1, 2ij i n j      ), the equilibrium is determined by:   

 * *( , ; , ; , , , )g P R S T     , (13) 

where ( , , , , , , , )g P R S T     is the symmetric logistic quantal response function. For simplicity, we 

shall sometimes suppress the fact that the logistic quantal response function also depends on the social 

                                                            
8 McKelvey and Palfrey (1995) first consider the case that the players use a general quantal response function capturing decision 
errors, and define the QRE as the equilibrium when all players’ quantal responses are mutually consistent. They then obtain further 
results when the players use a particular quantal response function, the logistic quantal response function (McKelvey and Palfrey, 
1995, Section 3). The corresponding equilibrium when players use logistic quantal response function is called the logit equilibrium. 
The logit equilibrium has been widely used in the applications of the QRE, and is a special case of the regular QRE that ensures 
that the QRE has empirically falsifiable implications (see, Goeree et al., 2008, Haile et al., 2008, and Goeree et al., 2016). For 
example, Chen and Chen (2011) adapt Chen and Li's (2009) group-contingent social preferences model to the minimum effort 
coordination game and study the logit equilibrium of the modified coordination game.   
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preferences parameters and the material payoff parameters,9 and simply write the logistic quantal response 

function of the IPD, ( , )g   , as follows: 

 

   

               2

0 1

0, ,..., 1, ,...,

1 1 1
2 1 2 1

1
( , )

1
1

1

ij ij

m n
m n x n xm m n x n x

m x x
x x m

u u

n n
P S T S T T S R

n n

g
e

e

    

        

 

 

  

  

                                                 





 



 (14) 

where  1, ,...,   and  0, ,...,   means player  ij  cooperates and defects respectively, when all other 

players cooperate with probability  .  

To interpret (14), note that C and D will generate a different expected utility if and only if agent ij  

is the pivotal decision-maker in her group, that is, if and only m  members choose C while the other m  

members choose D in her group. The probability that player ij is pivotal is    2 1
mm m

m   . If the other 

group defects (which occurs with probability    
0

1
m

n xn x
x

x

  



   
 ), the utility difference of player ij  

between D and C is  
2 1

n
P S T S

n
     

. If the other group cooperates (which occurs with 

probability    
1

1
n

n xn x
x

x m

  

 

   
 ), the corresponding utility difference is  

2 1

n
T T S R

n
     

. 

Therefore, the expression that appears after parameter   in the RHS of (14) is simply the difference in 

agent ij ’s expected utilities generated by her actions D and C given the behavior of others.  

Some key properties of the logistic quantal response function ( , )g    are illustrated in Figure 1, 

For this illustration, we fix the material payoff parameters as those in our experiment: 

   , , , 54,132, 28,162P R S T  , and fix the value of   at 0.112 , as in Chen and Li (2009, Table 2). 

First, when 0  , a player is completely insensitive to the differences in expected utility between playing 

C and D and will play each strategy with equal probability. Thus, ( ,0) 0.5g    for all  0,1  . Second, 

when 0  , the probability that a player is pivotal,    2 1
mm m

m   , equals zero when 0   or 1  . 

If everyone else always chooses C ( 1  ) or always chooses D ( 0  ), then a player will not be pivotal 

and hence will be indifferent between C and D. As a result, her quantal response will be given by

                                                            
9 Note that the symmetric logistic quantal response function ( , , , , , , , )g P R S T     is represented in various simpler forms in this 

paper, such as ( , )g    in (14), as well as ( , , )g     and ( , , )g     in (A14) in Appendix A, depending on the context. 
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Figure 1: Logit Equilibrium 
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(0, ) (1, ) 0.5g g   . Third, if condition (6) holds, then ( , ) 0.5g     for all  0,1   and 0  . 

Otherwise, when 0  , ( , ) 0.5g     for *0 q  , *( , ) 0.5g q   , and ( , ) 0.5g     for 

* 1q   , where *q  is defined in (10). The intuition is that if others cooperate with a probability less 

(resp. larger) than *q , then by definition of the mixed-strategy equilibrium, a player gets a higher (resp. 

lower) utility by playing D instead of C. Thus, a player’s quantal response is to cooperate with a probability 

less (resp. larger) than 0.5. Fourth, an increase in   causes ( , )g    to shift downward for 0 1   when 

(6) holds, but causes ( , )g    to shift downward for *q   and to shift upward for *q   when (7), (8) 

or (9) holds. Intuitively, as a player becomes more sensitive to the utility differences of the strategies, she 

will choose the better response with a higher probability.  

Now we consider the logit equilibrium, which is determined by the intersection of the logistic 

quantal response function ( , )g    and the 45-degree line. The properties regarding the logit equilibrium 

correspondence,  *  , of the IPD are given in Proposition 2.10 

 

Proposition 2.  

(a) When condition (6) holds, the range of the logit equilibrium correspondence  *   is  0,0.5 .  

(b) When condition (7) holds, the range of  *   is   *0,0.5 ,1q    .  

(c) When condition (9) holds, the range of  *   is  *0, 0.5,1q    .  

Since the behavior of ( , )g    differs for the 4 different conditions (6) to (9), the logit equilibrium 

correspondence     * * ,g      also differs with respect to these regions. Proposition 2 states that 

 *   cannot exist in the interval (0.5,1]  under condition (6), in the interval *(0.5, )q  under condition 

(7), and in the interval *( ,0.5)q  under condition (9). To see, for example, why  *   cannot exist in the 

interval *(0.5, )q  under condition (7), note that under condition (7), for every *(0.5, )q  , the agent 

prefers playing D to playing C. Since an agent better responds under the logistic quantal response function, 

 , 0.5g     , and *(0.5, )q   cannot be a logit equilibrium. These results show that the logit 

equilibrium imposes refutable restrictions regarding the agents’ behavior in the IPD. We should add that 

                                                            
10 Note that either condition (7) or (9) covers condition (8) in the limit. Thus, we do not state explicitly the range of  *   under 

condition (8) in Proposition 2. 
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the theoretical propositions—like propositions regarding how parameters concerning risk attitudes can 

affect economic behavior—involve social preference parameters and the logit precision parameter that are 

not directly observable to researchers. Our study is not designed to estimate these parameters, and to avoid 

learning and repeated game effects, subjects only play the IPD exactly once. If one is interested in 

estimating these parameters, one can consider a design in which subjects play a large number of IPDs with 

different material payoffs. 

 

3.4 Principal path of the logit equilibrium correspondence 

Proposition 2 provides testable implications regarding the equilibrium probability of playing C (
* ) 

in the IPD. However, the range of possible value of 
*  is still quite large, since the precision parameter   

can take any non-negative value. The predictions of Proposition 2 are not very sharp, unless there are good 

reasons to pin down the value of  . Another problem also arises even if the precision parameter can be 

narrowed down. As observed in McKelvey and Palfrey (1995) as well as the proof of Proposition 2, the 

logit equilibrium correspondence for sufficiently large values of   are multi-valued. In order to derive 

sharper predictions, we need to develop arguments to select an equilibrium path. 

McKelvey and Palfrey (1995) showed that the logit equilibrium correspondence is a singleton when 

  is sufficiently small, but generally contains multiple values when   becomes higher. They further show 

that the graph of the logit equilibrium correspondence contains a unique branch which starts at the centroid 

(with 0  , at which players’ behavior is completely random) and converges to a unique Nash equilibrium. 

Turocy (2005) calls this unique branch the principal branch. The principal branch, *
prin , is defined by  

     * *,prin pring       (15) 

for all 0  , where the dependence of *
prin  on   is expressed explicitly.  

In our analysis, we focus on this unique principal branch for the following reasons. First, for any 

parameter profile  , ; , , ,P R S T   that describes the material payoffs and social preferences of the agents, 

when (7), (8), or (9) holds, the graph of the logit equilibrium correspondence has multiple branches.11 

However, all branches other than the principal branch only exist when   is larger than a strictly positive 

threshold value. On the other hand, the principal branch is the only branch that will generate a prediction 

for any logit precision parameter 0  . Second, Turocy (2005, Theorem 7) showed that in a 2 2  game 

with two strict Nash equilibria, the principal branch of the logit equilibrium correspondence converges to 

                                                            
11 McKelvey and Palfrey (1995, Theorem 2) showed that each branch of the graph of the logit equilibrium correspondence 
converges to a Nash equilibrium when    . 
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the risk-dominant equilibrium when    . We shall show that a similar result holds in this IPD with 

group-contingent social preferences played by 2n  players. 12  Earlier research regarding equilibrium 

selection for pure coordination games suggests that while no selection criterion can fully explain observed 

behavior, risk dominance does have significant explanatory power (Camerer, 2003, chapter 7).  

Based on Proposition 2, we derive further results about the principal branch of the logit equilibrium 

correspondence of the IPD, including that it converges monotonically to the risk dominant outcome. This 

is given in the following proposition.  

 

Proposition 3.  

As   increases from 0, the principal branch of the logit equilibrium correspondence of the IPD, 

which starts from  * 0 0.5prin  ,  

(a) is always in the interval  0,0.5 , and decreases monotonically in   and converges to the risk-dominant 

equilibrium that Everyone Defects (i.e.,  *lim 0prin
 


 ), when condition (6) or (7) holds; 

(b) is always at * *0.5prin q   , when condition (8) holds; 

(c) is always in the interval  0.5,1 , and increases monotonically in   and converges to the risk-dominant 

equilibrium that Everyone Cooperates (i.e.,  *lim 1prin
 


 ), when condition (9) holds. 

These results are illustrated in Figure 2(a). We again consider     , , , 54,132, 28,162P R S T   , 

and   fixed at the value of 0.112 . The implication of Proposition 3 is that, if agents always play the IPD 

according to the principal branch of the logit equilibrium correspondence, then as the logit precision 

parameter   increases, the probability of choosing C ( *
prin ) will become closer to the equilibrium rate of 

cooperation—which equals either zero or one—given by the risk-dominant equilibrium.  

 

3.5 Comparative static results  

We now derive comparative static predictions on the player’s equilibrium probability of choosing 

C ( *
prin ) in the IPD with group-contingent social preferences and bounded rationality. For example, one 

may want to predict what happens to *
prin , when   increases (an increase in an agent’s charitable 

                                                            
12 In the IPD studied in this paper, if D (resp. C) is a player’s best reply when every other player chooses C with probability 0.5, 
then Everyone Defects (resp. Everyone Cooperates) is the risk dominant equilibrium (Harsanyi and Selten, 1988). 
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concerns for out-group members). For these comparative static results we suppose that agents always play 

according to the principal branch of the logit equilibrium correspondence. 

First, we consider the prediction of the model when the logit precision parameter (  ) remains 

unchanged. This is given by the following proposition. 

 

 

 

 

Figure 2: Equilibrium   (Principal Branch) against   and   

 

Proposition 4.  

An increase in the pro-social concerns for out-group members (i.e., either an increase in charitable 

or envious parameter) increases the players’ probability of choosing C, at each level of the precision 

parameter. That is, for 0  , 

 
*

0prin






; (16) 
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*

0prin






. (17) 

The monotonicity result in (16) can be observed in Figure 2(b), where we plot *
prin  versus  , 

when all other parameters (including  ) remain unchanged for each path.  

Proposition 4 implies that if a successful prior interaction makes individuals more charitable to or 

less envious of their out-group, other things being equal, it will increase individuals’ probability of 

cooperation in equilibrium. Changing preferences towards the out-group has the following effects. First, an 

increase in an individual’s concerns for her out-group increases the utility difference between Cooperate 

and Defect. As implied by the quantal response function in (14), even if other individuals’ probability of 

cooperation does not change, at every level of the precision parameter (  ) the individual will now 

cooperate with a higher probability. Second, in equilibrium, an individual correctly expects that increased 

pro-social concerns cause both members of her group and her out-group to cooperate with a higher 

probability. That is, she “trusts” that both her members of her group and her out-group are more likely to 

cooperate.  

In short, the successful prior interaction increases the equilibrium probability of cooperation 

because each individual is now responding to a higher probability of cooperation by all other players and 

is also picking her (better) response to this higher probability of cooperation on a “higher” quantal response 

function. In the presence of bounded rationality, if successful prior interaction increases individuals’ 

concerns for the welfare of their out-group members, then individuals will expect (or “trust”) that other 

players are more likely to cooperate in the IPD, and they will cooperate more in equilibrium. Our 

experimental design allows us to gather empirical evidence regarding how successful prior interaction 

affects the following three variables in the subsequent IPD:  cooperation rates, individuals’ concerns for the 

welfare of their out-group and their beliefs about how likely others will cooperate.  

Proposition 4 is a comparative static result when   is held constant. This result is relevant if a 

change in the parameter does not affect the logistic precision parameter. Now we turn to a stronger 

prediction of the model, irrespective of the level of  . An exogenous change (such as through a treatment 

manipulation in an experiment) that is strong enough to change the IPD from the region of (6) or (7) to the 

region of (9), leads to the following corollary. 

 

Corollary.   

Suppose that there is an exogenous change in agents’ pro-social concerns for the out-group that 

shifts the IPD under condition (6) or (7) to one under condition (9). This change causes the probability of 
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choosing C to increase from a value below 0.5 to a value above 0.5, irrespective of the value of the precision 

parameter (  ) in both treatments, provided that 0  .   

   

4.  Experimental Design and Procedures  

The experiment studies the one-shot PD played by two groups of three members each, with the 

material payoffs given in Table 3.  

 

  Group 2 

  Cooperate Defect 

Group 1 
Cooperate 132, 132 28, 162 

Defect 162, 28 54, 54 

 

Table 3: Material Payoffs (in HK$) of the IPD Experiment (HK$7.80≈US$1.00) 

The experiment included three treatments. Twelve independent groups of six subjects participated 

in each treatment, for a total of 216 subjects. The timeline below summarizes each experimental treatment 

and highlights the differences between the treatments. Subjects read the instructions for a particular task 

(which were also read aloud by an experimenter) at the beginning of each task. 

Experiments in psychology and economics have induced group identity in a variety of ways, such 

as through classification of artwork preferences (e.g., Chen and Li, 2009), or by allowing subjects to help 

in-group members in answering quiz questions (e.g., Morita and Servátka, 2013). In our study all treatments 

began with a simple minimum effort game (Van Huyck et al., 1990) to build initial group identity. As 

indicated in the experimental instructions in Appendix B, subjects could earn HK$19.50 by coordinating 

on the maximum integer (7) or as little as HK$10.50 by coordinating on the minimum integer (1). Since the 

goal of this task was to build group identity we wanted the subjects to be able to solve this coordination 

problem. Therefore, we allowed them to send a non-binding proposed choice followed by anonymous chat 

communication for two minutes before they were required to submit their final choice, intending that this 

would help nearly all groups successfully coordinate on the Pareto optimal equilibrium. This design led to 

successful coordination on the Pareto optimal equilibrium of integer 7 by 65 of the 72 groups. Results and 

earnings from this preliminary game were displayed immediately to subjects. 

In the Baseline treatment the groups then proceeded directly to the IPD, with payoffs (per player) 

shown in Table 3 paid in HK$. As in the minimum effort game, in the IPD considered in the Baseline and 

all other treatments, subjects first made a non-binding proposed choice and then engaged in a private, 3-
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player chat (this time for three minutes). The group’s choice to defect or cooperate in the IPD was 

determined by majority vote. This design allows us to use the natural language classification game 

introduced in Houser and Xiao (2011) to examine the chats to investigate, among other issues, whether 

success in the prior interaction increases individuals’ concerns for the welfare of their out-group members.   

Before results of the IPD were shown, subjects submitted beliefs individually indicating their 

subjective likelihood that the other group voted in every possible way (3 Cooperate & 0 Defect, 2 C & 1 D, 

1 C & 2 D, and 3 D). They were paid (up to HK$20) for accuracy based on a quadratic scoring rule.13 

Subjects also completed a simple risk assessment task and completed a post-experiment survey. 

 

Baseline    Added for Inter-group  Added for Inter-group Coord- 
(in all treatments)   Coordination   ination+Communication 
Task 1: 
3-player minimum effort game 
(with chat) to build group identity  
 
     Task 2:    Task 2: 
     6-player minimum effort 6-player minimum effort 
     game (with chat   game (with chat 
     among 6 players)  among 6 players) 
 
         3 chat communication phases 
         before IPD: 3-player groups, 
         all 6 players (both groups), 
         again only 3-player groups 
Task 3: 
Inter-group prisoner’s dilemma 
played between 3-player groups 
(always preceded by 3-player chats) 
 
Task 4: 
Incentivized belief elicitation 
about other group’s IPD voting 
 
Post-experiment survey, risk preference assessment and demographic questionnaire 

 

The other two treatments added an inter-group coordination task prior to the IPD, which may affect 

an agent’s social preferences towards the other group. In the language of our model, the conjecture is that 

coordination success in this prior inter-group coordination game could raise  and/or  . This coordination 

game was similar to the initial 3-player minimum effort coordination game, except this time played by all 

6 players on both groups. This coordination game has 7 pure-strategy Nash equilibria, with coordination on 

                                                            
13The quadratic scoring rule is incentive compatible (Savage, 1971), and since subjects did not learn about this task until after the 
IPD was completed, it could not have affected their choices in the IPD. 
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the maximum integer (7) being the Pareto optimal equilibrium. We therefore define play of this optimal 

equilibrium as our prior interaction ‘success.’ We again allowed subjects to send a non-binding proposed 

choice and then permitted anonymous chat communication for two minutes before they submitted their 

final choice. This led to successful coordination on the Pareto optimal equilibrium of 7 by every one of the 

36 groups. Since all subjects chose the highest number 7 on this coordination task, we do not have variation 

in coordination game behavior to relate to subsequent cooperation choices.  Results and earnings from this 

inter-group coordination game were displayed immediately to subjects. Importantly, this coordination game 

involving members from both groups occurs before subjects were informed that they would be playing an 

IPD. This kind of prior social interaction that took place before the game of interest differs from in game 

interactions that occurred after subjects have begun interacting in the game of interest—for example, 

communication between subjects when they are playing the prisoner’s dilemma—that have been widely 

studied by economists.14  

To focus on the “pure effect” of prior social interaction, our second treatment only added the 

coordination game prior to the IPD. If groups have the opportunity to interact prior to engaging in 

interactions resembling the IPD, however, they are also likely to have the opportunity to communicate with 

one another when they are playing the IPD. Our third treatment added communication between groups after 

they learned about the IPD. Following an initial 3-minute private chat among the 3 group members, a larger 

6-player chat occurred for both groups, also for 3 minutes. This was followed by another private 3-player 

chat opportunity for group members and then the usual voting for cooperation or defection in the IPD. 

Subjects were recruited from classes, through e-mail and posted announcements around the 

University of Hong Kong and they signed up using ORSEE (Greiner, 2015). No subject participated in 

more than one session. Two 6-person groups were conducted simultaneously, which helped maintain 

anonymity regarding group membership in the lab. The experimental software was written in zTree 

(Fischbacher, 2007). To ensure greater understanding about all aspects of the instructions and the tasks 

subjects had to complete, tasks 1, 2 and 3 included paid, computerized quizzes immediately following the 

reading of those instructions. Subjects were paid HK$2 for each correct quiz answer, and could earn up to 

HK$32 in total. (Any incorrect response provided a clarification for that question, based on text from the 

instructions.) Task understanding was excellent, since subjects scored 94.4% correct on average, and 106 

of the 216 subjects scored 100% correct. Sessions required approximately 90 minutes to complete, and 

average earnings were HK$163.52 each, with an inter-quartile range of HK$115 to HK$231. 

 

 

                                                            
14 Sally’s (1995) survey discusses how changing different aspects of the social dilemma itself affects cooperation, with emphasis 
on the effects of adding communication to the social dilemma itself.  
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5. Experimental Results  

Table 4 summarizes the experiment outcomes. As noted in the previous section, the top rows 

indicate that nearly all groups coordinated successfully in the minimum effort coordination games of Tasks 

1 and 2. This success in the inter-group coordination game has a large impact on individual decisions to 

cooperate in the IPD. The large increase in cooperation, from 12.5% to 44.4%, is highly statistically 

significant.15 Without any inter-group interaction before the IPD, the outcome (Defect, Defect) is by far the 

most common, but it decreases to only one-quarter of all outcomes in the inter-group coordination 

treatment. 16  This change in group-level outcomes is also highly significant (Fisher’s exact test p-

value=0.012). Similarly, inter-group coordination significantly increases payoffs (p-value<0.01).  

 

 

 
Treatment: 

 
Baseline 

Intergroup 
Coordination 

Intergroup Coordin-
ation+Communication 

Mean Task 1 (1 to 7 range) 6.83 6.96 6.99 
(number choosing 7) 68 of 72 70 of 72 71 of 72 
Mean Task 2 (1 to 7 range)  7.00 7.00 
(number choosing 7)  72 of 72 72 of 72 
Task 3 IPD:    
Individuals Voting to 
Cooperate 

9/72 
(12.5%) 

32/72 
(44.4%) 

49/72 
(68.1%) 

Groups Cooperating 2/24 
(8.3%) 

10/24 
(41.7%) 

16/24 
(66.7%) 

(Defect, Defect) Outcomes 10 3 1 
(Cooperate, Defect) 
Outcomes 

2 8 6 

(Cooperate, Cooperate) 
Outcomes 

0 1 5 

Average IPD Payoffs 60.8 87.8 107.0 
 

Table 4: Summary of Experiment Outcomes 

                                                            
15 Individual votes to defect or cooperate are not statistically independent, and votes across teams are also not independent in the 
inter-group coordination treatments because of the prior interaction in the coordination game. Therefore, to test for treatment effects 
we estimate a probit model of the binary decision to cooperate, with estimated standard errors that are robust to unmodelled 
correlation across choices within sessions. Coefficient estimates on a dummy variable for the inter-group coordination treatment 
are highly significant (p-value<0.01). Other statistical tests reported in the text are based on similar modeling of the error structure 
to account for correlation, except for nonparametric tests which are only conducted on statistically-independent, session-level 
observations. 
16 Subjects play one more game in the inter-group coordination treatment than in the baseline treatment, but there are reasons to 
believe that an income effect is unlikely to be the driver of the large treatment effect observed in the experiment. First, as described 
in Section 4 above, the stake size of the inter-group coordination game is significantly lower than that of the IPD. Second, in a 
follow-up study (Cason et al., 2019), we consider how successful or failed prior interaction affect cooperation in the IPD played 
by groups with symmetric or asymmetric group sizes. In all treatments, subjects from two groups were matched to play a one-shot 
IPD, but before doing so, members from the two groups played a stochastic coordination game in which the chosen efforts only 
determine the success in coordination probabilistically. Subjects in all treatments play the same number of games in that study, and 
we find that successful (failed) prior interaction increases (decreases) cooperation in the subsequent IPD. 
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Adding inter-group communication raises cooperation above the level observed in the intermediate 

inter-group coordination treatment, both at the individual and group level (one-tailed p-values<0.05). As 

seen in the fifth row, the increase in the (Cooperate, Cooperate) group outcome frequency from 1 to 5 is 

also statistically significant, but only marginally for this sample size (Fisher’s exact test one-tailed p-

value=0.077). Profit earned from the IPD also increases significantly, from 88 to 107, when communication 

is introduced (one-tailed p-value<0.05). 

Both the chat room content and the post-experiment survey provide supporting evidence that 

coordination success in the coordination game prior to the IPD increases the concerns for the welfare of the 

other group. In order to quantify the chat room content, we recruited an additional 34 University of Hong 

Kong undergraduate students from the same subject pool who had not participated in the earlier experiment. 

They attended one of two “coding sessions” with 17 subjects in each. These sessions implemented the 

natural language classification game introduced in Houser and Xiao (2011). In each session the subjects 

read the chat room communications from all three treatments and half of the experimental sessions, and 

were asked to indicate whether certain goals or attitudes were expressed by group members. The coders 

also indicated what they thought the group would choose, and judged, based on chat communication, what 

the group believed their counterpart group would choose. We employed a coordination game in order to 

give subjects incentives to provide accurate evaluations of the qualitative chat data: In addition to a fixed 

participation payment these subjects earned up to HK$120 for six randomly drawn responses, through a 

HK$20 bonus for each question and chat room where their own classification matches the most popular 

classification in their session. 

We assessed the reliability of this coding procedure using Cohen’s Kappa (Cohen, 1960; 

Krippendorff, 2003). The most reliably coded information concerns predictions about whether groups will 

defect (which correlates almost perfectly with actual defection decisions), as well as the groups’ beliefs 

about the cooperation choice of the other group (which is quite similar to the elicited beliefs summarized 

in Table 6 below). This content analysis also reveals that groups usually predict correctly when their 

counterpart group will actually defect, with successful prediction rates of 66% in the 

coordination+communication treatment and 87% in the other two treatments. 

Although it does not quite reach the “moderate” reliability threshold of 0.4 for Cohen’s Kappa, we 

do see systematic variation across treatment in the response to the following coding question: “Did any 

member of this group indicate a goal of earning as much money as possible for all six players in the cluster 

group?” The coders indicated that this goal was expressed by 36% of the baseline groups, 45% of the inter-

group coordination groups, and 57% of the coordination+communication groups. This provides support for 

the idea that successful prior interaction affects the players’ objectives and attitudes towards the other group. 
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The post-experiment survey provides further evidence that the change in cooperation rates across 

treatments is due to changes in subjects’ self-reported objectives. The top half of Table 5 shows that the 

fraction of subjects who stated an objective to earn as much as possible for their group decreased relative 

to the baseline when inter-group coordination or coordination+communication was introduced (p-

value<0.01 for both pairwise comparisons). The fraction who stated an objective to earn as much as possible 

for all six people in the group increased across treatments (one-tailed p-value=0.028 for Baseline to Inter-

group Coordination comparison; p-value<0.01 for Inter-group Coordination to 

Coordination+Communication comparison).  

The comparative static results of our model suggest that if successful prior interaction increases 

individuals’ concerns for their out-group, then individuals will expect that others are more likely to 

cooperate. Consistent with this prediction, Table 6 shows that beliefs also change across treatments in a 

systematic way, consistent with actual cooperation rates. The average belief that the other group will 

cooperate doubles from the baseline (23 percent) to the inter-group coordination treatment (46 percent; p-

value<0.01), and increases by this exact same percentage when adding communication (p-value<0.01). This 

table also shows that 81 percent of individuals who vote to cooperate in the IPD report a belief that the 

other group will vote to cooperate; but that only 21 percent of individuals who vote to defect believe that 

the other group will cooperate. 

 

 

Question: “In Task III, when you voted, how would you describe the strategies you used? Please select all 
that apply.” 
Treatment:  

 
Baseline 

 
Inter-group 
Coordination 

Inter-group 
Coordination + 
Communication 

“I tried to earn as much money as possible  
for me and my two teammates.” 

51/72 
(70.8%) 

38/72 
(52.8%) 

23/72 
(31.9%) 

“I tried to earn as much money as possible  
for all six people in my cluster group.” 

14/72 
(19.4%) 

25/72 
(34.7%) 

44/72 
(61.1%) 

 
Question: “Generally speaking, would you say the people can be trusted or that you can’t be too careful in 
dealing with people?” 
Fraction Responding  
“Usually not trusted” 

Encountered a  
Cooperating Group 

Encountered a  
Defecting Group 

Member of a Cooperating Group 1/36 
(2.8%) 

11/48 
(22.9%) 

Member of a Defecting Group 17/48 
(35.4%) 

17/84 
(20.2%) 

 
Table 5: Selected Post-Experiment Questionnaire Responses 
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Pooled 

 
Baseline 

Intergroup 
Coordination 

Intergroup Coordin-
ation+Communication 

Overall Average Belief 
   other Group Cooperates 

46% 23% 46% 69% 

Among Subjects Voting 81% 64% 77% 87% 
    to Cooperate (n=90) (n=9) (n=32) (n=49) 
Among Subjects Voting 21% 18% 22% 29% 
    to Defect (n=126) (n=63) (n=40) (n=23) 

 
Table 6: Percentage Believing Other Group Votes to Cooperate 

 
 

The post-experiment survey also included a standard “general trust” question from the World 

Values Survey (worldvaluessurvey.org), as shown in the bottom half of Table 5. A majority of subjects 

(150 out of 216) indicated that others can be “Usually trusted.” The table shows an interesting pattern that 

emerged, however, among the 46 individuals who indicated that others can be “Usually not trusted.” Not 

surprisingly, individuals who cooperated but encountered a defecting group were much more likely to 

indicate that others cannot be trusted (p-value<0.01). Members of defecting teams’ responses were also 

correlated with the choice made by their paired group. Surprisingly, however, those who interacted with a 

cooperating group reported a greater lack of trust in others (p-value=0.038). We conjecture that this 

correlation may reflect that those who harm the other (cooperating) group are engaging in ex post 

rationalization of their defection choice. 

 

6. Conclusions  

Motivated by the widely-held belief that prior interactions can significantly affect inter-group 

cooperation, this paper develops a simple, tractable model of how changes in individuals’ concerns for their 

out-group affect cooperation in the IPD. We then report novel experimental findings showing that success 

in a prior inter-group coordination game increases individuals’ concerns for the welfare of their out-group, 

and increases cooperation and individuals’ beliefs about how likely others will cooperate in a subsequent 

IPD.  

Our focus in this paper is on the effects of success, rather than failure in prior interaction, on 

cooperation in the IPD. Understanding whether and how failed prior interaction may affect inter-group 

cooperation is also important. If failure in prior interaction indeed reduces future cooperation, then it raises 

the question of whether and when some offsetting successful prior interactions that occurred after the failed 

interaction but before the IPD can sufficiently increase individuals’ concerns for their out-group to enable 

the interacting groups to achieve significant cooperation in the IPD. In a follow-up study (Cason et al., 2019) 

we consider IPD games played by groups of equal and unequal sizes, and find that in both cases, failure in 
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prior interaction (in the form of a stochastic coordination game) reduces cooperation in a subsequent one-

shot IPD. 

Generalizing our model to inter-group interactions involving groups of different sizes allows us to 

investigate how group sizes interact with social preferences, pivotal voting in majority group decision-

making, and decision errors to generate novel testable predictions. When social preferences exist, if a person 

votes to defect in an IPD, she should account for how many people she is potentially harming in her out-

group. Furthermore, under majority rule, differences in group sizes also affect the probability that an 

individual will be pivotal in her in-group. We show that taking into account such considerations, conditional 

on experiencing successful prior interaction, the individuals in the smaller group will cooperate more than 

individuals in the larger group. On the other hand, conditional on experiencing failed prior interaction, 

individuals in the smaller group will cooperate less than individuals in the larger group. Our experimental 

results are consistent with these theoretical predictions. These findings, together with the findings reported 

in the current study, demonstrate how the tractable theoretical model developed here is a useful first step 

toward enriching the toolbox for studying how prior interaction affects inter-group cooperation in social 

dilemmas.  

Following Chen and Li (2009), our current model assumes that all agents have identical social 

preferences. The assumption of homogenous preferences is a sensible starting point, but extending the 

model to allow for heterogeneous preferences can allow us to consider other important questions. For 

example, in their discussion of prior interactions and inter-group cooperation in environmental management, 

Wondolleck and Yaffee (2000) report many cases in which individuals involved in inter-group interactions 

have argued that successful prior interaction can promote “trust” toward out-group members. 17  Our 

theoretical model captures one way through which prior interaction can increase trust. If successful prior 

interaction increases individuals’ concerns for the welfare of their out-group, then our comparative static 

results show that in equilibrium, individuals will cooperate more in the IPD, and they also believe that 

members in their out-group will cooperate more.18 Future work can, however, consider a richer and more 

realistic model in which some individuals have standard preferences that cannot be changed by any prior 

interaction, while other agents have social preferences that are affected by successful and unsuccessful prior 

                                                            
17 Reflecting on his interaction with another member on the Cameron County Agricultural Coexistence Committee formed by 
farmers, federal and states government officials and environmentalists, a US Fish and Wildlife Service refuge manager observes 
that “We had a few informal lunches together. We even went on a fishing trip together, me and a county agent. I saw that his 
personal goals and his professional goals were not that different than mine…You don’t build trust until you actually get to know 
people a little bit (Wondolleck and Yaffee, 2000, p. 161).  
18 More precisely, Proposition 4 implies that changing preferences towards the out-group has the following effects. First, an 
increase in an individual’s concerns for her out-group increases the utility difference between Cooperate and Defect. As implied 
by the quantal response function in (14), even if other individuals’ probability of cooperation does not change, at every level of the 
precision parameter ( ) the individual will now cooperate with a higher probability. Second, in equilibrium, an individual correctly 
expects that increased pro-social concerns cause both members of her group and her out-group to cooperate with a higher probability. 
That is, she “trusts” that both her members of her group and her out-group are more likely to cooperate.  
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interactions. It will be useful to use such a richer model to study the effects of prior interactions and how 

they can help individuals better assess the type of a specific individual in the out-group, which affects how 

individuals will “trust” whether particular members of their out-group will cooperate in later social 

dilemmas.  

Another fruitful direction for future research is to examine more deeply how successful prior 

interactions may cause individuals to re-draw the boundaries of in-and out-groups. In the post-experimental 

questionnaire of the current experiment, 24% of individuals in the Baseline treatment indicate that in the 

IPD task, “the concern for my group’s earning is equally important as the concern for the other group’s 

earning in affecting my decision.” This percentage of equal concern for both the own group and the other 

group increases modestly to 42% and 33% in the Inter-group Coordination and Inter-group Coordination 

and Communication treatments, respectively. But in all treatments, subjects who indicate that their concern 

for their own group’s earning is moderately more important or significantly more important than their 

concern for the other group’s earning still constitute the majority. This suggests that the successful prior 

interactions do not affect in-group boundaries for most subjects.  

To further examine how successful prior interactions may affect the boundaries defining group 

identity, one can consider a design similar to the current experiment, in which the treatment variable is 

again whether the two, three-person groups play a six-person coordination game prior to the main task. 

Instead of the IPD played by two three-person groups, however, the main task could be a three-person 

coordination game with externalities imposed on the out-group. In these games, the chosen actions of the 

three persons in a group determine whether coordination among them will be successful, but the success of 

this three-person group’s coordination can have either a negative or a positive externality on the three 

members of the group they interacted with earlier in the six-person coordination game. The three-person 

group could play a series of such coordination games with different forms (positive, zero, negative) and 

magnitudes (large, medium, and small) of externalities that can reveal information about each individual’s 

concern for the welfare of the out-group compared to the own group. Research in psychology shows that 

the 10-item self-importance of moral identity scale introduced by Aquino and Reed, II (2002)--which 

measures how much being a moral person is an important part of the individual’s own identity--predicts 

different kinds of prosocial behavior (see Aquino and Reed, II, 2002; Reed, II and Aquino, 2003; Shao et 

al., 2008, and the references cited there). In particular, individuals who have higher measures of the self-

importance of moral identity are more likely to extend their concerns for others and are more likely to re-

draw the psychological boundary between in-groups and out-groups. It would be interesting to study 

whether individuals who differ in their self-importance of moral identity behave differently in the 

coordination game with externalities to the out-group.  
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Studying the effects of prior interactions on inter-group cooperation requires consideration of the 

role of non-economic motivations and how their endogenous changes affect inter-group interactions. This 

study, as well as the related literature discussed in Section 2, illustrate that these issues can be analyzed 

using the standard tools of economics.19 A deeper understanding of the implications of prior interactions 

will require iterative dialogues between theories, laboratory experiments, field experiments, and analysis 

of naturally occurring data. Such careful iterative dialogues should eventually generate useful insights for 

policy makers and organizational designers regarding the best possible forms of prior interactions that can 

increase inter-group cooperation for a specific target interaction given the existing context, and shed light 

on the resources needed for implementing the required prior interactions. Such research may also indicate 

whether the target interaction is too ambitious given the prior context and the resources available to cultivate 

prior interactions aiming at facilitating inter-group cooperation. If necessary, efforts can be devoted in 

formulating a more realistic immediate goal and finding ways to achieve it. 

   

                                                            
19 See Sobel (2005) and Tabellini (2008) for thoughtful discussions regarding how non-economic motivations and their endogenous 
changes can be fruitfully studied using the standard tool of economic theory.  



29 
 

References 

Ahn, T.K., E. Ostrom, D. Schmidt, R. Shupp, and J. Walker, “Cooperation in PD Games: Fear, Greed, and 
History of Play,” Public Choice, 106: 137–155, 2001. 

 
Akerlof, G., and R. Kranton, “Economics and Identity,” Quarterly Journal of Economics, 115: 715–753, 

2000. 
 
Akerlof, G., and R. Kranton, Identity Economics: How Our Identities Shape Our Work, Wages, and Well-

Being, Princeton University Press: Princeton, 2010. 
 
Ansell, C. and A. Gash, “Collaborative Governance in Theory and Practice,” Journal of Public 

Administration Research and Theory, 18:543–571, 2008. 
 
Aquino, K., and A. Reed, II, “The Self-Importance of Moral Identity,” Journal of Personality and Social 

Psychology, 83: 1423–1440, 2002.  
 
Basu, K., “The Moral Basis of Prosperity and Oppression: Altruism, Other-Regarding Behaviour and 

Identity,” Economics and Philosophy, 26: 189-216, 2010.  
 
Battaglini M., R. Morton, and T. Palfrey, “The Swing Voter’s Curse in the Laboratory,” Review of 

Economic Studies, 77: 61-89, 2010. 
 
Bednar, J., Y. Chen, T.X. Liu, and S. Page, “Behavioral Spillovers and Cognitive Load in Multiple Games: 

An Experimental Study,” Games and Economic Behavior, 74: 12-31, 2012.  
 
Bornstein, G., I. Erev, and H. Goren, “The Effect of Repeated Play in the IPG and IPD Team Games,” 

Journal of Conflict Resolution, 38: 690-707, 1994. 
 
Brandts, J., and D. Cooper, “A Change Would Do You Good: An Experimental Study on How to Overcome 

Coordination Failure in Organizations, American Economic Review, 96: 669–693, 2006.  
 
Camerer, C., Behavioral Game Theory: Experiments in Strategic Interaction, Princeton: Princeton 

University Press, 2003.  

Capraro, V., J. Jordan, and D. Rand, “Heuristics Guide the Implementation of Social Preferences in One-
Shot Prisoner’s Dilemma Experiments,” Scientific Reports, 4: 6790, 2014. 

 
Cason, T., and V-L. Mui, “Uncertainty and Resistance to Reform in Laboratory Participation Games,” 

European Journal of Political Economy, 21: 708-737, 2005. 
 
Cason, T., and V-L. Mui, “Individual versus Group Choices of Repeated Game Strategies: A Strategy 

Method Approach,” Games and Economic Behavior, 114: 128-145, 2019. 
 
Cason, T., Lau, S.-H. P., and V-L. Mui, “Cooperation between Asymmetric Groups following Successful 

or Failed Prior Interactions: Theory and Experiment,” Working Paper, 2019.  
 
Cason, T., A. Savikhin, and R. Sheremeta, “Behavioral Spillovers in Coordination Games,” European 

Economic Review, 56: 233–245, 2012. 
 



30 
 

Chakravarty, S., M. A. Fonseca, S. Ghosh, and S. Marjit, “Religious Fragmentation, Social Identity and 
Cooperation: Evidence from an Artefactual Field Experiment in India,” European Economic 
Review, 90: 265-279, 2016.  

   
Charness, G., and M. Rabin, “Understanding Social Preferences with Simple Tests,” The Quarterly Journal 

of Economics, 117: 817-869, 2002. 
 
Charness, G. and M. Sutter, “Groups Make Better Self-Interested Decisions,” Journal of Economic 

Perspectives, 26: 157-176, 2012.  
 
Charness, G., L. Rigotti, and A. Rustichini, “Individual Behavior and Group Membership,” American 

Economic Review, 97: 1340-1352, 2007.  
 
Chen, R., and Y. Chen, “The Potential of Social Identity for Equilibrium Selection,” American Economic 

Review, 101: 2562-2589, 2011.  
 
Chen, Y., and S. X. Li, “Group Identity and Social Preferences,” American Economic Review, 99: 431-457, 

2009.  
 
Cohen, J., “A Coefficient of Agreement for Nominal Scales,” Educational and Psychological Measurement, 

20: 37-46, 1960. 
 
Crawford, I., and D. Harris, “Social Interactions and the Influence of ‘Extremists’,” Journal of Economic 

Behavior and Organization, 153: 238-266, 2018. 
 
Delaney J. and S. Jacobson, “Those Outsiders: How Downstream Externalities Affect Public Good 

Provision,” Journal of Environmental Economics and Management, 67: 340–352, 2014.  
 
Devetag, G., “Precedent Transfer in Coordination Games: An Experiment,” Economics Letters, 89: 227–

232, 2005.  
 
Dufwenberg, M., Köhlin, G., Martinsson P., and H. Medhin, “Thanks but No Thanks: A New Policy to 

Reduce Land Conflict,” Journal of Environmental Economics and Management, 77: 31–50, 2016. 
 
Eckel, C., and P. Grossman, “Managing Diversity by Creating Team Identity,” Journal of Economic 

Behavior and Organization, 58: 371–392, 2005. 
 
Ellingsen, T., M. Johannesson, and J. Mollerstrom, “Social Framing Effects: Preferences or Beliefs,” 

Games and Economic Behavior, 76: 117-130, 2012. 
 
Falk, A., U. Fischbacher, and S. Gächter, “Living in Two Neighborhoods—Social Interaction Effects in the 

Laboratory,” Economic Inquiry, 51: 563–578, 2013. 
 
Farrell, J. and M. Rabin, “Cheap Talk,” Journal of Economic Perspectives, 10: 103-118, 1996.  
 
Fehr, E., and K. Schmidt, “A Theory of Fairness, Competition, and Cooperation,” Quarterly Journal of 

Economics, 114: 817-868, 1999. 
 
Fischbacher, U., “z-Tree: Zurich Toolbox for Readymade Economic Experiments,” Experimental 

Economics, 10: 171–8, 2007. 
 



31 
 

Goeree, J, and C. Holt, “Ten Little Treasures of Game Theory and Ten Intuitive Contradictions,” American 
Economic Review, 91: 1402-1422, 2001.  

 
Goeree, J, and C. Holt, and T. Palfrey, “Quantal Response Equilibrium,” in  S. Durlauf and L. Blume, eds., 

New Palgrave Dictionary of Economics,  Palgrave Macmillan, 2008.  
 
Goeree, J, and C. Holt, and T. Palfrey, Quantal Response Equilibrium: A Stochastic Theory of Games, 

Princeton: Princeton University Press, 2016. 
 
Goette, L., D. Huffman, and S. Meier, “The Impact of Social Ties on Group Interactions: Evidence from 

Minimal Groups and Randomly Assigned Real Groups,” American Economic Journal: 
Microeconomics, 4: 101–115, 2012.  

  
Gong, M., J. Baron, and H. Kunreuther, “Group Cooperation under Uncertainty,” Journal of Risk and 

Uncertainty, 39: 251-270, 2009.  
 
Goren, H., and G. Bornstein, “The Effects of Intragroup Communication on Intergroup Cooperation in the 

Repeated Intergroup Prisoner’s Dilemma (IPD) Game,” Journal of Conflict Resolution: 44:700-
719, 2000. 

 
Greiner, B., “Subject Pool Recruitment Procedures: Organizing Experiments with ORSEE,” Journal of the 

Economic Science Association, 1: 114-125, 2015.  
   
Griffin, A., and J. Hauser, “Integrating R&D and Marketing: A Review and Analysis of the Literature,” 

Journal of Product Innovation Management, 13: 191–215, 1996.  
 
Haile, P., A. Hortacsu, and G. Kosenok, “On the Empirical Content of Quantal Response Equilibrium,” 

American Economic Review, 98:180-200, 2008.  
 
Halevy, N., Bornstein, G. and L. Sagiv, “‘Ingroup Love’ and ‘Outgroup Hate’ as Motives for Individual 

Participation in Intergroup Conflict: A New Game Paradigm,” Psychological Science, 19: 405-41, 
2008.  

 
Hargreaves Heap, S., and D. Zizzo, “The Value of Groups,” American Economic Review, 99: 295-323, 

2009.  
 
Harsanyi, J., and R. Selten, A General Theory of Equilibrium Selection in Games, Cambridge: MIT Press, 

1988.  
 
Horton, J. ꞏ D. Rand, and R. Zeckhauser, “The Online Laboratory: Conducting Experiments in a Real Labor 

Market,” Experimental Economics, 14:399–425, 2011.  
 
Houser, D., and E. Xiao, “Classification of Natural Language Messages Using a Coordination Game,” 

Experimental Economics, 14: 1-14, 2011.  
 
Insko, C., J. Schopler, R. Hoyle, G. Dardis, and K. Graetz, “Individual-Group Discontinuity as a Function 

of Fear and Greed,” Journal of Personality and Social Psychology, 58: 68-79, 1990. 
 
Insko, C., J. Schopler, M. Pemberton, J. Wieselquist, S. McIlraith, D. Currey, and L. Gaertner, “Long-Term 

Outcome Maximization and the Reduction of Interindividual–Intergroup Discontinuity,” Journal 
of Personality and Social Psychology, 75: 695–710, 1998. 



32 
 

 
Jacobson, D., “Founding Fathers,” Stanford Magazine, July/August1998. Available at 

http://www.bandwidthco.com/history/computers/hp/Founding%20Fathers.pdf. Accessed 20 
November, 2013.  

 
Kagel, J., and P. McGee, ‘Team versus Individual Play in Finitely Repeated Prisoner Dilemma Games,’ 

American Economic Journal: Microeconomics, 8: 253-276, 2016.  

Khadjavi, M., and A. Lange, “Prisoners and Their Dilemma,” Journal of Economic Behavior and 
Organization, 92: 163– 175, 2013.  

 
Knez, M., and C. Camerer, “Increasing Cooperation in Prisoner’s Dilemmas by Establishing a Precedent 

of Efficiency in Coordination Games,” Organizational Behavior and Human Decision Processes, 
82: 194-216, 2000.  

 
Krippendorff, K., Content Analysis: An Introduction to Its Methodology, Sage Publications: Thousand Oaks, 

2004. 
 
Kroll, S., List, J., and C. Mason, “The Prisoner’s Dilemma as Intergroup Game: An Experimental 

Investigation,” in J. List and M. Price, eds., Handbook on Experimental Economics and the 
Environment, Edward Elgar: Cheltenham, 2013. 

  
Kugler, T., Kausel, E., and Kocher, M., ‘Are Groups More Rational than Individuals? A Review of 

Interactive Decision Making in Groups,’ Wiley Interdisciplinary Reviews: Cognitive Science, 3: 
471-482, 2012. 

Levine, D., and T. Palfrey, “The Paradox of Voter Participation? A Laboratory Study,” American Political 
Science Review, 101: 143-158, 2007. 

 
Liu, T., Bednar, J., Chen, Y. and S. Page, “Directional Behavioral Spillover and Cognitive Load Effects in 

Multiple Repeated Games,” forthcoming, Experimental Economics, doi.org/10.1007/s10683-018-
9570-7.  

 
McKelvey, R., and T. Palfrey, “Quantal Response Equilibrium for Normal Form Games,” Games and 

Economic Behavior, 10: 6-38, 1995. 
 
Morgan, P., and Tindale, R., “Group versus Individual Performance in Mixed-Motive Situations: Exploring 

an Inconsistency,” Organizational Behavior and Human Decision Processes, 87: 44-65, 2002.  

Morita, H., and M., Servátka, “Group Identity and Relation-Specific Investment: An Experimental 
Investigation,” European Economic Review, 58: 95-109, 2013.  

 
Palfrey, T., and H. Rosenthal, “A Strategic Calculus of Voting,” Public Choice, 41: 7 –53, 1983. 
 
Rao, A., and P. Scaruffi, A History of Silicon Valley: The Greatest Creation of Wealth in the History of the 

Planet, Omniware: Palo Alto, 2011.  
 
Reed, II, A., and K. Aquino, “Moral Identity and the Expanding Circle of Moral Regard toward Out-Groups,” 

Journal of Personality and Social Psychology, 84: 1270–1286, 2003.  
 



33 
 

Sally, D., “Conversation and Cooperation in Social Dilemmas: A Meta-Analysis of Experiments from 1958 
to 1992,” Rationality and Society, 7: 58-92, 1995.  

 
Savage, L. J., “Elicitation of Personal Probabilities and Expectations,” Journal of the American Statistical 

Association, 66: 783-801, 1971. 
 
Schopler, J., C. Insko, J. Wieselquist, M. Pemberton, B. Witcher, R. Kozar, C. Roddenberry and T. 

Wildschut, “When Groups are More Competitive than Individuals: The Domain of the 
Discontinuity Effect,” Journal of Personality and Social Psychology, 80: 632–644, 2001. 

 
Sen, A., “Isolation, Assurance, and the Social Rate of Discount,” Quarterly Journal of Economics: 81: 112-

124, 1967.  
 
Shao, R., K. Aquino, and D. Freeman, “Beyond Moral Reasoning: A Review of Moral Identity Research 

and Its Implications for Business Ethics,” Business Ethics Quarterly, 18: 513-540, 2008.  
 
Sobel, J., “Interdependent Preferences and Reciprocity,” Journal of Economic Literature, 43: 392–436, 

2005. 
 
Tabelllini, G., “The Scope of Cooperation: Values and Incentives,” Quarterly Journal of Economics, 123: 

905-950, 2008. 
 
Tajfel, H., and J. Turner, “An Integrative Theory of Intergroup Conflict.” In Stephen Worchel and William 

Austin, eds., The Social Psychology of Intergroup Relations, Monterey, CA: Brooks/Cole, 1979.  
 
Turocy, T., “A Dynamic Homotopy Interpretation of the Logistic Quantal Response Equilibrium 

Correspondence,” Games and Economic Behavior, 51: 243-263, 2005.  
 
Van Huyck, J., R. Battalio, and R. Beil, “Tacit Coordination Games, Strategic Uncertainty, and 

Coordination Failure,” American Economic Review, 80: 234-48, 1990. 

Weisel, O., and R. Zultan, “Social Motives in Intergroup Conflict: Group Identity and Perceived Target of 
Threat,” European Economic Review, 90: 122-133, 2016. 

Wondollock, J. and S. Yaffee, Making Collaboration Work: Lessons from Innovation in Natural Resource 
Management, Washington D.C.: Island Press, 2000.  

 

 



 

Appendix A: Proofs (Not for Publication) 
(A) Proof of Proposition 1 

 We first show that that there exists a unique  * 0,1q   such that (10) holds. Define  
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which is the probability that the out-group votes to defect. From (A1), we have  
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Therefore, for  0,1  , 
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Re-write (10) as 
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When (7), (8) or (9) holds,   0
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n
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Therefore, the RHS of (A3) is positive and less than 1. From (A1) and (A2),  0 1O
Dp   , 

 1 0O
Dp  , and  O

Dp   is continuous and strictly decreasing for  0,1  . The Intermediate 

Value Theorem implies that there exists a unique  * 0,1q   such that (A3), or equivalently (10), 

holds. Therefore, under the assumption that members of a group always cooperate with the same 
probability (quasi-symmetry), the IPD has a unique mixed-strategy equilibrium that is symmetric 
in which members of both groups 1 and 2 cooperate with probability *q . 

From (A3), it is straightforward to show that *( )O
Dp q  is strictly increasing in   and in 
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 . Since ( )O
Dp   is strictly decreasing in   according to (A2), we obtain (a) and (b). 

 
(B) Proof of Proposition 2  

Define the weighted utility difference between D and C if the out-group defects as 
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and the weighted utility difference between C and D if the out-group cooperates as 
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Note that (A2) implies that 
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According to (13) and (A7), we know that  * 0,1   is a logit equilibrium of the IPD iff 

for some 0  , *  satisfies   
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It is obvious that 
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Now, consider the RHS of (A8). Under (6),   0
2 1

n
R T T S
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      

  and thus, 

* *( ) ( ) 0D Cud ud    . Combining with (A9), there exists a 0    such that (A8) holds iff 

 * 0,0.5  . The range of *  is  0,0.5 . 
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Furthermore, it can be shown that * 0.5q   when (7) holds, as follows. When n  is odd, 

the 1n   binomial coefficients are symmetric. Therefore, 
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where the last equality follows from  
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2
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 . When (7) holds, the RHS of (A3) is less than 

0.5. It follows from (A2) that * 0.5q  . Combining the above results, we conclude that the range 

of  *  is    *0,0.5 ,1q .  

Similarly, when (9) holds, the RHS of (A3) is larger than 0.5 and * 0.5q  . Moreover, the 

range of  *  is    *0, 0.5,1q  .  

Finally, it can be shown that the end points,  *0, ,1q , of the above half-open or open 

intervals correspond to   .20 This proves Proposition 2.  

                                                            
20 We can interpret   in (A8) as an inverse function of * . Under (6), (7) or (9), when * 0   
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*  satisfy (A8). 
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(C) Proof of Proposition 3  

Under (6), the range of  *   is  0,0.5 . It is obvious that  * 0,0.5prin  . 

Under (7), the range of  *   is   *0,0.5 ,1q    .  Theorem 3 of McKelvey and Palfrey 

(1995) established that  *   is upper hemicontinuous. They also showed in their Lemma 1 that 

there exists  0  , such that for all 0,    , the logit equilibrium is unique. These properties, 

together with the initial point  * 0 0.5prin  , imply that    * 0,0.5prin    for every 0,    . 

Next, consider what happens starting from  *
prin  , which is in the interval  0,0.5 . We can use 

similar arguments as above to show that for every   ,    * 0,0.5prin   .21   

To consider the monotonicity part, we first derive a useful result. Differentiating (A6) 
with respect to  , we obtain  
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Combining (A10) with (A11), we conclude that  
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Under (6) or (7), pick 1 0   and the corresponding point   *
1 1, prin    in the graph of 

*
prin . Then consider 2 1  . Using (15) and (A12), we have 
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1 2 1 1 1 1, , 0prin prin prin pring g             . On the other hand, we have 

 20, 0 0.5 0 0g      . It follows from the Intermediate Value Theorem that there exists an 

    * *
2 10,prin prin     such that     * *

2 2 2, 0prin pring       . Thus,   *
prin   

decreases monotonically in  . Since the only Nash equilibrium in the interval  0,0.5  is 
* 0   

(i.e., Defect), we conclude that  *lim 0prin
 


 . This proves (a). 

When (8) holds, * 0.5q  . We conclude from  *, 0.5g q    and (15) that  * 0.5prin    

always. This proves (b). 

                                                            
21 In essence, the “gap”  *0.5,q  in the range of the (upper hemicontinuous) logit equilibrium correspondence 

under (7) leads to the result that the principal branch that starts from the centroid (  * 0 0.5prin  ) cannot 

escape from  0,0.5 . 
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Under (9), the range of  *   is  *0, 0.5,1q    , and there is a gap  * , 0.5q  in the 

range of  *  . Combining with the initial point  * 0 0.5prin  , we can use the same arguments 

as above to show that    * 0.5,1prin   . Consider 2 1 0   . Using (15) and (A12), we have 

         * * * *
1 2 1 1 1 1, , 0prin prin prin pring g              under (9). We also have 

 21, 1 0.5 1 0g      . It follows from the Intermediate Value Theorem that there exists an 
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2 2 2, 0prin pring       .  Therefore,   *
prin   

increases monotonically in  .  Since the only Nash equilibrium in the interval  0.5,1  is 
* 1   

(i.e., Cooperate), we conclude that  *lim 1prin
 


 . This proves (c). 

 
(D) Proof of Proposition 4 

We first show that when (6), (7) or (9) holds, 
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When (6) or (7) holds, we know from Lemma 1 that  0, 0 0.5 0g      and 

 0.5, 0.5 0g    . Since the unique value of  *
prin   is defined by the intersection of the 

logistic quantal response function  ,g    and the 45-degree line in the interval  0,0.5 , we 

conclude that  ,g    intersects the 45-degree line from above. Thus, (A13) holds.22 

When (9) holds, we know from Lemma 1 that  0.5, 0.5 0g     and 

 1, 1 0.5 0g      . Since the unique value of  *
prin   is defined by the intersection of 

                                                            
22 A more formal proof is as follows. When (6) or (7) holds,  *

prin   is defined by the unique fixed point of 

 ,g    in the interval  0,0.5 . That is,  * *,prin pring    , where *0 0.5prin  . We prove by 

contradiction. Suppose that 
  * ,

1
pring   







, then there exists an *

1 prin   in the neighbourhood of *
prin  

such that 

 

   

   
 

 

*
1

*
1

* *
1 1

* *
1 1

1 1

1

.

prin

prin

prin prin

prin prin

g g

g g

g

g

 

 

   

   

 






   

   

 

  

Together with  0 0.5 0g   , we conclude that there exists another fixed point *
1(0, ]another   such that 

 * *,another anotherg    . This contradicts with the fact that *
prin  is uniquely defined in  0,0.5 . 
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 ,g    and the 45-degree line in the interval  0.5,1 , we conclude that  ,g    intersects the 45-

degree line from above. Thus, (A13) holds.23  

According to (A13), 
  * ,

1 0
pring   




 


. Therefore, the Implicit Function Theorem 

applies to (A13), which we re-write as     * *, , , , , , ,prin pring             to make the 

dependence of  * , ,prin     on  ,   explicit. Furthermore, we have  

 
 

  

  

*

*

*

, , ,
,

; ,
, , ,

1

prin

prin

prin

g

g

    
      

     



  

 




. (A14) 

Using (A4) to (A6), it is straightforward to show that 
( , , )

0
g   







 and 
( , , )

0
g   







. Combining 

these results with (A13) and (A14), we obtain (16) and (17).  

 
 

 

 

                                                            
23 A formal proof similar to that in the previous footnote can be constructed.  
 




