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Local Computation Mechanism Design
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We introduce the notion of local computation mechanism design—designing game-theoretic mechanisms that
run in polylogarithmic time and space. Local computation mechanisms reply to each query in polylogarithmic
time and space, and the replies to different queries are consistent with the same global feasible solution.
When the mechanism employs payments, the computation of the payments is also done in polylogarithmic
time and space. Furthermore, the mechanism needs to maintain incentive compatibility with respect to the
allocation and payments.

We present local computation mechanisms for two classical game-theoretical problems: stable matching
and job scheduling. For stable matching, some of our techniques may have implications to the global (non-
LCA (Local Computation Algorithm)) setting. Specifically, we show that when the men’s preference lists are
bounded, we can achieve an arbitrarily good approximation to the stable matching within a fixed number of
iterations of the Gale-Shapley algorithm.
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1. INTRODUCTION

Assume that we would like to design an auction for millions of buyers and items. Alter-
natively, there is a cloud of hundreds of thousands of computers on which we would like
to schedule several millions of jobs. In the not-so-distant past, these ideas would have
been unthinkable, but today, technological advances, especially the Internet, have led
us to the point where they are not only possible, but necessary. One can easily conceive
a cloud computation with thousands of selfish computers, each one wanting to mini-
mize its workload. Alternatively, an ad-auction for millions of businesses competing for
advertising on millions of websites does not appear to be a faraway dream. In cases
like these, the datasets on which we need to work are so large, that polynomial-time
tractability may not be enough. Sometimes, even computing a solution in linear time
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may be infeasible. Often, however, only parts of the solution to a problem are required
at each point in time. In such cases, we can use local computation algorithms (LCAs).

LCAs, which were introduced by Rubinfeld et al. [2011], consider the scenario in
which we need to be able to respond to queries (regarding a feasible solution) quickly,
but we never need the entire solution at once. For example, in most auctions, this is
a reasonable assumption. When queried, we need to be able to tell each buyer which
items she received and how much to pay; for a given item we need to tell the seller to
whom and when to ship the item. There is no need to calculate the entire allocation
and payment at any specific time or to commit the entire solution to memory. Having
an LCA to such an auction would mean that we can reply to queries in polylogarithmic
time and only require polylogarithmic space. Furthermore, if all of the items and
buyers are queried, combining the results will give us a complete solution that meets
our requirements.

The field of algorithmic mechanism design is an area at the intersection of economic
game theory and algorithm design, whose objective is to design mechanisms in de-
centralized strategic environments. These mechanisms need to take into account both
the algorithmic efficiency considerations and the selfish behavior of the participating
agents.

In this article, we propose local computation mechanism design, which shares the
motivations of both LCAs and algorithmic mechanism design. Our abstract model is
the following: We have a large dataset and a set of allowable queries. Our goal is
to implement each query in polylogarithmic time and space, while maintaining the
incentives of participants. It is worthwhile to give a few illustrative examples:

(1) Consider the problem of assigning doctor interns to hospitals internships, the clas-
sical motivation for stable matching. We would like to be able to compute, for each
doctor, her assigned hospital, without performing the entire global computation.

(2) Consider a large auction. When an item arrives from the factory to be shipped,
we need to know to whom to send it and how much to charge. We never need the
complete solution to the auction.

(3) Consider a large distributed data center that has to assign jobs to machines and
elicits from each machine its speed. When queried on a job, we would like to reply
to which machine it is assigned, and when queried regarding a machine, we would
like to reply with the set of jobs that need to run on it. Again, we would like the
computation to be local, without constructing a global solution, and still be able to
ensure the machines have an incentive to report their speeds truthfully.

A nice property of LCAs is that they are parallelizable; this property immediately
carries over to Local Computation Mechanisms (LCMs). Therefore, in addition to pro-
viding query access to a solution that meets both the combinatorial and game-theoretic
requirements of the mechanism, an LCM can be run in parallel on a large number of
machines to obtain a complete such solution.

The following are our main contributions. First, we formalize the notion of local
computation mechanism design. A mechanism is local if, for every query, it calculates
an allocation (and a payment) in polylogarithmic time and space. Furthermore, the
allocation must be consistent with some (single) global solution, and the payment must
ensure truthfulness of the agents. Second, we present local computation mechanisms
for several interesting problems, where our main result is an LCA for stable matching.
Third, we use our techniques to show that in the general case when the men’s lists
have bounded length (even in cases that do not admit an LCA), we can find arbitrarily
good matchings1 (up to both additive and multiplicative constants) by truncating the
Gale-Shapley algorithm to a constant number of rounds.

1See Section 3 for a formal discussion.
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We provide LCAs for the following problems:

Stable Matching. In the stable matching (or stable marriage) problem, introduced by
Gale and Shapley [1962], we would like to find a stable perfect matching2 between a
group of n men and a group of n women. We focus on the model introduced by Immorlica
and Mahdian [2005], in which the women can have arbitrary preferences over the men,
and the men have preference lists of length k over the women, sampled uniformly at
random.

Our main result is a local computation algorithm that matches all but an arbitrarily
small fraction of the participants (this is often called an almost stable matching; see,
for example, Eriksson and Häggström [2008] and Lu and Zheng [2003]). Furthermore,
limited to the matched participants, the matching is stable.

Scheduling on Related Machines. In the makespan minimization problem, we want to
schedule n jobs on mmachines so as to minimize the maximal running time (makespan)
of the machines. This problem has many variations; we consider the scenario in which
m identical jobs need to be allocated among n related machines. The machines are
strategic agents, whose private information is their speed. We show the following:

(1) A local mechanism that is truthful in expectation for scheduling on related ma-
chines, that provides an O(log log n)-approximation to the optimal makespan.

(2) A local mechanism that is universally truthful for the restricted case (i.e., when
each job can run on one of at most a constant number of predetermined machines),
that provides an O(log log n)-approximation to the optimal makespan.

We also show some subtle and surprising results on the truthfulness of our algo-
rithms.

1.1. Related Work

LCAs. Rubinfeld et al. [2011] showed how to transform distributed algorithms to LCAs,
and gave LCAs for several problems, including maximal independent set and hyper-
graph 2-coloring. Alon et al. [2012] expanded the work of Rubinfeld et al. [2011] and
gave better space bounds for maximal independent set and hypergraph 2-coloring, us-
ing query trees. Query trees were introduced in the local setting by Nguyen and Onak
[2008]: a random permutation of the vertices is generated, and a sequential algorithm
is simulated on this order. The query tree represents the dependence of each query
on the results of previous queries. Nguyen and Onak [2008] showed that if the graph
has a bounded degree, the query tree has a constant expected size. Alon et al. [2012]
showed that the query tree has polylogarithmic size with high probability, and that
the space required by the algorithm can be reduced by using a random seed to gener-
ate the ordering. Mansour et al. [2012], showed that the size of the query tree can be
bounded, with high probability, by O(log n), and showed how it is possible to transform
many online algorithms to LCAs. Using this technique, they showed LCAs for max-
imal matching and several machine scheduling problems. Reingold and Vardi [2016]
extended these results to a wider family of graphs, and obtained better time and space
bounds. Mansour and Vardi [2013] showed an LCA that finds a (1 − ε)-approximation
to the maximum matching.

Mechanism Design. Because we look at two very different game-theoretic settings,
we provide a short subsection dedicated to related work pertaining to each topic at the
start of the relevant sections.

2A stable perfect matching is a perfect matching with no blocking pairs. A blocking pair is a man m and a
woman w such that m prefers w to the woman he is matched to, and w prefers m to the man she is matched
to.
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2. MODEL AND PRELIMINARIES

We assume the standard uniform-cost RAM model, in which the word size is O(log n)
bits, where n is the input size, and it takes O(1) to read and perform simple word
operations. We denote the set of integers {1, 2, . . . , n} by [n].

2.1. LCAs

We use the following model of LCAs. A (t(n), s(n), δ(n))-local computation algorithm
A for a computational problem is a (possibly randomized) algorithm that receives an
input of size n, and a query x. Algorithm A replies to query x in time t(n) and uses at
most s(n) memory, with probability at least 1 − δ(n). Furthermore, the replies to all of
the possible queries are consistent with a single feasible solution to the problem. That
is, the algorithm always replies correctly, but there is a δ(n) probability that the time
and/or space bounds will be violated.

Remark 2.1. The model we use is a generalization of the model introduced by
Rubinfeld et al. [2011]. Our model differs from theirs in that their model requires that
the LCA always obeys the time and space bounds, and returns an error with some
probability. It is easy to see that any algorithm that conforms to our model can be
modified to conform to the model of Rubinfeld et al. [2011] by forcing it to return an
error if the time or space bound is violated (the other direction does not necessarily
hold). Note, however, that using this translation, a truthful mechanism in our model
would not necessarily translate to a truthful mechanism in their model.

2.2. Mechanism Design

We use the standard notation of game-theoretic mechanisms. There is a set I of n
rational agents and a set J of m items. In some settings, for example, the stable
marriage setting, there are no objects, only rational agents. Each agent i ∈ I has a
valuation function vi that maps subsets S ⊆ J of the items to nonnegative numbers.
The utilities of the agents are quasilinear, namely, when agent i receives subset S of
items and pays p, her utility is ui(S, p) = vi(S) − p. Agents are rational in the sense
that they select actions to maximize their utility. We would like to allocate items to
agents (or possibly agents to other agents), in order to meet global goal, for example,
maximize the sum of the valuations of allocated objects (see, e.g., Nisan et al. [2005]).

A mechanism with payments M = (A,P) is composed of an allocation function A,
which allocates items to agents, and a payment scheme P, which assigns each agent
a payment. A mechanism without payments consists only of an allocation function.
Agents report their bids to the mechanism. Given the bids b = (b1, . . . , bn), the mech-
anism allocates the item subset Ai(b) ⊆ J to agent i, and, if the mechanism is with
payments, charges her Pi(b); the utility of agent i is ui(b) = vi(Ai(b)) − Pi(b).

A randomized mechanism is universally truthful if for every agent i, for every random
choice of the mechanism, reporting her true private valuation maximizes her utility.
A randomized mechanism is truthful in expectation, if for every agent i, reporting her
true private valuation maximizes her expected utility. That is, for all agents i, any bids
b−i and bi, E[ui(vi, b−i)] ≥ E[ui(bi, b−i)].

We say that an allocation function A admits a truthful payment scheme if there
exists a payment scheme P such that the mechanism M = (A,P) is truthful.

A mechanism M = (A,P) fulfills voluntary participation if, when an agent bids
truthfully, her utility is always on-negative, regardless of the other agents’ bids, that
is, for all agents i and bids b−i, ui(vi, b−i) ≥ 0.
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2.3. Local Computation Mechanisms

Definition 2.2 (Mechanisms Without Payments). We say that a mechanism M is
(t(n), s(n), δ(n))-local if its allocation function is computed by a (t(n), s(n), δ(n))-local com-
putation algorithm.

Definition 2.3 (Mechanisms With Payments). We say that a mechanism M = (A,P)
is (t(n), s(n), δ(n))-local if both the allocation function A and the payment scheme P are
computed by (t(n), s(n), δ(n))-local computation algorithms.

In other words, given a query x, A computes an allocation and P computes a payment,
and both run in time t(n) and space s(n) with probability at least 1− δ(n). Furthermore,
the replies of A to all of the queries are consistent with a single feasible allocation.

A truthful local mechanism M = (A,P) is a local mechanism that is also truthful.
Namely, each agent’s dominant bid is her true valuation, regardless of the fact that the
mechanism is local.

3. STABLE MATCHING

In the stable matching problem, we are given a set of men and a set of women. The men
have preferences over the women and the women over the men. The goal is to compute
a matching H that is stable; that is, there is no man and woman who prefer each other
to their partner in H. We formalize this next, following a summary of related work.

3.1. Related Work

Stable matching has been at the center of game-theoretic research since the seminal
paper of Gale and Shapley [1962] (see, e.g., Roth [2003] for an introduction and a
summary of many important results). Roth and Rothblum [1999] examined the scenario
in which the preference lists are of bounded length; in most real-life scenarios, this is
indeed the case. For example, a medical student will not submit a preference list for
internship over all of the hospitals in the United States, but only a short list. We
examine the variant in which each man m ∈ M is interested in at most k women (and
prefers to be unmatched than to be matched to anyone not on their list; cf. Roth and
Peranson [1999]). We limit our attention to the setting in which the men’s preferences
are assumed to be uniformly distributed (cf. Immorlica and Mahdian [2005] and Kojima
and Pathak [2009]).

The Gale-Shapley algorithm results in a stable matching regardless of the prefer-
ences (see, e.g., Roth and Sotomayor [1990]); however, its running time is �(n2). Indeed,
this is a lower bound on any algorithm that finds a stable matching (under full prefer-
ence lists) [Ng and Hirschberg 1990]. Furthermore, it is known that a linear number of
iterations of the Gale-Shapley algorithm is necessary to attain stability [Gusfield and
Irving 1989]. One direction taken to obtain sublinear running time is executing parallel
computation on instances with short preference lists. Feder et al. [2000] proposed
one such algorithm for stable matching. Unfortunately, it does not appear possible to
convert their algorithm to an LCA, as they require m4 processors, and the running time
is O(

√
mlog3 n), where m is the sum of the preference list lengths. In some cases, match-

ings that are “almost” stable may be acceptable (see, e.g., Eriksson and Häggström
[2008] and Roth and Xing [1997]). There are several ways of defining what it means for
a matching to be almost stable (see, e.g., Eriksson and Häggström [2008]). One of the
better accepted notions (e.g., Floréen et al. [2010], Ostrovsky and Rosenbaum [2014],
and Roth and Xing [1997]) is to count the number of blocking pairs3—the fewer the

3A blocking pair is a man and a woman who both prefer to be paired with each other than with their current
partner.
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blocking pairs, the more stable the matching. Several experimental works on parallel
algorithms for the stable matching problem provide evidence that after a constant
number of rounds, the number of blocking pairs can be made arbitrarily small (e.g.,
Tseng and Lee [1984], Quinn [1985], and Lu and Zheng [2003]). Floréen et al. [2010]
showed that in the special case when the lengths of both the men’s and women’s
preference lists are bounded by a constant, there exists a distributed version of the
Gale-Shapley algorithm, which can be run for a constant number of rounds and finds
an almost stable matching.

The Gale-Shapley algorithm is known to be strategy-proof for the men but not for
the women (e.g., Maschler et al. [2013]). Immorlica and Mahdian [2005] showed that
in the previous setting (and also for a more general setting), the expected number of
people with more than one stable spouse is vanishingly small, and with probability
1 − o(1), truth-telling is a dominant strategy if the other players are truthful.

3.2. Model and Main Result

We use a graph-theoretic characterization of the stable matching problem (see, e.g.,
Fleiner [2003] and Floréen et al. [2010]). An instance of the stable marriage problem is
represented by a bipartite graph G = (M ∪ W, E), where M represents the set of men,
and W the set of women. We make the conventional assumption that |M| = |W | = n.
Each man has a preference list over the women that he is connected to, and each
woman has a preference list over the men she is connected to. A matching H ⊆ E is
a set of vertex-disjoint edges. An edge e is said to be matched if e ∈ H. A vertex v
is matched if there is some u such that e = (u, v) is matched. An edge (u, v) ∈ E\H is
unstable if it holds that (1) u is unmatched or prefers v over its match in H, and (2) v
is unmatched or prefers u over its match in H. (An unstable edge is often referred to
as a blocking pair.) A matching H is stable if there are no unstable edges. The stable
matching problem where each man has a degree of k and his adjacent edges are chosen
uniformly at random is called k-uniform. Note that in this case, the women’s preference
list lengths are binomial random variables whose value is determined by the random
choices of the men, and can therefore have any length in [n].

The Gale-Shapley algorithm finds a stable matching in the k-uniform setting (e.g.,
Gale and Sotomayor [1985]). To ensure the locality of our algorithm, we allow our
mechanism to find an almost stable matching. To do this, we allow our mechanism to
“disqualify” men, in which case they remain unmatched, but are unable to contest the
matching (the number of disqualified men is exactly the number of blocking pairs).
We try to keep the number of disqualified men to a minimum. Our main result is the
following.

THEOREM 3.1. Let A = (M, W, P) be a stable matching problem, |M| = |W | = n, in the
k-uniform setting. For any ε > 0, there is an (O(log n), O(log n), 1/n)-local computation
mechanism for A that finds a matching with at most εn disqualified men and in which
at most 2n

k + εn of the men remain unmatched.

We begin by describing a nonlocal algorithm, ABRIDGEDGS, and then show how to
simulate it locally by a local algorithm, LOCALAGS.

3.3. ABRIDGEDGS

Let ABRIDGEDGS be the Gale-Shapley men’s courtship algorithm, where the algorithm
is stopped after � rounds, and the men rejected on that round are left unmatched. That
is, in each round, each unassigned man approaches to the highest ranked woman that
has not (yet) rejected him. Each woman then tentatively accepts the man she prefers
out of the men who approached her, and rejects the rest. This continues until the �th
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round, and the men who were rejected on the �th round are left unmatched; we say that
these men are disqualified. Note that the set of disqualified men may be a strict subset
of the set of unmatched men: men who were rejected k times before the �th round are
unmatched as well. We simulate ABRIDGEDGS on k-uniform stable matching problems
to obtain the following LCA.

3.4. LOCALAGS—An LCA Implementation of ABRIDGEDGS

Define the distance between two people to be the length of the shortest path between
them in the graph. Define the d-neighborhood of a person v to be everyone at a distance
at most d from v, denoted Nd(v)

Assume that we are queried on a specific man, m1. We simulate ABRIDGEDGS locally as
follows: Choose some constant �, whose exact value will be determined later. For each
man in the 2�-neighborhood of m1 (i.e., for all mi such that mi ∈ N2�(m1)), we simulate
round 1 of ABRIDGEDGS. That is, each one approaches his preferred woman, and is either
tentatively accepted or rejected. Then, for each man mi ∈ N2�−2(m1), we simulate round
2. And so on, until for mi ∈ N2(m1) (i.e., m1 and his closest male neighbors), we simulate
round �. We return the woman to whom m1 is paired, “unassigned” if he was rejected
by k women, and “disqualified” if he was rejected by a woman in round �. We denote
this algorithm LOCALAGS.

In order to prove Theorem 3.1, we need to prove several things: that LOCALAGS
correctly simulates ABRIDGEDGS (Section 3.5); that its running time and space are
bounded by O(log n) (Section 3.6); and that “not too many” men are left unmatched or
disqualified (Section 3.7).

3.5. Correctness of LOCALAGS

The following claim shows that the steps executed by LOCALAGS are sufficient to cor-
rectly determine the output of ABRIDGEDGS when queried on m1.

CLAIM 3.2. For any two men, mi and mj, whose distance from each other is greater than
2�, mi’s actions cannot affect mj if Algorithm ABRIDGEDGS terminates after � rounds.

PROOF. The proof is by induction. For � = 1, let w1 be mj ’s first choice. Only men for
whom w1 is their first choice can affect mj , and these are a subset of the men at distance
2 from mj . For the inductive step, assume that the claim holds for � − 1. Assume by
contradiction that there is a man mi whose actions can affect mj within � rounds, who
is at a distance of at least 2�+2 from mj . From the inductive claim, none of mi ’s actions
can affect any of mj ’s neighbors within � − 1 rounds. As their actions in round � − 1
(or any previous round) will not be affected by mi, and they are the only ones who can
affect mj in round �, it follows that mi cannot affect mj within � rounds.

3.6. Space and Time Bounds of LOCALAGS

The following lemma bounds the running time and space of LOCALAGS.

LEMMA 3.3. The running time and space of algorithm LOCALAGS is O(log n) per query
with probability at least 1 − 1

n2 .

Because LOCALAGS simulates ABRIDGEDGS for a constant number of rounds, the
running time and space required per query by LOCALAGS is at most the number of
rounds multiplied by the size of the neighborhood on which we simulate ABRIDGEDGS.
The following claim therefore implies Lemma 3.3:

Recall that Ni(v) is the set of people at distance at most i from v.
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CLAIM 3.4. For sufficiently large n, for any integer i > 0, there exists a constant ci

such that Pr[|Ni(v)| ≤ ci log n] ≥ 1 − 1
n2 .

PROOF. Let N i
v be the random variable representing the number of vertices in the

i-neighborhood of vertex v. As the degree of each woman v is distributed binomially,
N 1

v ∼ B(n, k/n), it holds that E[N 1
v ] = k. We prove by induction that Pr[N i

v ≤ ci(log n)] ≥
1 − i

n3 , where ci is a constant that depends only on k and i.
For the base, i = 1, if v is a man, N 1

v = k. If v is a woman, we employ the Chernoff
bound with λ > 2e − 1:4 Pr[N 1

v > (1 + λ)k] < 2−kλ. Therefore, for c1 = 4 and n ≥ 2k,

Pr[N 1
v > c1 log n] ≤ 2−c1 log n+k <

2k

nc1
≤ 1

n3 .

Assuming that the claim holds for all integers smaller than i, we show that it holds
for i. If the outermost vertices of the neighborhood are men, then N i

v ≤ kN i−1
v and we

can take ci = kci−1. Otherwise, we use the law of total probability.

Pr
[
N i

v > ci log n
] = Pr

[
N i

v > ci log n|N i−1
v ≤ ci−1 log n

]
Pr

[
N i−1

v ≤ ci−1 log n
]

+ Pr
[
N i

v > ci log n|N i−1
v > ci−1 log n

]
Pr

[
N i−1

v > ci−1 log n
]

≤ Pr
[
N i

v > ci log n|N i−1
v ≤ ci−1 log n

] + Pr
[
N i−1

v > ci−1 log n
]

≤ Pr
[
N i

v > ci log n|N i−1
v ≤ ci−1 log n

] + i − 1
n3 ,

where the last inequality uses the inductive hypothesis. It remains to bound Pr[N i
v >

ci log n|N i−1
v ≤ ci−1 log n].

The probability that the degree of any woman u is exactly z is at most

Pr[deg(u) = z] ≤
(

n
z

) (
k
n

)z

≤
(

ek
z

)z

,

using the inequality
(n

i

) ≤ (ne
i

)i. Hence, for z ≥ e2k we have that Pr[deg(u) = z] ≤ e−z.
Because for any z, it holds that Pr[deg(u) = z] ≤ 1 = e0, for arbitrary z ≥ 0, it holds
that Pr[deg(u) = z] ≤ e−̂z, where ẑ = max{0, z − e2k}.

We would like to bound the probability that N i
v is larger than ci log n when N i−1

v is
less than ci−1 log n. We define a new random variable N̂ i

v as follows. Let y ≤ ci−1 log n be
the number of nodes at distance i − 1 from v and let z = (z1, z2, . . . , zy) be their degrees.
We define the truncated degrees as ẑ = {̂z1, ẑ2, . . . , ẑy} such that ẑ j = max{0, zj − e2k}
(informally, we ignore the first e2k neighbors of each vertex). The value of N̂ i

v is the
sum of the truncated degrees at distance i − 1 from v, that is, N̂ i

v = ∑y
i=1 ẑi. Clearly

N i
v ≤ N̂ i

v + e2ky ≤ N̂ i
v + ci−1e2k log n. Therefore, it is sufficient to bound N̂ i

v .
Let x̂ = ∑y

i=1 ẑi. The probability that the truncated degrees of the vertices at distance
i − 1 are exactly ẑ = (̂z1, ẑ2, . . . , ẑy) is at most

∏y
i=1 e−̂zi = e−x̂. There are

(x̂+y
y

)
vectors

ẑ that can realize x̂ (the number of ways to partition ẑ into y groups). We bound

4Substituting λ ≥ 2e − 1 into the standard Chernoff bound Pr[X > (1 + λ)μ] ≤ ( eλ

(1+λ)1+λ )μ gives this bound.
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Pr[N̂ i
v = x̂|N i−1

v ≤ y], for x̂ ≥ 7y as follows:

Pr[N̂ i
v = x̂|N i−1

v ≤ y]

≤
(

x̂ + y
y

)
e−x̂

≤
(

e · (̂x + x̂/7)
x̂/7

)x̂/7

e−x̂

= e−(1−(1+ln(8))/7)̂x

≤ e−x̂/2.

It follows that

Pr
[
N̂ i

v ≥ 7y|N i−1
v ≤ y

] ≤
∞∑

x̂=7y

e−x̂/2 = e−7y/2

1 − e−1/2 ≤ e−y ≤ 1/n3,

which follows since y ≤ ci−1 log n and ci−1 ≥ 3. Therefore, for ci = (e2k+ 7)ci−1 ≤ (16k)i,
we have

Pr
[
N i

v > ci log n
] ≤ 1

n3 + i − 1
n3 = i

n3 .

Claim 3.4 implies that Algorithm LOCALAGS makes O(log n) queries with probability
at least 1

n2 ; Lemma 3.3 follows.

3.7. Bounding the Number of Men Removed

In this section, we prove that “not too many” men remain unmatched. There are two
possible reasons for a man to be unmatched by LOCALAGS: (1) he had already been
rejected k times by round � (hence he never reaches round �), or (2) he was rejected
(and hence disqualified) on round �. We up the probability of both (Lemma 3.6 and
Corollary 3.11, respectively), and apply a union bound, to obtain the following result.

LEMMA 3.5. For any ε > 0, setting � = 2k
ε

in Algorithm LOCALAGS ensures that at
most 2n

k + εn men remain unmatched with probability at least 1 − 1
n2 .

3.7.1. Removal Due to Short Lists. We bound the number of unassigned women as a
result of the fact that the lists are short, noting that the number of unassigned women
equals the number of unassigned men. This is given by the following lemma.

LEMMA 3.6. In the k-uniform setting, the Gale-Shapley algorithm results in at most
2n
k men being unassigned, with probability at least 1 − 1

n2 .

Before proving Lemma 3.6, we will require a few preliminaries. We use the principle
of deferred decisions: instead of “deciding” on the preference lists in advance, each man
chooses the (i + 1)th woman on his list only if he is rejected by the ith—this is known to
be equivalent to the choices being made in advance (e.g., Knuth [1976]).

Consider the following stochastic process: In each round t, the (randomized) assign-
ment function f t is given the matching of the previous round, Ht−1, and assigns each
man m ∈ M a woman w ∈ W , such that if m was matched in Ht−1, he is assigned the
same woman (i.e., if (m, w) ∈ Ht−1, then f t(m) = w); if he is unmatched in Ht−1, he is
assigned a woman uniformly at random. Let St(w) be the set of men assigned woman
w by f t, that is, St(w) = {m : f t(m) = w}. For every woman w such that St(w) 
= ∅, a
single m ∈ St(w) is chosen arbitrarily to be w’s match in Ht, that is, (w, m) ∈ Ht. The
process is initialized with H0 = ∅, and iterates for k rounds.
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Remark 3.7. Note that a man can choose the same woman more than once. Compare
this to the case each man can approach each woman once: If a man approaches a woman
he had already approached, she must be matched, and hence in this case, the men have
a lower probability of approaching an unassigned woman. Therefore, the number of
women that are unassigned at the end of this process is an upper bound to the number
of unassigned women in the system where men can only approach each woman once.

Let Xt
j be the indicator variable, which is 1 if woman j is unassigned after round t,

that is, there does not exist a man m ∈ M such that (m, w) ∈ Ht. Let Xt = ∑n
j=1 Xt

j be
the number of unassigned women after round t.

PROOF OF LEMMA 3.6. As the stochastic process described previously ends at least
as early as the Gale-Shapley algorithm with short lists in the k-uniform setting (from
Remark 3.7 and the fact that it may be stopped prematurely), it suffices to prove that
for any constant t,

Pr
[

Xt >
2n
t

]
≤ t

n3 .

The proof is by induction. The base of the induction, t = 1, is immediate. For the
inductive step, assume that after round t, Xt = n/μ (for some μ > 0). In round t + 1,
E[Xt+1|Xt = n

μ
] = n

μ
(1 − 1/n)n/μ, because each unassigned man approaches any woman

with probability 1/n; hence, the probability that a specific woman is not approached by
any man is (1 − 1/n)n/μ.

For the rest of the proof, assume that Xt ≤ 2n
t , and fix Xt to be some such value. We

get

E

[
Xt+1|Xt ≤ 2n

t

]
≤ 2n

t
(1 − 1/n)2n/t <

n
t/2 · e2/t <

2n
t + 2

, (1)

using ex > 1 + x.
It remains to show that Xt+1 is concentrated around its mean. To do so, we will define

a specific martingale and use the following version of Azuma’s inequality (see Alon and
Spencer [2008]).

LEMMA 3.8 [AZUMA’S INEQUALITY]. Let c = Y0, . . . , Yn be a martingale with |Yi+1−Yi| ≤ 1
for all 0 ≤ i ≤ n. Then

Pr[|Yn − c| > λ
√

n] < 2e−λ2/2.

Order the men arbitrarily, M = {1, 2, . . . n}. Let Mi be the set of the first i men in
the ordering: Mi = {1, 2, . . . i}. Fix some matching Ht. For some realization g of the
assignment function f t+1, define the following martingale:

Y t+1
i (Ht, g) = E[Xt+1|Ht, f t+1( j) = g( j) for all j ∈ Mi].

In other words, Y t+1
i (Ht, g) is the expected number of unassigned women at round

t + 1, given that the matching at round t was Ht, where the expectation is taken over
all realizations of f t+1 that agree with g on the first i men. Note that Y t+1

0 (Ht, g) is
the expected value of Xt+1 over all possible realizations of f t+1; that is, the expected
number of unmatched women after t + 1 rounds. Y t+1

n (Ht, g) is simply the number of
unmatched women after t + 1 rounds when the allocation function is g. Xt+1 satisfies
the Lipschitz condition, because if two realizations of f t+1, say f ′ and f ′′, only differ
on the allocation of a single man, |Xt+1| f ′ − Xt+1| f ′′| ≤ 1 (where Xt+1| f denotes the
realization of Xt+1 given that f is the realization of f t+1). Therefore (see Alon and
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Spencer [2008]), ∣∣Y t+1
i+1 (Ht, g) − Y t+1

i (Ht, g)
∣∣ ≤ 1.

We can therefore apply Lemma 3.8 (Azuma’s inequality):

Pr[|Xt+1 − E[Xt+1]| > λ
√

n] < 2e−λ2/2.

Setting λ = 2
√

n
(t+1)(t+2) , we have that

Pr
[
|Xt+1 − E[Xt+1]| >

2n
(t + 1)(t + 2)

]
< 2e−n/(5t4),

for t ≥ 2.
Therefore, since we assume that Xt ≤ 2n

t and hence, by Equation (1), E[Xt+1] < 2n
t+2 ,

it holds that

Pr
[

Xt+1 >
2n

t + 1
|Xt ≤ 2n

t

]
< 2e−n/(5t4) <

1
n3 . (2)

By the inductive hypothesis

Pr
[

Xt >
2n
t

]
≤ t

n3 . (3)

Therefore, using Equations (2), and (3), we have

Pr
[

Xt+1 >
2n

t + 1

]
= Pr

[
Xt+1 >

2n
t + 1

|Xt ≤ 2n
t

]
Pr

[
Xt ≤ 2n

t

]
+ Pr

[
Xt+1 >

2n
t + 1

|Xt >
2n
t

]
Pr

[
Xt >

2n
t

]
≤ t

n3 + 1
n3

= t + 1
n3 .

3.7.2. Removal Due to the Number of Rounds Being Limited. Because we stop the LOCALAGS
algorithm after a constant (�) number of rounds, it is possible that some men who
“should have been” matched are disqualified because they were rejected by their ith

choice in round � (i < k). We show that this number cannot be very large.
Let Rr denote the number of men rejected in round r ≥ 1.

OBSERVATION 3.9. Rr is monotone decreasing in r.

LEMMA 3.10. The number of men rejected in round r is at most nk
r .

PROOF. As each man can be rejected at most k times, the total number of rejections
possible is kn. The number of men who can be rejected in round r is at most

Rr ≤ kn −
r−1∑
j=1

Rj

⇒Rr ≤ kn − (r − 1)Rr (4)

⇒Rr ≤ n
k
r
,

where inequality (4) is due to monotonicity of Rr, that is, Observation 3.9.
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COROLLARY 3.11. For any ε > 0, setting r = k
ε

ensures that the number of men rejected
in round r is at most εn.

4. SOME GENERAL PROPERTIES OF THE GALE-SHAPLEY ALGORITHM

We use the results and ideas of Section 3 to prove some interesting features of the
(general) Gale-Shapley stable matching algorithm, when the mens’ lists are of length
at most k. (These results immediately extend to our local version of the algorithm,
LOCALAGS.) Note that the proof of Lemma 3.10 makes no assumption on how the men’s
selection is made, and therefore, Lemma 3.10 implies that as long as each man’s list is
bounded by k, if we run the Gale-Shapley for � rounds, at most nk

�
men will be rejected

in that round. This immediately gives us an additive approximation bound for the
algorithm if we stop after � rounds:

COROLLARY 4.1 (TO LEMMA 3.10). Assume that the output of the Gale-Shapley algorithm
on a stable matching problem, where the preference lists of the men are of length at most
k, is a matching of size M∗. Then, stopping the Gale-Shapley algorithm after � rounds
will result in a matching of size at least M∗ − nk

�
.

We would like to also provide a multiplicative bound. Again, we assume that the mens’
list length is bounded by k, but make no other assumptions. For each round i, let Mi
be the size of the current matching; let Di be the number of men who have already
approached all k women on their list and have been rejected by all of them; let Ci be
the number of men who were rejected by women in round i, but have approached fewer
than k women so far; as before, let Ri be the number of men rejected in round i. Denote
the size of the matching returned by the Gale-Shapley algorithm (if it were to run to
completion) by M∗.

CLAIM 4.2. Ck+1 ≤ kM∗.

PROOF. Note that Ri = Ci + Di − Di−1. For i < k, Di = 0. As Mi is monotonically
increasing in i, ∀i ≤ k, Ri ≥ n − M∗.

k∑
i=1

Ri ≥ kn − kM∗.

Hence,

Ck+1 ≤ kn −
k∑

i=1

Ri ≤ kM∗.

COROLLARY 4.3. For every ε > 0, there exists a constant � > 0 such that C� ≤ εM∗.

PROOF. Denote the maximum number of total rejections possible from round i on-
wards by Li. Clearly,

Li ≤ k(Mi + Ci) ≤ k(M∗ + Ci).

For all i such that Ci ≥ εM∗, we have

Li ≤
(

1 + 1
ε

)
kCi.

Therefore, from Claim 4.2,

Lk+1 ≤
(

1 + 1
ε

)
k2M∗.
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Putting everything together, we have,

Li+1 ≤ Li − Ci

⇒ Li+1 ≤ Li

(
1 − 1

k(1 + 1
ε
)

)

⇒ Lk+i+1 ≤ Lk+1

(
1 − 1

k(1 + 1
ε
)

)i

≤
(

1 + 1
ε

)
k2M∗

(
1 − 1

k(1 + 1
ε
)

)i

≤ 2k2M∗e
− i

k(1+ 1
ε ) .

Taking i = k(1 + 1
ε
) log 2k2

ε
gives Ck+i+1 ≤ Lk+i+1 ≤ εM∗.

This gives us

THEOREM 4.4. Consider a stable matching problem. Let the length of each man’s list
be bounded by k. Denote the size of the stable matching returned by the Gale-Shapley
algorithm by M∗. Then, if the process is stopped after O( k

ε
log k

ε
) rounds, the matching

returned is at most a (1 + ε)-approximation to M∗, and has at most εM∗ unstable couples.

As a corollary to Theorem 4.4, when the men’s and women’s list lengths are both
bounded by a constant, there is an LCA that runs in constant time and provides a
matching with at most ε unstable edges that is a (1+ ε) approximation to the matching
returned by the Gale-Shapley algorithm.

COROLLARY 4.5. If both men and women have lists of length at most k, then for any ε
there is an (O(1), O(1), 0)-LCA for stable matching which returns a matching that is at
most a (1 + ε)-approximation to the matching returned by the Gale-Shapley algorithm,
and with at most an ε-fraction of the edges being unstable.

5. LOCAL MACHINE SCHEDULING

5.1. Introduction and Related Work

Consider the following job scheduling problem. n identical jobs arrive online and need to
be allocated to m identical machines, with the objective of minimizing the makespan—
the maximal load on any machine. Azar et al. [1999] proposed the following algorithm:
each job chooses, uniformly at random, d machines, and allocates itself to the least
loaded machine from its d choices. They showed that the maximal load is �(n/m) +
(1 + o(1)) ln ln m/ ln d. A large volume of work has been devoted to variations on this
problem, such as having weighted jobs [Talwar and Wieder 2007]; and variations on
the algorithm, such as the nonuniform job placement strategies of Vöcking [2003].
Of particular relevance to this work is the case of nonuniform machines: Berenbrink
et al. [2014] showed that in this case the maximum load can also be bounded by
�(n/m) + O(ln ln m).

The classical off-line job scheduling problem has two main variations: (1) related
machines, where each job i takes a certain amount time, ti, to complete, regardless of
which machine it is allocated, and (2) unrelated machines, where each job i takes time
ti, j to complete on machine j. Both problems are known to be NP-hard. Hochbaum
and Shmoys [1988] showed a Polynomial-Time Approximation Scheme (PTAS) for
scheduling on related machines. Lenstra et al. [1987], presented a 2-approximation

ACM Transactions on Economics and Computation, Vol. 4, No. 4, Article 21, Publication date: August 2016.



21:14 A. Hassidim et al.

algorithm for scheduling on unrelated machines and showed that the optimal allocation
is not approximable to within 3

2 − ε (unless P = NP). The problem of finding a truth-
ful mechanism for scheduling (on unrelated machines) was introduced by Nisan and
Ronen [1999], who showed an m-approximation to the problem, and a lower bound of 2.
Archer and Tardos [2001] were the first to tackle the related machine case; they showed
a randomized 3-approximation polynomial algorithm and a polynomial pricing scheme
to derive a mechanism that is truthful in expectation. Since then, much work has gone
into finding mechanisms with improved approximation ratios, until Christodoulou and
Kovács [2010] settled the problem by showing a deterministic PTAS, and a correspond-
ing mechanism that is deterministically truthful.

5.2. The Model

We consider the following (off-line) job scheduling setting. There is a set I of m ma-
chines (or “bins”) and a set J of n uniform jobs (or “balls”). Each machine i ∈ I has
an associated capacity ci (sometimes referred to as its “speed”). We assume that the
capacities are positive integers. Given that hi jobs are allocated to machine i, its load
is �i = hi/ci, and hi is also called the height of machine i. The utility of machine i
is quasilinear, namely, when it has load �i and receives payment pi then its utility is
ui(�i, pi) = pi − �i.

The makespan of an allocation is maxi{�i} = maxi{hi/ci}. In our setting, the players
are the machines and their private information is their true capacities. Each machine i
submits a bid bi (which represents its capacity). The mechanism designer would like to
elicit from the machines the true information about their capacities in order to be able
to minimize the makespan of the resulting allocation. We assume that the capacities
of the machines cannot depend on the number of machines or jobs in the system (i.e.,
that the bids of the machines are independent of m or n), and hence are upper bounded
by some constant. Although we feel this is a reasonable assumption, in Remark 5.9, we
show that in some cases we can relax it.

For any allocation algorithm A, and bid vector b, define A(b) = (A1(b), . . . ,
A j(b), . . . ,An(b)) to be the allocation vector, which, when given b as an input, assigns
each job j to a machine i = A j(b). When the bids b−i are fixed, we sometimes omit them
from the notation for clarity.

Definition 5.1 (Monotonicity). A randomized allocation function A is monotone in
expectation if for any machine i, and any bids b−i, the expected load of machine i,
E[�i(bi, b−i)], is a nondecreasing function of bi.

A randomized allocation function A is universally monotone if for any machine i, and
any bids b−i, the load of machine i, �i(bi, b−i), is a nondecreasing function of bi for any
realization of the randomization of the allocation function.

Given an allocation function A, we would like to provide a payment scheme P to
ensure that our mechanism M = (A,P) is truthful. It is known that a necessary and
sufficient condition is that the allocation function A is monotone ([Myerson 1981]; see
also Archer and Tardos [2001]).

THEOREM 5.2 [MYERSON 1981]. The allocation algorithm A admits a payment scheme
P such that the mechanism M = (A,P) is truthful-in-expectation (universally truthful)
if and only if A is monotone in expectation (universally monotone).

In this section, we consider two load balancing settings: The standard setting (cf.
Berenbrink et al. [2014] and Wieder [2007]) is a slight variation on the basic power-
of-d choices setting proposed in Azar et al. [1999]. Let d ≥ 2 be some integer. For each
job j, the mechanism chooses a subset Ij ⊆ I, |Ij | = d of machines that the job can
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be allocated to. The probability that machine i ∈ Ij is proportional to bi (specifically,
it is dbi∑

i bi
). In the restricted setting (cf. Azar et al. [1995]), each job can be allocated

to a subset of at most d machines, where the subsets Ij are given as an input to
the allocation algorithm. The restricted setting models the case when the jobs have
different requirements, and there is only a small subset of machines that can run each
job. We restrict our attention to the case when the number of jobs n = �(C) jobs where C
is the total capacity of the machines. This is a standard assumption, as it is considered
to be the wors-case scenario (see e.g., Azar et al. [1999], Berenbrink et al. [2014], and
Wieder [2007]), and so a solution for this case implies that there is an equally good
solution for all other cases as well.

In both of these settings, our results rely on a reduction to an online algorithm
for the problem. Mansour et al. [2012] and Reingold and Vardi [2016] showed that
it is possible to transform certain online algorithms to LCAs, for a restricted family
of graphs (including graphs where the vertex degrees are bounded by a constant or
distributed binomially). The idea behind the reduction is simple: generate a (pseudo-)
random order on the vertices and simulate the online algorithm on this order. In order to
be able to generate this order consistently and “on the fly” whenever the LCA is queried,
we need to store a random seed of length O(log n) (where n is the number of vertices).
The pseudorandom order on the vertices guarantees that with high probability, the
LCA will need to query at most O(log n) vertices. This is summarized in the following
theorem, which is a specialized version of a result of Reingold and Vardi [2016].

THEOREM 5.3 (CF. MANSOUR ET AL. [2012] AND REINGOLD AND VARDI [2016]). Consider a
job scheduling problem for n jobs and �(n) machines. For each job j, there is a constant-
size subset of machines Ij , chosen uniformly at random, and j cannot be allocated to
any machine i /∈ Ij . For any online algorithm LB to the problem that requires constant
time per query, there exists an (O(log2 n),O(log2 n), 1/n)-local computation algorithm
that, when queried on a job, allocates it to a machine, such that the resulting allocation
is consistent with that of LB.

5.3. A Truthful in Expectation Mechanism for the Standard Setting

In the standard setting, each machine i has an integer capacity ci. One way of modeling
this is to regard the allocation field as consisting of

∑
i ci slots of size 1, where machine

i “owns” ci slots. Recall that a machine’s height is the number of jobs that are allocated
to it; the load of machine i is its height divided by ci. The virtual load of machine i is
its height divided by its bid bi. Given the bids b of the machines, let B = ∑n

i=1 bi. An
allocation algorithm allocates jobs to slots: when a job j is allocated to a specific slot, the
machine that owns the slot receives j. We provide the following simple online allocation
algorithm ASLMS, which is modeled on the algorithm presented in Berenbrink et al.
[2014].

(1) Choose for job j a subset Ij of d slots out of B, where each slot has equal probability.
(Ij may include different slots owned by the same machine.)

(2) Given Ij , job j is allocated to the lowest slot (i.e., the one containing the fewest jobs)
in Ij (breaking ties uniformly at random). Slots are treated as being independent of
their machines. That is, it is possible that if a job chooses two slots a and b, which
belong to machines A and B, a has fewer jobs than b, but B has a higher (virtual)
load than A.

Note: Although it may not be possible to compute B locally exactly, it has been shown in
that an approximate calculation suffices (e.g., Byers et al. [2003] and Wieder [2007]);
therefore, for simplicity, we assume that it is possible to compute B locally.
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LEMMA 5.4. The randomized allocation algorithm ASLMS is monotone in expectation.

PROOF. Let B = ∑
i bi and B−i = ∑

i 
=i bi. Since all the slots are identical, by symmetry
the expected number of jobs allocated to each slot is exactly n/B. The expected height
of machine i is therefore

E[hi(bi)] = bi

B−i + bi
n,

which is monotone increasing in bi (for bi, B−i ≥ 0).

From Theorem 5.2, we conclude:

LEMMA 5.5. The randomized allocation function ASLMS admits a payment scheme
PSLMS such that the mechanism MSLMS = (ASLMS,PSLMS) is truthful in expectation.

It is interesting to note that the preceding algorithm does not admit a universally
truthful mechanism. To show this, we prove a slightly stronger claim, which we then
adapt to our setting: the GREEDY algorithm – in which each job chooses d machines at
random, and is allocated to the least loaded among them (post-placement)5 , breaking
ties arbitrarily – does not admit a universally truthful mechanism.

CLAIM 5.6. Algorithm GREEDY is not universally monotone.

PROOF. Assume we have four machines: A, B, C, and D, with bids 4, 4, 8, and 1,
respectively. The first two jobs choose machines A and D (which we abbreviate to AD),
the next two jobs choose BD, and the next six jobs choose CD. After these 10 jobs,
the heights of the machines are (2, 2, 6, 0) (recall that the Greedy algorithm allocates
according to the postplacement load). The 11th job chooses AB, and the 12th job chooses
AC. As ties are broken at random, assume machine A receives job 11. Machine C then
receives job 12, making the capacities (3, 2, 7, 0).

Now assume machine C bids 9, and the choices of the first 10 jobs and the 12th job
remain the same, but because C bid higher, now the 11th job chooses C instead of A
(so job 11 chooses BC). Now machine B receives the 11th job and machine A receives
the 12th job, making the capacities (3, 3, 6, 0). Machine C received less jobs although
it bid more!

It is easy to adapt the preceding proof to Algorithm ASLMS: instead of choosing
machines, each job chooses two slots. So, the first job will choose slot 1 of machine A
and the only slot of machine D; the second job will choose slot 2 of machine A and
machine D’s slot; and so on. This gives the following corollary.

COROLLARY 5.7. Algorithm ASLMS is not universally monotone.

By Theorem 5.3, the allocation function ASLMS can be transformed to a (O(log2 n),
O(log2 n), 1/n) LCA. For clarity, we overload the notation, letting ASLMS represent both
the online allocation algorithm and its respective LCA, as it is easy to distinguish
between them from context. We would now like to show a payment scheme PSLMS such
that the mechanism MSLMS = (ASLMS, PSLMS) is a local mechanism. We need to show
a payment scheme that can be implemented as an LCA and guarantees truthfulness.
We give a deterministic payment scheme that is similar to the payment schemes of
Archer et al. [2003] and Berenbrink et al. [2014]. We also comment on the possibility

5That is, the load is computed including the allocation of the arriving job. For example, if machine A has
capacity 4 and height 2 and machine B has capacity 16 and height 9, the job will go to machine B, as after
placing the job, the load on B would 10/16, compared to 3/4 on A.
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of a randomized payment scheme when the bids can depend on the total capacity. The
randomized payment scheme is similar to that of Babaioff et al. [2010].

LEMMA 5.8. If the bids of the machines are bounded by a constant, there exists
a deterministic local payment scheme PSLMS such that the mechanism MSLMS =
(ASLMS,PSLMS) is truthful in expectation.

PROOF. Archer and Tardos [2001] showed that the following payment scheme makes
for a truthful mechanism fulfilling voluntary participation. For bid bi:

pi(bi, b−i) = bihi(bi, b−i) +
bi∑
0

hi(x, b−i)dx. (5)

As bi is bounded by a constant, we can execute ASLMS with all values of bi ∈ [0, bi], to
compute pi. This takes a constant number of executions of ASLMS.

Remark 5.9. If bi is not necessarily a constant, but the mechanism has access to the
value B−i, there is a randomized payment scheme that we can use. Equation (5) is the
expected payment. From symmetry, E(hi(B)) = bi

B , hence we can rewrite Equation (5)
as

pi(bi, b−i) = n
b2

i

B−i + bi
+ n

bi∑
x=0

x
B−i + x

.

Choose, uniformly at random, k ∈ [1, bi], and take the payment to be

n
b2

i

B
+ nbi · k

B−i + k
.

This gives the correct expected payment, and takes O(1) time.

Berenbrink et al. [2014], showed that ASLMS provides an O(log log m) approximation
to the optimal makespan. Therefore, by Theorem 5.3, the LCA of ASLMS provides the
same approximation ratio. Combining Lemma 5.5, and Lemma 5.8, we state our main
result for the standard setting:

THEOREM 5.10. There exists an (O(log2 n), O(log2 n), 1/n)-local mechanism to schedul-
ing on related machines in the standard setting that is truthful in expectation, and
provides an O(log log n)-approximation to the makespan.

5.4. A Universally Truthful Mechanism for the Restricted Setting

In the restricted setting, each job can only be allocated to one of a set Ij ⊆ I of d
machines. As opposed to the standard setting, Ij is not selected by the mechanism,
but is part of the input. We assume that these sets are selected independently and
identically distributed (i.i.d.) from all possible sets, and the probability of machine
i to be in Ij is proportional to its capacity ci. The first assumption is necessary for
bounding the running time, and the second to guarantee the approximation ratio. The
second requirement can be relaxed slightly (see, e.g., Wieder [2007]) but for clarity of
the proofs, we will assume that it holds exactly. Similarly to the previous subsection,
we assume that the capacity of each machine is bounded by a constant.

We define the (online) algorithm ARLMS for assigning jobs to machines as follows.
Initially, a permutation π of the machines is selected arbitrarily, for tie-breaking. Job t
is assigned to the machine i ∈ Ij for which the postplacement load lpt+1

i (bi) = �ht
i (bi )+1

bi
� is

smallest, breaking ties according to π . The following claim shows why it is necessary to
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take the floor of the load, as the simple Greedy algorithm does not admit a universally
truthful mechanism in this case.

CLAIM 5.11. The (unmodified) GREEDY algorithm is not universally monotone in the
restricted case.

PROOF. Assume we have three machines A, B, C, with bids (4, 8, 36), respectively,
and a tie-breaking permutation: A < B < C (jobs always prefer machine A to machines
B and C, and machine B to machine C). The allocation at time t is (1, 3, 18). The next
job’s restricted set contains machines A and B (which we abbreviate to AB), and the
following two jobs’ sets are BC and AB, respectively. The first job is allocated to A (since
the postplacement loads on A and B are 2/4 and 4/8, respectively, hence we use the
tie-breaking rule). The second job is allocated to B (4/8 < 19/36) and the third job to B
(5/8 > 3/4). The heights of the machines are now (2, 5, 18).

Now assume B declares its capacity to be 9, and assume that at time t, there is no
difference in the allocation (it is easy to verify that this is indeed possible). The loads
at time t in this case are 1/4, 3/9, 18/36. The jobs’ choices are part of the input to
the mechanism, so are unaffected by the bids, and remain AB, BC, AB. The first job is
allocated to B (2/4 > 4/9), the second job to C (19/36 < 20/36 = 5/9), and the third job
to A (2/4 < 5/9). The heights of the machines are now (2, 4, 19). Thus, B receives jobs
despite bidding higher.

Interestingly, although GREEDY is not universally monotone, ARLMS is.

THEOREM 5.12. For any permutation π of the machines and any job arrival order, the
allocation function ARLMS is universally monotone increasing in the machines’ bids.

From the definition of universal monotonicity (Definition 5.1), it suffices to prove the
following lemma:

LEMMA 5.13. For any machine i, fixing b−i , for any b′
i > bi, we have that

hi(ARLMS(b′
i, b−i)) ≥ hi(ARLMS(bi, b−i)).

To prove Lemma 5.13, define Dt(k, b′
i, bi) to be the difference in the number of jobs

allocated to machine k between ARLMS(b′
i) and ARLMS(bi) up to and including the arrival

of job t (which we call time t). We abbreviate this to Dt(k) when b′
i and bi are clear from

the context. (If machine k received less jobs, then Dt(k) is negative.) We say that machine
k steals a job from machine l at time t if At

RLMS(bi) = l and At
RLMS(b′

i) = k. We will show
that the only machine for which Dt(k) can be positive at some time t is machine i,
therefore, as

∑n
j=1 Dt( j) = 0, we have that Dt(i) can never be negative.

PROPOSITION 5.14. For any machine i, fixing b−i , if b′
i > bi, then at all times t, for any

machine k 
= i, Dt(k) ≤ 0.

Informally, Proposition 5.14 says that if bin i claims its capacity is larger than it
actually is, no bin except for i can receive more balls. The following corollary follows
immediately from Proposition 5.14, and implies Lemma 5.13.

COROLLARY 5.15. For any machine i, fixing b−i , if b′
i > bi then at all times t, Dt(i) ≥ 0.

Before proving Proposition 5.14, we first will make the following simple observation:

OBSERVATION 5.16. For any machine k, if Dt(k) ≤ 0, then lpt
k(b′

i) ≤ lpt
k(bi).

PROOF. For k 
= i, as k’s bid is the same in both allocations, if it received less jobs by
time t in ARLMS(bi), then the observation follows. If k = i, the observation follows since
b′

i > bi.
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We now prove Proposition 5.14.

PROOF OF PROPOSITION 5.14. The proof is by induction on t. At time t = 0, D0(k) = 0
for every k.

Assume the proposition is true for times t = 0, 1, . . . , τ −1. We show it holds for t = τ ,
by contradiction. Assume that we have a machine k 
= i such that Dτ (k) > 0. At time
τ − 1, for all k 
= i, by the induction hypothesis, it holds that Dτ−1(k) ≤ 0. The only way
that Dτ (k) > 0 is if machine k has Dτ−1(k) = 0 and at time τ steals a job. Assume first
that machine k steals a job from machine l 
= i. This means that in ARLMS(bi), machine
l received job τ , therefore

lpτ
l (bi) ≤ lpτ

k(bi). (6)

By Observation 5.16, lpτ
l (b′

i) ≤ lpτ
l (bi), and so

lpτ
l (b′

i) ≤ lpτ
l (bi) ≤ lpτ

k(bi) = lpτ
k(b′

i).

If machine k steals job τ from machine l, then lpτ
k(b′

i) ≤ lpτ
l (b′

i). This is a contradiction
to Equation (6) because there cannot be an equality both here and in Equation (6), as
the tie-breaking permutation π is fixed. More precisely, if lpτ

l (b′
i) = lpτ

l (bi) = lpτ
k(bi) =

lpτ
k(b′

i), then job τ will be allocated to the same machine in bi and b′
i, according to the

permutation π .
Therefore, machine k must steal job τ from machine i, which gives us

lpτ
i (bi) ≤ lpτ

k(bi) = lpτ
k(b′

i) ≤ lpτ
i (b′

i). (7)

The first inequality is due to the fact that machine i receives job τ in ARLMS(bi). The
equality is due to the fact that Dτ−1(k) = 0, and the second inequality is because
machine k receives job τ in ARLMS(b′

i). And so,

lpτ
i (bi) < lpτ

i (b′
i), (8)

because one of the inequalities in Equation (7) must be strict, as the tie-breaking
permutation π is fixed.

Assume that the last time before τ that machine i stole a job is time ρ, and label by
z the machine that i stole from at that time. We have

lpρ

i (b′
i) ≤ lpρ

z (b′
i) ≤ lpρ

z (bi) ≤ lpρ

i (bi).

The first inequality is because machine i received job ρ in ARLMS(b′
i). The middle

inequality is because Dρ(z) ≤ 0. The last inequality is because machine z received job
ρ in ARLMS(bi). Again, at least one inequality must be strict, giving

lpρ

i (b′
i) < lpρ

i (bi),

which implies, for all α ≥ 0,⌊
hρ

i (b′
i) + α + 1

b′
i

⌋
≤

⌊
hρ

i (bi) + α

bi

⌋
, (9)

since b′
i > bi ≥ 1.

Because job ρ was the last job that machine i stole, it received at least as many jobs
between ρ and τ in ARLMS(bi) as in ARLMS(b′

i). Label the number of jobs i received
between ρ and τ (including ρ but excluding τ ) in ARLMS(bi) by β and in ARLMS(b′

i) by
β∗.

OBSERVATION 5.17. β∗ ≤ β + 1.

PROOF. Machine i received at least as many jobs in ARLMS(bi) as in ARLMS(b′
i) after ρ.

This must be true because ρ was the last time machine i stole a job. However, machine
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i received the job at time ρ in ARLMS(b′
i) but not in ARLMS(bi), and so we cannot claim

that β∗ ≤ β, but only that β∗ ≤ β + 1.

Proof of Proposition 5.14 continued. From the definition of lp and Equation (9), we
get

lpτ
i (b′

i) =
⌊

hτ
i (b′

i) + 1
b′

i

⌋
=

⌊
hρ

i (b′
i) + β∗ + 1

b′
i

⌋
(10)

≤
⌊

hρ

i (b′
i) + β + 2

b′
i

⌋
(11)

≤
⌊

hρ

i (bi) + β + 1
bi

⌋
(12)

= lpτ
i (bi). (13)

Equality (10) stems from the definition of β∗, inequality (11) is due to Observation 5.17,
inequality (12) is due to Equation (9), and equality (13) is from the definition of β.

This is in contradiction to Equation (8), and therefore Dτ (k) ≤ 0. This concludes the
proof of the proposition.

Given that ARLMS is universally monotone, we can once again use the payment
scheme of Archer and Tardos [2001] to obtain the following lemma.

LEMMA 5.18. There exists a local payment scheme PRLMS such that the mechanism
PRLMS = (ARLMS,PRLMS) is universally truthful.

It remains to bound the approximation ratio of our algorithm.

LEMMA 5.19. The allocation algorithm ARLMS provides an O(log log n)-approximation
to the optimal allocation.

The proof is similar to the proof for the unmodified Greedy algorithm in the case of
nonuniform bins of Berenbrink et al. [2014]. We provide it in Appendix A for complete-
ness.

Putting everything together gives our main result for this subsection.

THEOREM 5.20. There exists an (O(log2 n), O(log2 n), 1/n)-local mechanism for schedul-
ing on related machines in the restricted setting that is universally truthful and gives
an O(log log n)-approximation to the makespan.

APPENDIX

A. PROOF OF LEMMA 5.19

LEMMA 5.19. The allocation algorithm ARLMS provides an O(log log n)-approximation
to the optimal allocation.

We prove the theorem for the case d = 2 (each job can be assigned to one of two
machines). The proof is easily extendable to d > 2. For the proof (not the algorithm),
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we regard each machine i of capacity ci as having ci slots of capacity 1. Before presenting
the proof we need several definitions.

The load vector of an allocation of jobs to m machines is L = (�1, . . . , �m), where �i is
the load of machine i. The normalized load vector L̄ consists of the members of L in
nonincreasing order (ties are broken arbitrarily). For the case of nonuniform machines
of capacities c1, . . . cm, and total capacity C = ∑m

i=1 ci, we define the slot-load vector
S = (h1,1, . . . h1,c1 , h2,1, . . . h2,c2 , . . . hn,1, . . . hn,cn), where if machine i is allocated r jobs,
the first r mod c slots will have �r/c� jobs, and the remaining slots will have �r/c� jobs.
If a machine has an uneven allocation of jobs, we call the slots with more jobs heavy,
and the slots with less jobs light. If all of the slots of the machine have an identical
number of jobs assigned to them, we call all the slots light. When we allocate a job to a
machine, we add it to one of the light slots, arbitrarily. The normalized slot load vector
S̄ is S sorted in nonincreasing order (slots of the same machine may be separated in
S̄). We add a subscript t to these vectors, that is, Lt, L̄t, St, and S̄t to indicate the vector
after the allocation of the t-th job.

Definition A.1 (Majorization, �). We say that a vector P = (p1, . . . , pa) majorizes
vector Q = (q1, . . . , qb) (denoted P�Q) if and only if for all 1 ≤ k ≤ min(a, b),

k∑
i=1

p̄i ≥
k∑

i=1

q̄i,

where p̄i and q̄i are the i-th entries of the normalized vectors P̄ and Q̄.

For n ∈ N, let [n] denote {1, . . . , n}.
Definition A.2 (System Majorization). Let A and B be two processes allocating n jobs

to machines with total capacity C. Let τ = (τ1 . . . τ2n), τi ∈ [C] be a vector representing
the (slot) choices of the n jobs (τ2i−1 and τ2i are the choices of the i-th job). Let SA(τ )
and SB(τ ) be the slot load vectors using A and B, respectively, with the random choices
specified by τ . Then we say

(1) A majorizes B (denoted by the overloaded notation A� B) if there is a bijection
f : [C]2n → [C]2n such that for all possible random choices τ ∈ [C]2n, we have

LA(τ )�LB( f (τ )).

(2) The maximum load of A majorizes the maximum load of B (denoted by A�n B) if
there is a bijection f : [C]2n → [C]2n such that for all possible random choices
τ ∈ [C]2n, it holds that

�A
1 (τ ) ≥ �B

1 ( f (τ )),

where �A
1 (τ ) and �B

1 ( f (τ )) are the loads of the most loaded bins in A and B, respec-
tively, with the random choices specified by τ and f (τ ), respectively.

It is immediate that the following holds.

OBSERVATION A.3. A�B ⇒ A�nB.

We now turn to the proof of Lemma 5.19.
First, notice that if we have a system of m identical machines, each of capacity 1,

both the unmodified Greedy algorithm and the allocation algorithm ARLMS will behave
in exactly the same way—the load and the �load� are the same if the capacity is
1. From Azar et al. [1999], we know that the maximal load on any machine when
allocating n = m jobs (to m machines with capacity 1) with the Greedy algorithm, is

ACM Transactions on Economics and Computation, Vol. 4, No. 4, Article 21, Publication date: August 2016.



21:22 A. Hassidim et al.

�(log log n). Therefore, the maximal load when allocating n = m jobs with ARLMS is also
�(log log n) in this setting. We would like to show that the maximal load of a system
with nonuniform machines of total capacity C is majorized by the maximal load of a
system with C machines of capacity 1, when the allocating algorithm is ARLMS. We will
show that the first system majorizes the second, and deduce the required result from
Observation A.3.

We restate Claim 2.4 of Wieder [2007]:

CLAIM A.4 ([WIEDER 2007]). Let P and Q be two normalized integer vectors such that
P�Q. If i ≤ j, then P + ei�Q+ e j where ei is the i-th unit vector and P + ei and Q+ e j
are normalized.

LEMMA A.5. For allocation algorithm ARLMS, let A be a system with nonuniform
machines of total capacity C, and B be a system with C uniform machines of capacity 1
each. Then B� A.

PROOF. We use the slot load vectors of systems A and B (in B the load vector and slot
load vector are identical), and show that SB( f (τ ))�SA(τ ). The bijection is such that the
jobs in both processes choose the same k1 < k2 ∈ {1, . . . , C} in the normalized slot load
vectors, and the choice corresponds to machines k1, k2 in B and the machines associated
with those specific slots in system A. We use induction: for t = 0, the claim is trivially
true.

From the inductive hypothesis, before the allocation of the t-th job, SB
t−1( f (τ ))�

SA
t−1(τ ). In system B, the t-th job goes to machine k2. In system A, if the �load� of

the machine of k1 is greater than that of the machine of k2, the job goes to k2 if k2 is
a light slot, or to a slot to the right of k2 (a lighter slot of the same machine), if k2
is a heavy slot. If the �loads� of the machines of k1 and k2 are the same, again, the
job goes to k2 if k2 is a light slot, or to a slot to the right of k2 (again, a lighter slot
of the same machine), if k2 is a heavy slot. In all cases, by Claim A.4, it follows that
SB( f (τ ))�SA(τ ).

ACKNOWLEDGMENTS

We would like to thank Amos Fiat, Alon Naor, Amit Weinstein, and the anonymous reviewers for their useful
input.

REFERENCES

Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. 2012. Space-efficient local computation algorithms.
In Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA). 1132–1139.

Noga Alon and Joel Spencer. 2008. The Probabilistic Method (3rd ed.). John Wiley.
Aaron Archer, Christos H. Papadimitriou, Kunal Talwar, and Éva Tardos. 2003. An approximate truthful
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