Synthetic Interventions

Dennis Shen

Joint work with

Anish Agarwal

Devavrat Shah

Bridging causal inference & machine learning

Clinical trial study w. Alzheimer's Therapeutics company

2 year study

1000+ subjects

4 therapies (1 placebo)

Alzheimer's clinical trial study

Inconclusive

<u>Average treatment effect</u> for all 3 therapies was insignificant

Costly

Total cost of trial: \$500M - \$1B USD (cost of recruiting one patient: \$5k - \$100k USD) Ethical concerns of testing on human subjects

Question

Is there a subpopulation of responders?

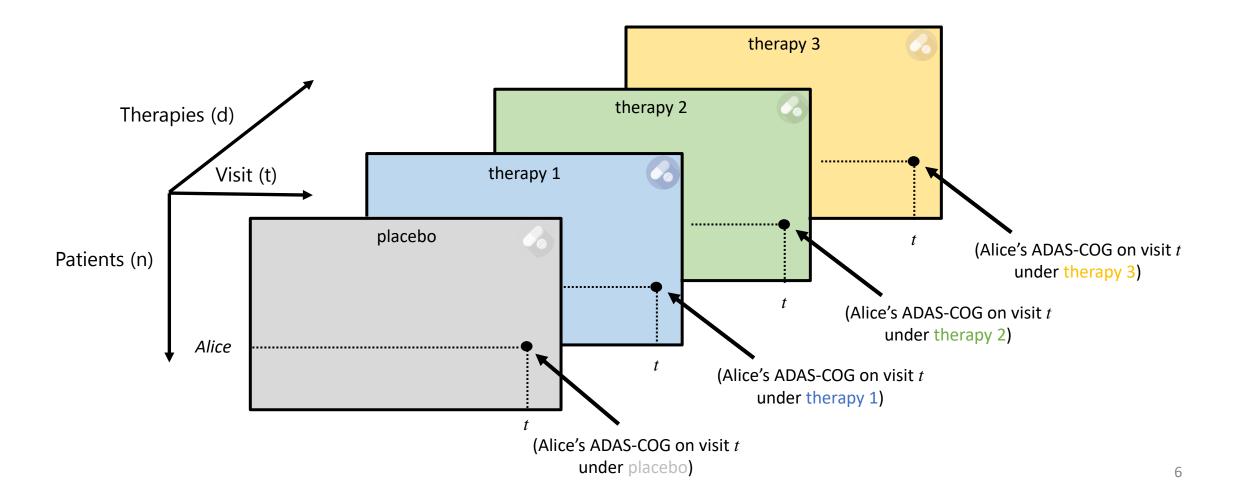
Can we estimate ADAS-COG for each patient under each therapy?

A question: Can we estimate ADAS-COG for each patient under each therapy?

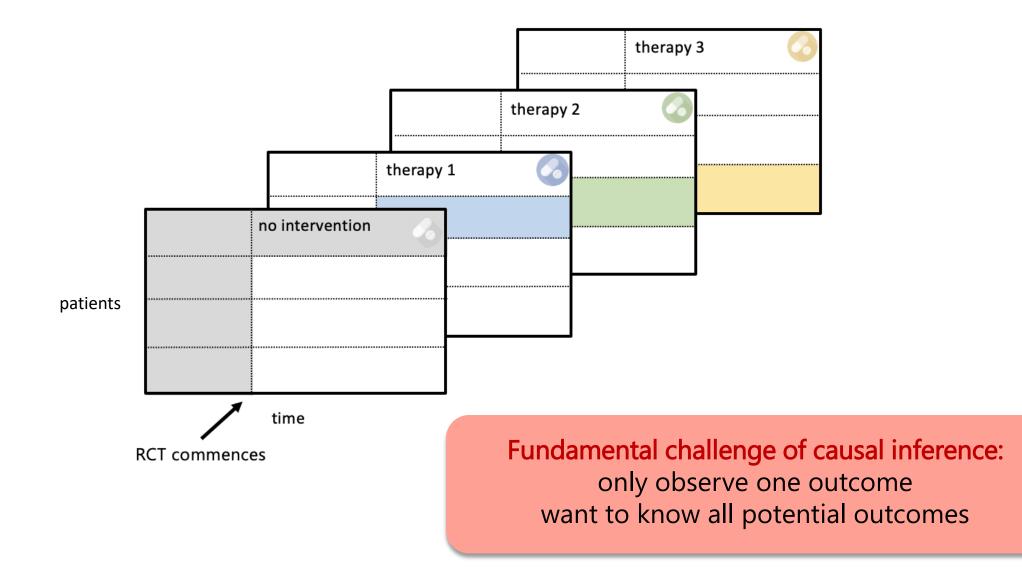
A framework : Causal inference as tensor completion

Potential outcomes tensor

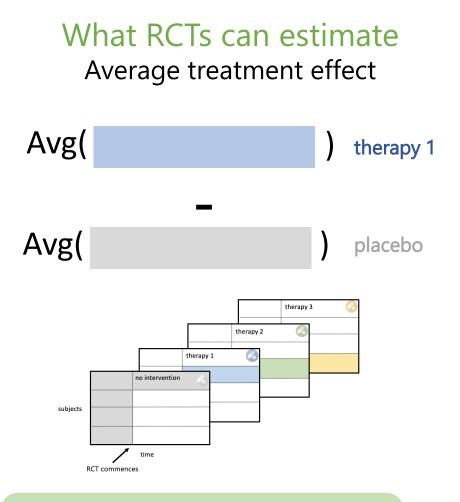
 $Y_{nt}^{(d)}$ = outcome **if** patient **n** on visit **t** was given therapy **d**



Observed tensor



RCTs—no confounding but no personalization



Why are RCTs beloved?

Explicit randomization

What RCTs cannot estimate Individual treatment effect

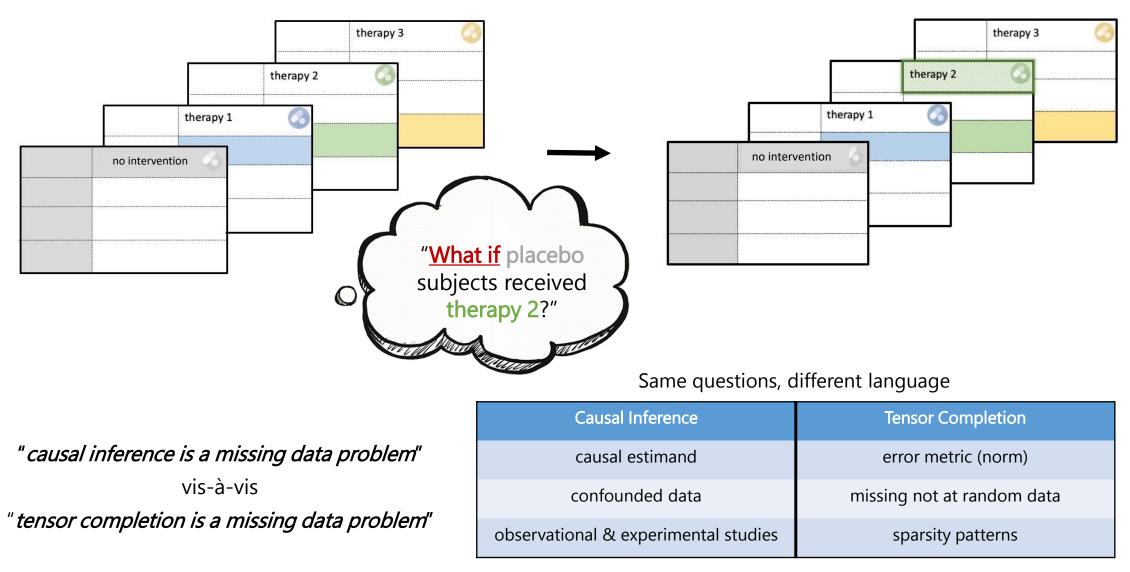
Why? Can only observe Alice under ONE treatment

Limitation of RCTs

What works best on average may not work best for each individual

Randomization but NO personalization

Counterfactual estimation = Tensor Completion



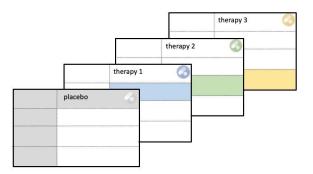
Alzheimer's clinical trial study

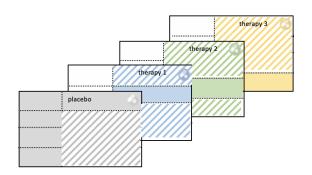
A question: Can we estimate ADAS-COG for each patient under each therapy?

A framework:

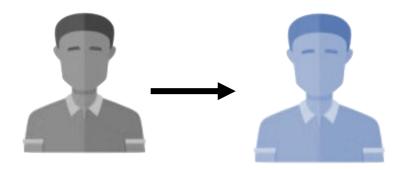
Causal inference as tensor completion

An answer: Synthetic interventions (SI)

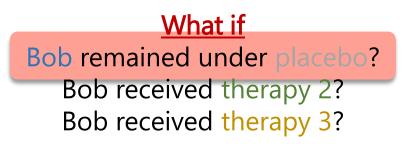


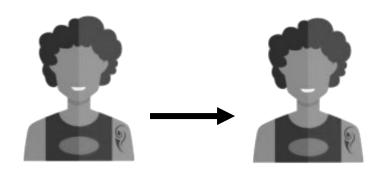


Counterfactual questions of interest



Suppose Bob received therapy 1 after RCT (under placebo prior to RCT)



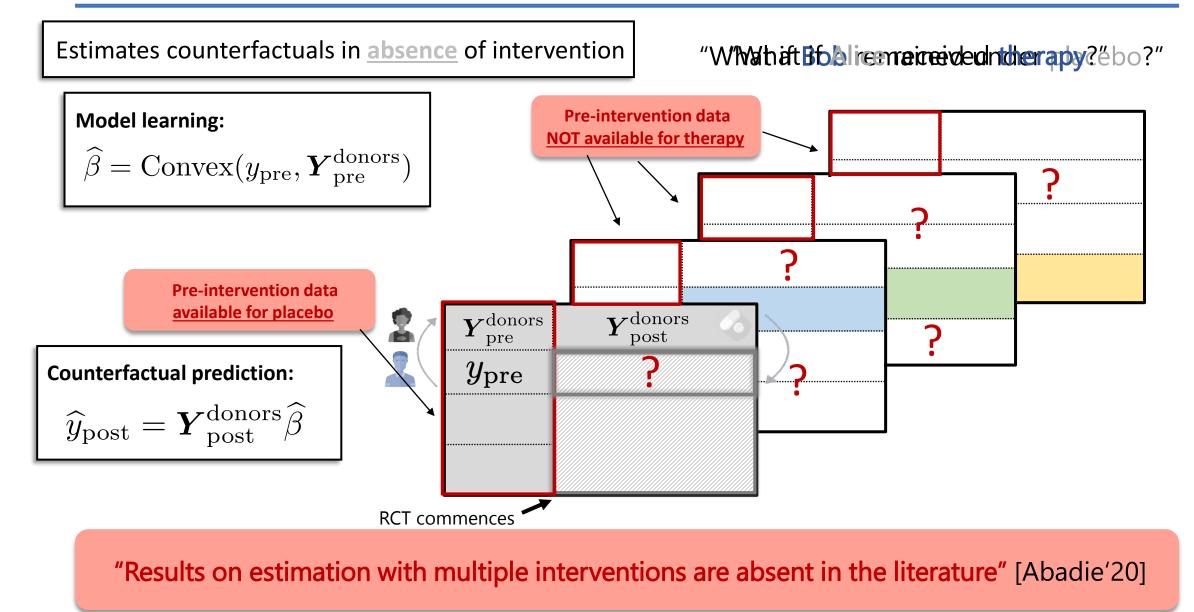


Suppose Alice remained under placebo after RCT (under placebo prior to RCT)

What if

Alice received therapy 1? Alice received therapy 2? Alice received therapy 3?

A partial answer: synthetic controls (SC) [Abadie et al '03, '10]



SC: Absence of intervention

What if Bob remained under placebo?

Estimate [26 ignate / factual # ipolicy did not occur: Flatiron Heralthe @isnational (A/Brefile for 1918)....]

- Police reform [Rydberg'18]
- Brexit [Opatrny'19]

"One of the most important innovations in the policy evaluation literature in the last 15 years" [Athey and Imbens'16]

Presence of intervention

What if Alice got therapy 1, therapy 2, therapy 3?

Necessary for clinical trial study

"Results on estimation with multiple interventions are absent in the literature"

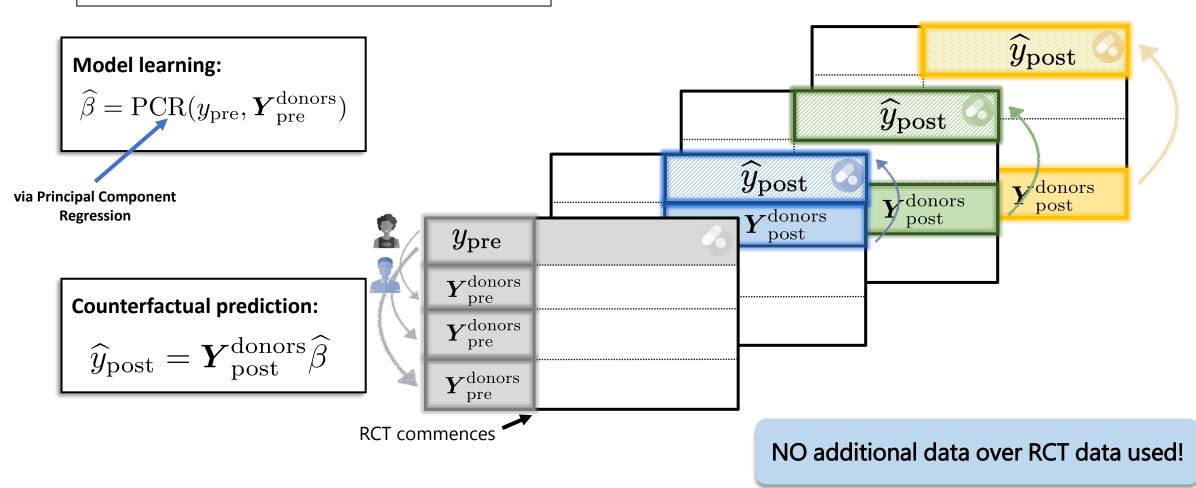
[Abadie'20]

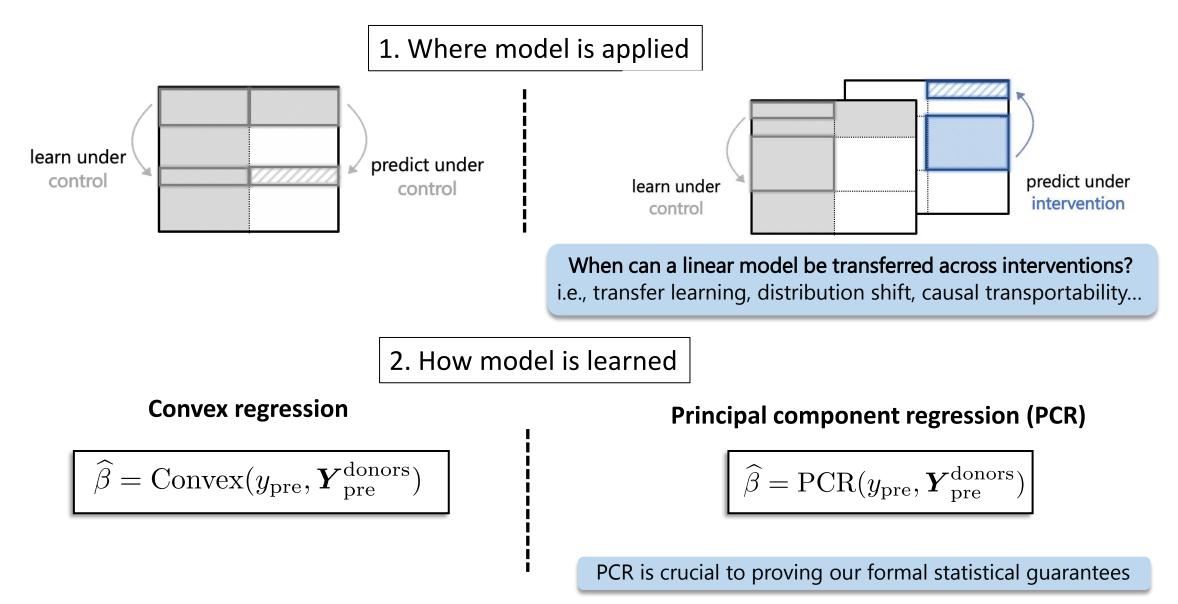
Significant impact of estimating counterfactuals in presence of intervention

Synthetic interventions

Estimates counterfactuals in <u>absence</u> & <u>presence</u> of intervention

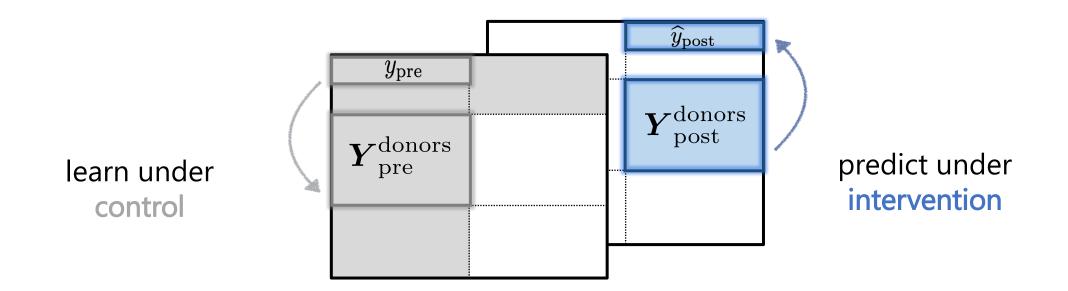
"What if Alice received therapy 3?"





When does synthetic interventions work? Causal framework, statistical guarantees

Essential questions



When can a linear model be transferred between different interventions?

What type of confounding is allowed in observational data?

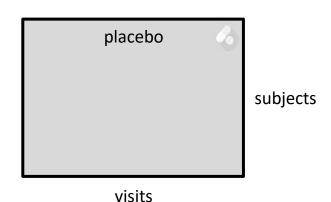
How to share info. across units with one treatment?

Matrix completion: Low rank matrix

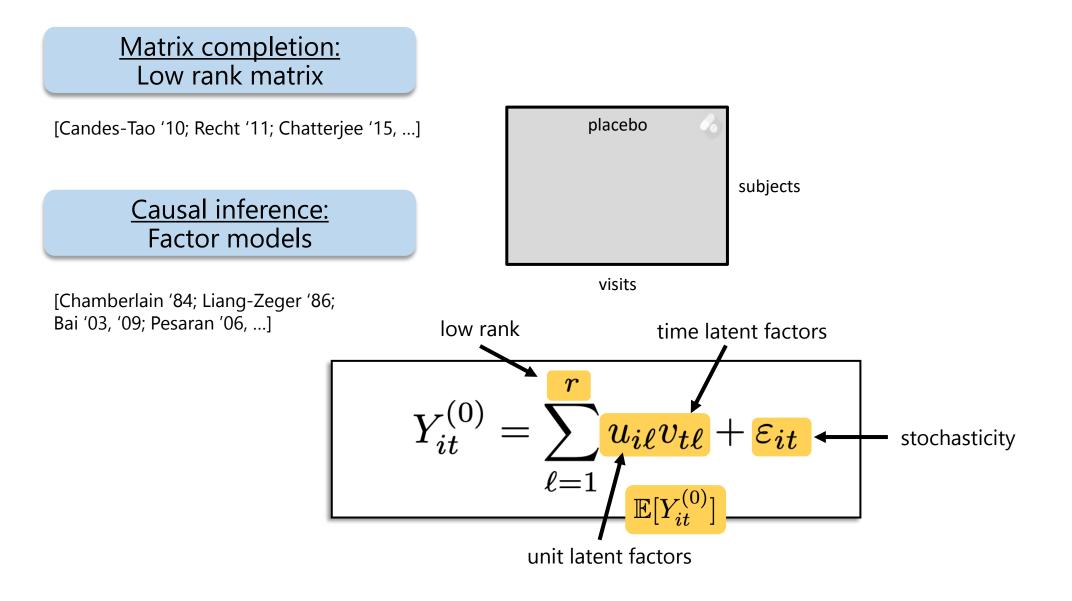
[Candes-Tao '10; Recht '11; Chatterjee '15, ...]

<u>Causal inference:</u> Factor models

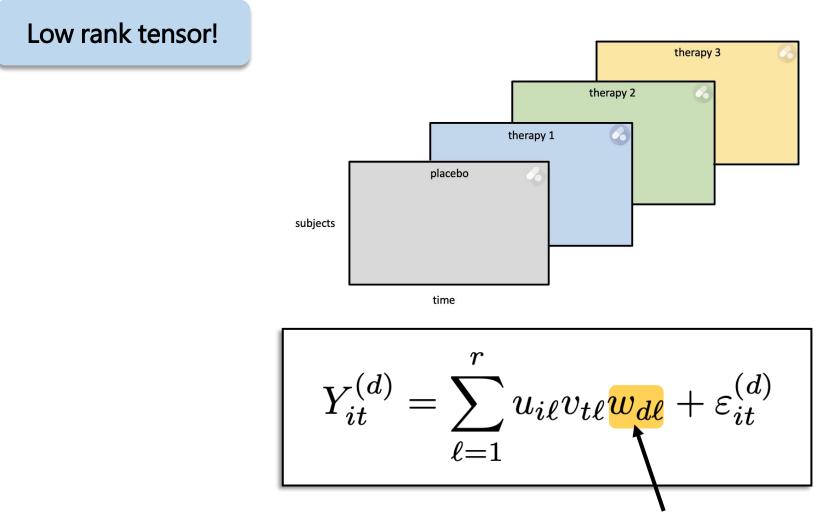
[Chamberlain '84; Liang-Zeger '86; Bai '03, '09; Pesaran '06, ...]



How to share info. across units with one treatment



How to share info. across units with multiple treatments?

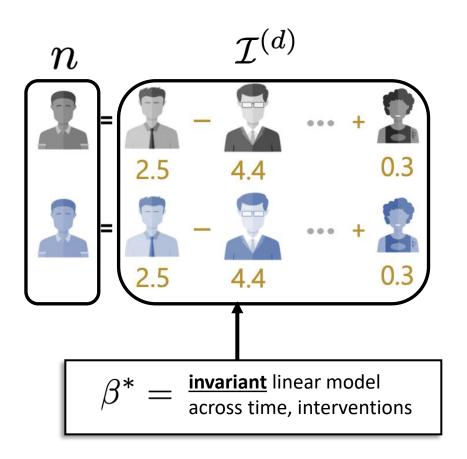


intervention latent factors

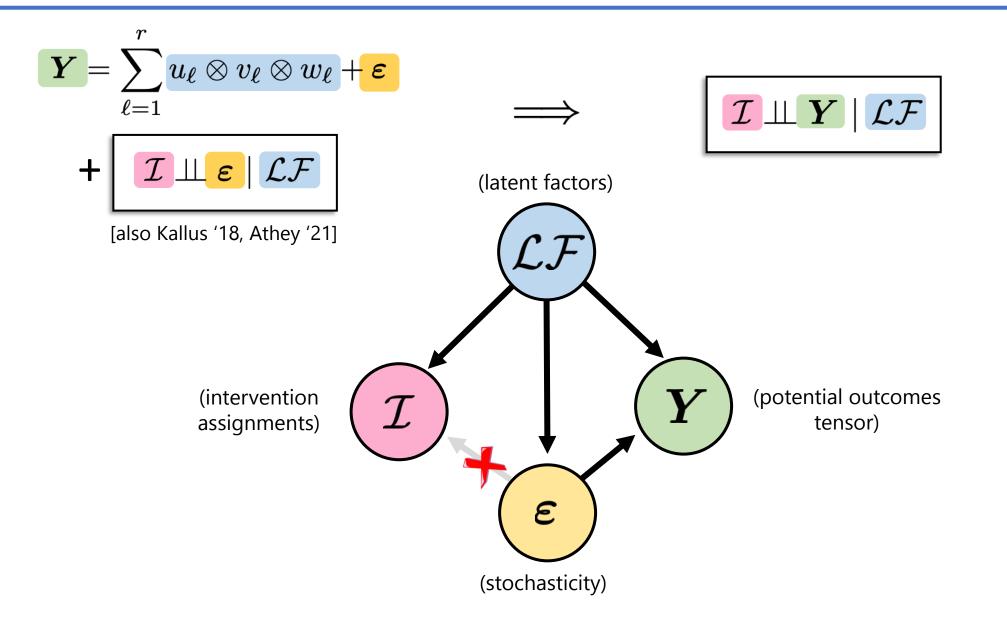
Produce counterfactuals for **unit n** under **intervention d**

$$u_n = \sum_{j \in \mathcal{I}^{(d)}} \beta_j^* \cdot u_j$$

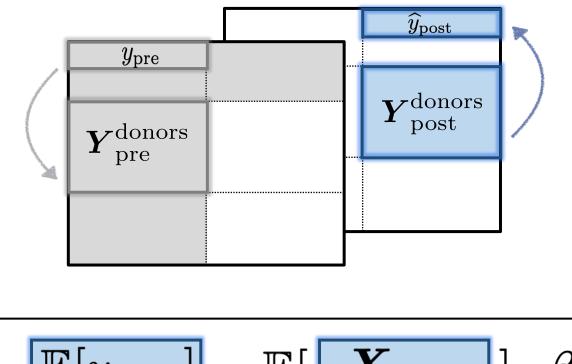
 $\mathcal{I}^{(d)} =$ units under intervention d Holds w.h.p if factors sampled independently

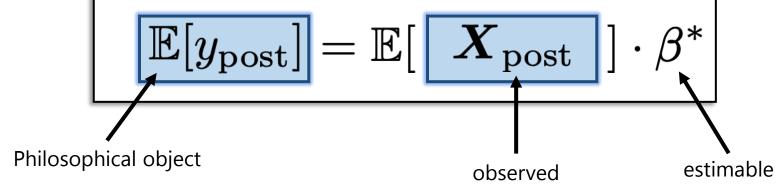


What type of confounding?—*selection on latent factors*

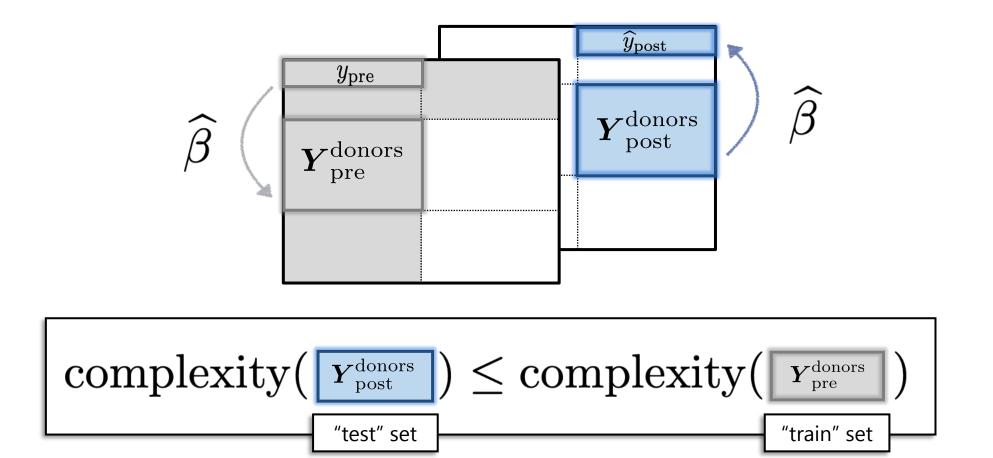


Identification

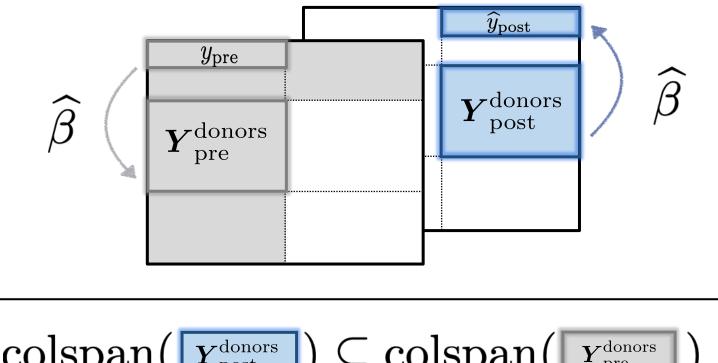


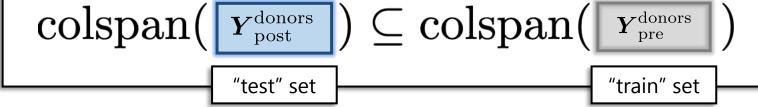


When transferrable?—*subspace inclusion*

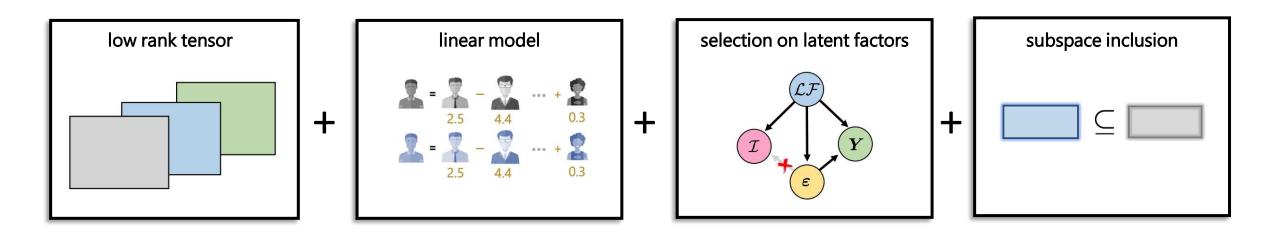


When transferrable?—*subspace inclusion*

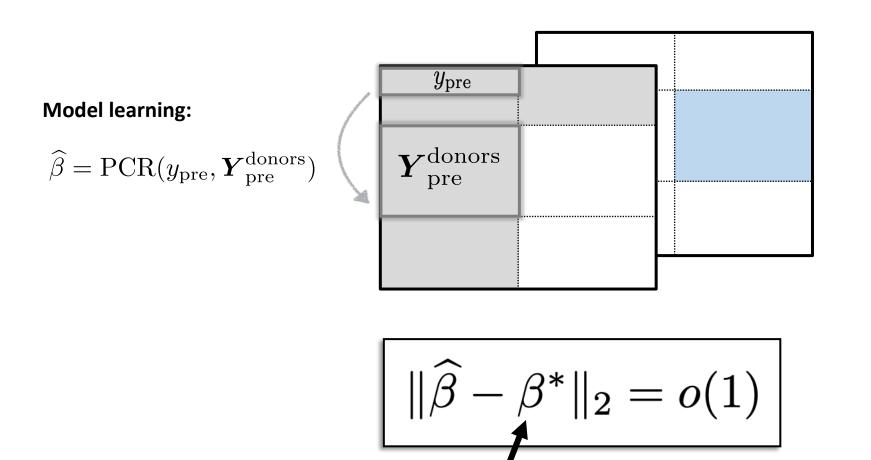




Operating assumptions

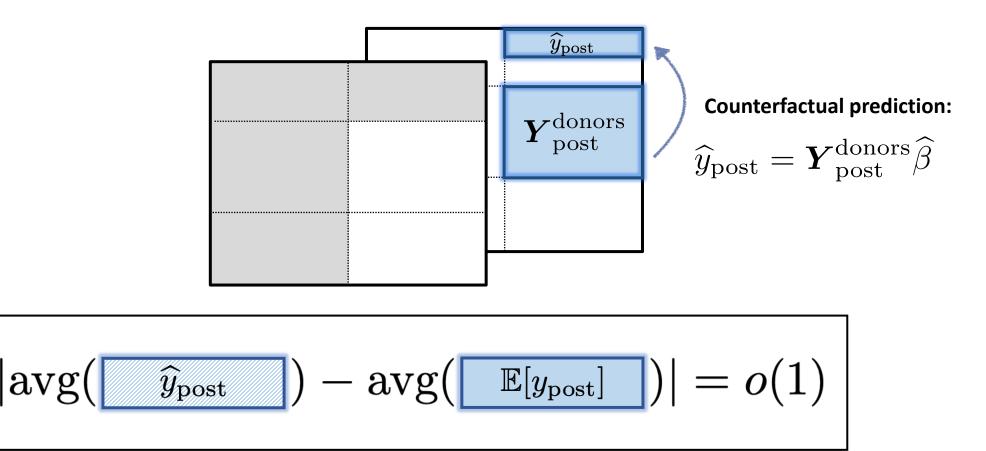


Model identification

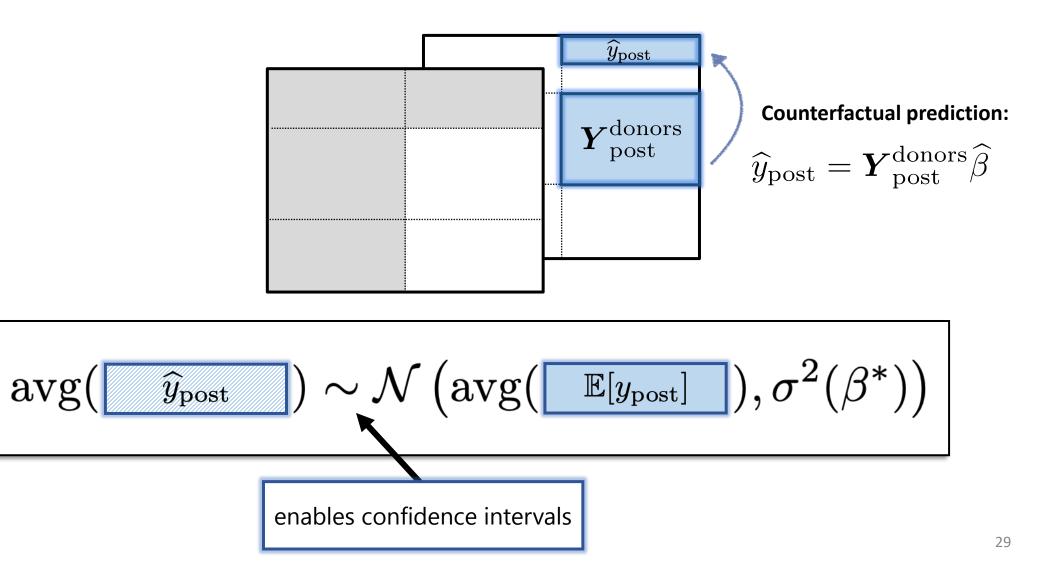


minimum norm model

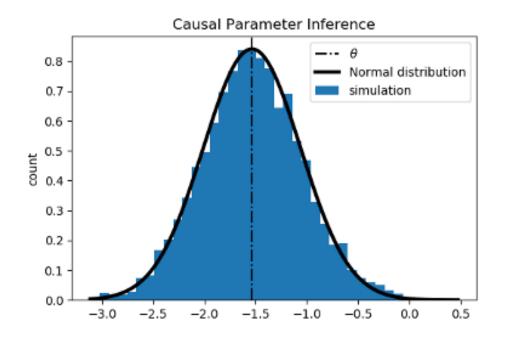
Consistency

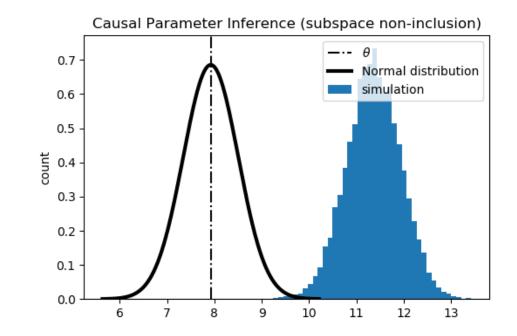


Asymptotic normality



Importance of subspace inclusion





Train and test data obey different distributions
 Subspace inclusion holds

- Train and test data obey same distribution
- Subspace inclusion fails

Practitioner's Guide: Empirical illustrations

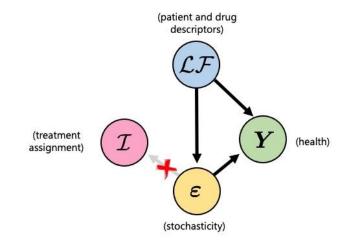
Clinical trial study

Experimental study

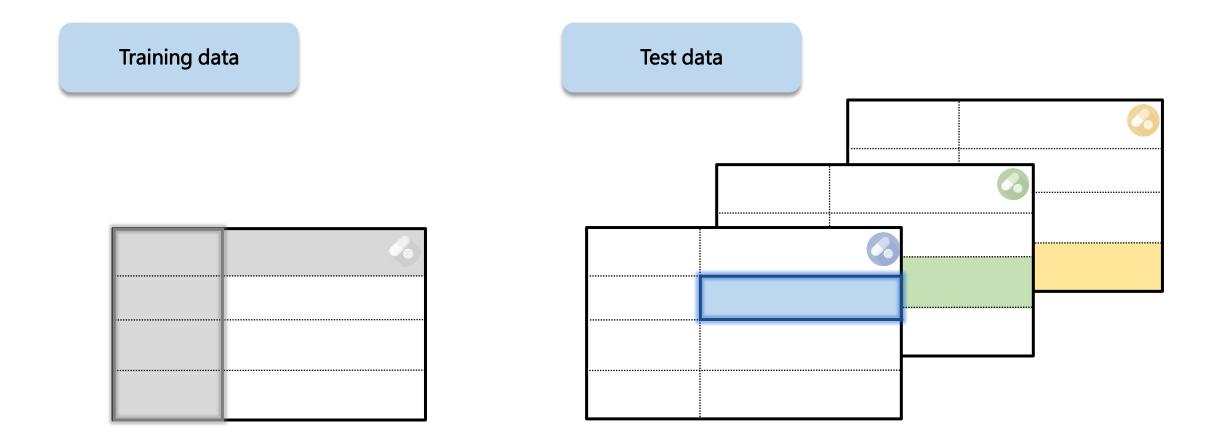
2 year study

1000+ subjects

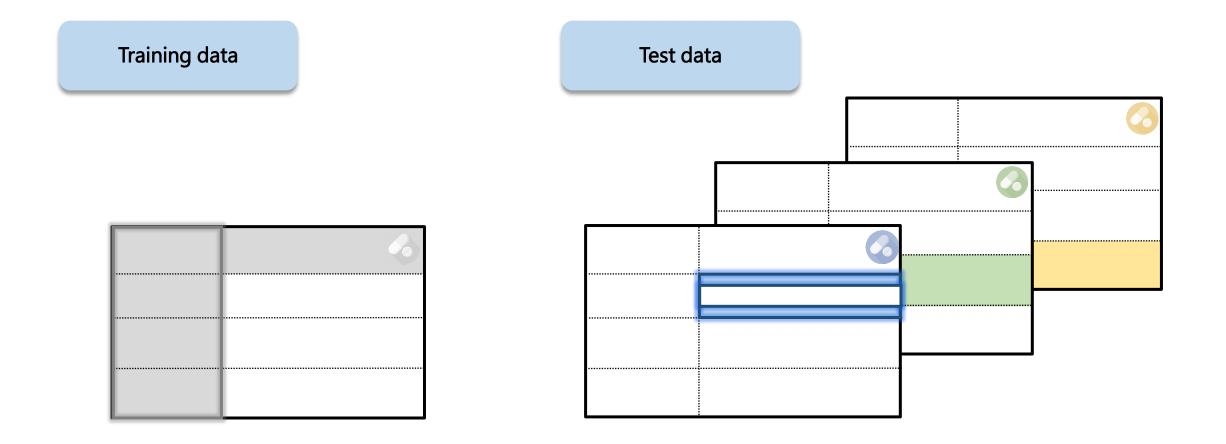
4 therapies (1 placebo)



Synthetic RCT—an application

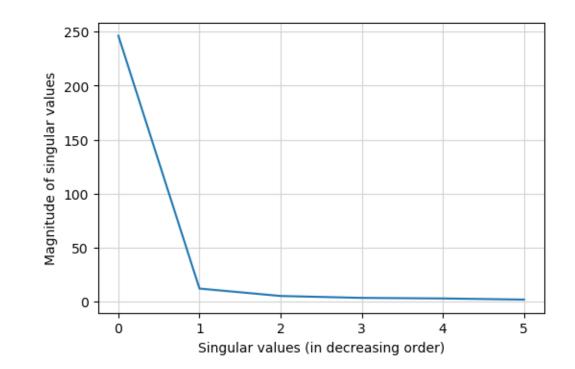


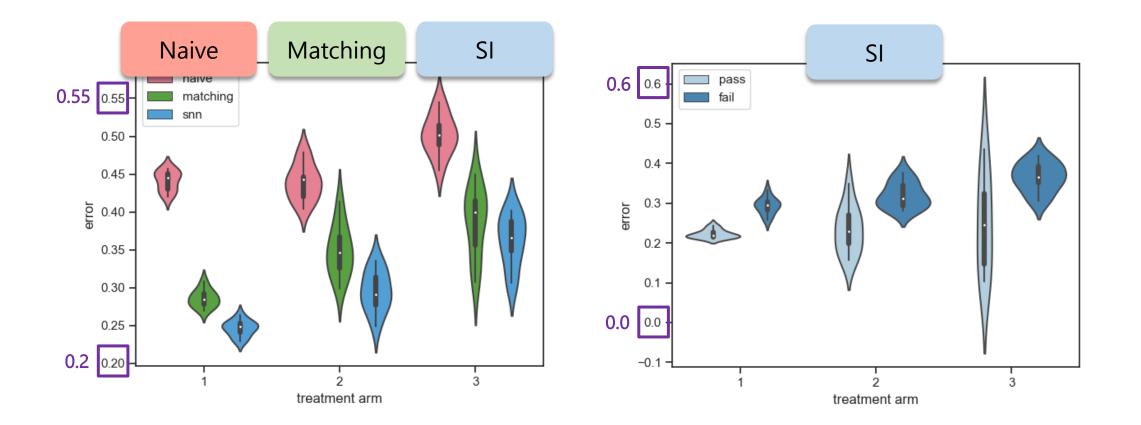
Synthetic RCT—validation setup



Diagnostic: look for low-rank structure!

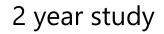
```
import numpy as np
import matplotlib.pyplot as plt
(u, s, v) = np.linalg.svd(data, full_matrices=False)
plt.figure()
plt.plot(s)
plt.show()
```





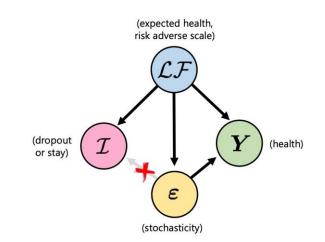
Clinical trial study II

Observational study

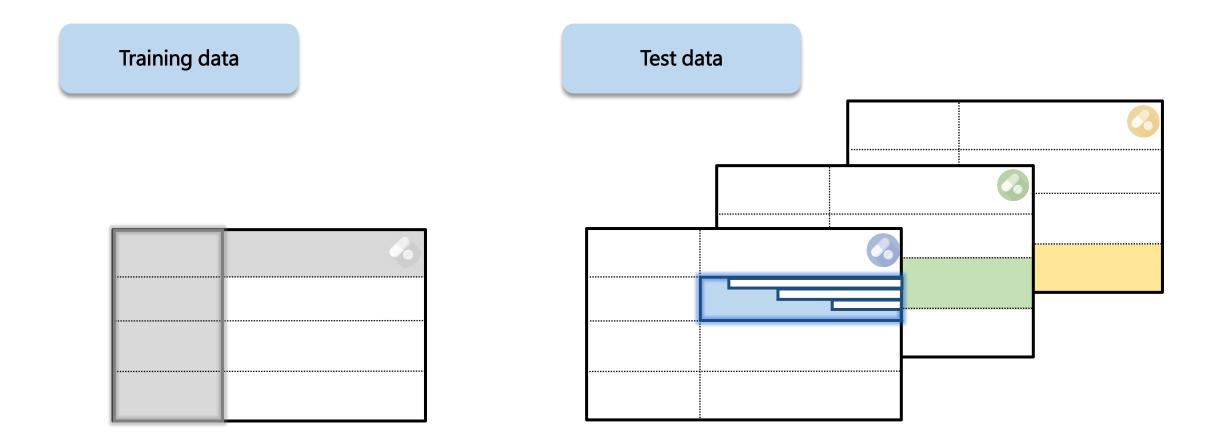


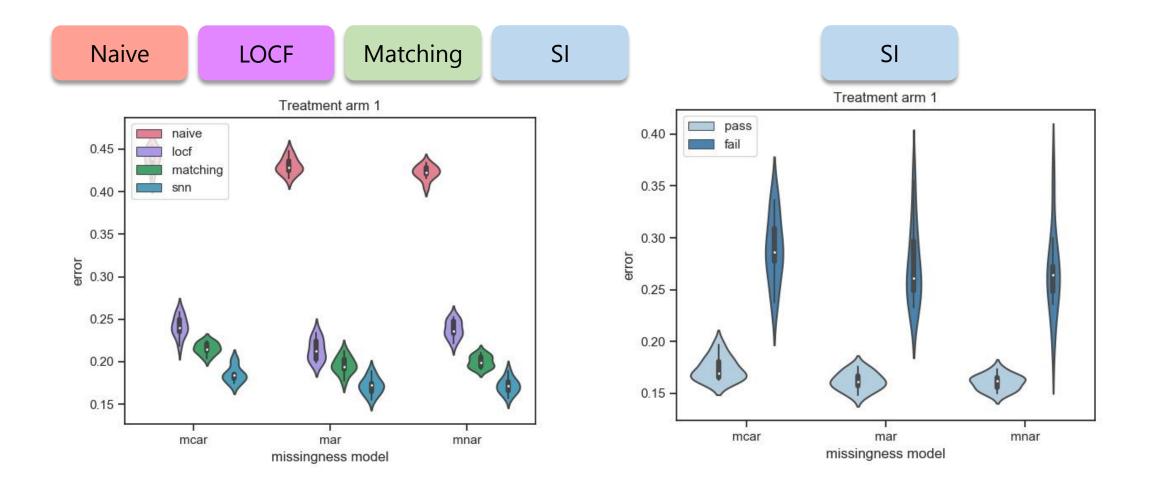
1000+ subjects

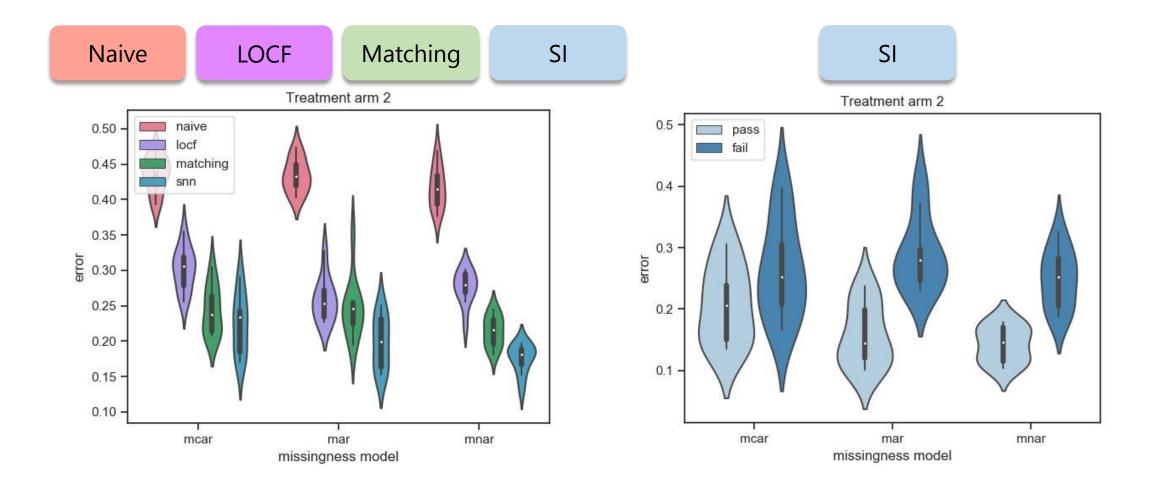
Comply or dropout

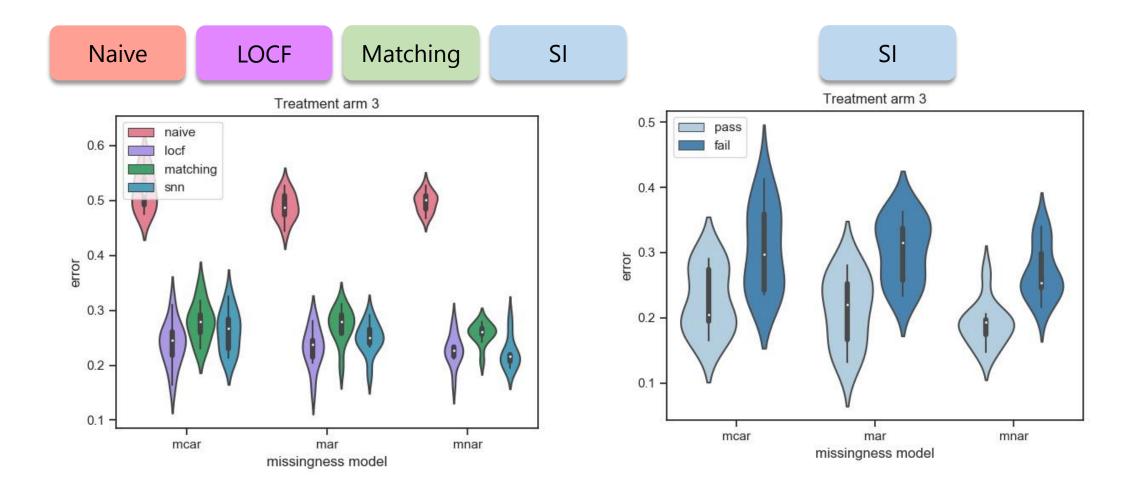


Impute dropout data









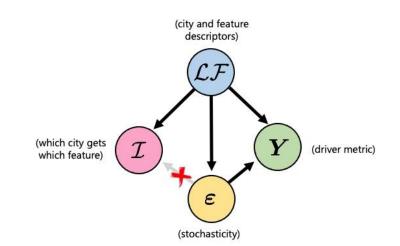
Ride sharing study

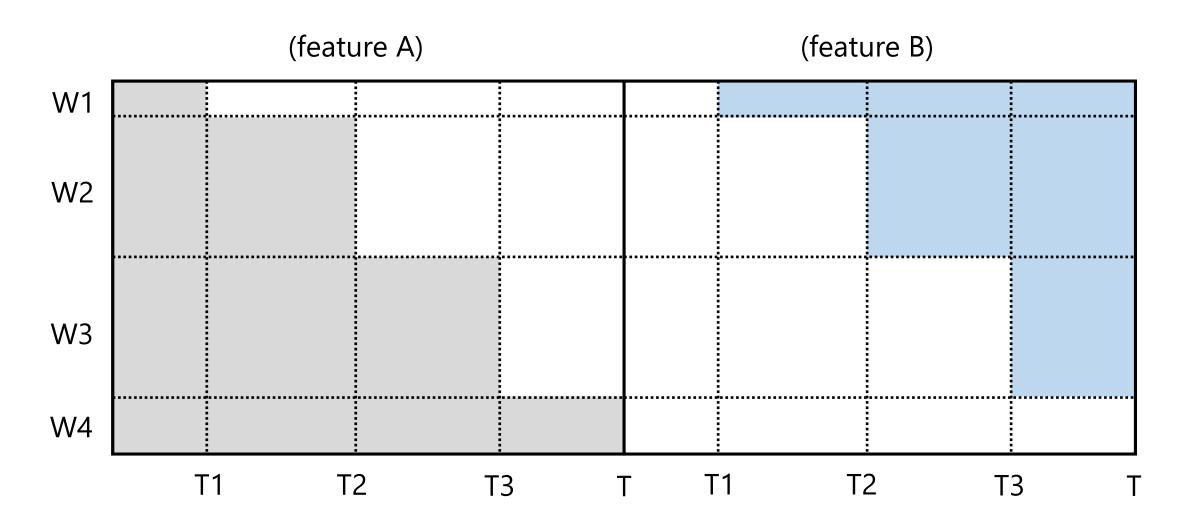
Observational study

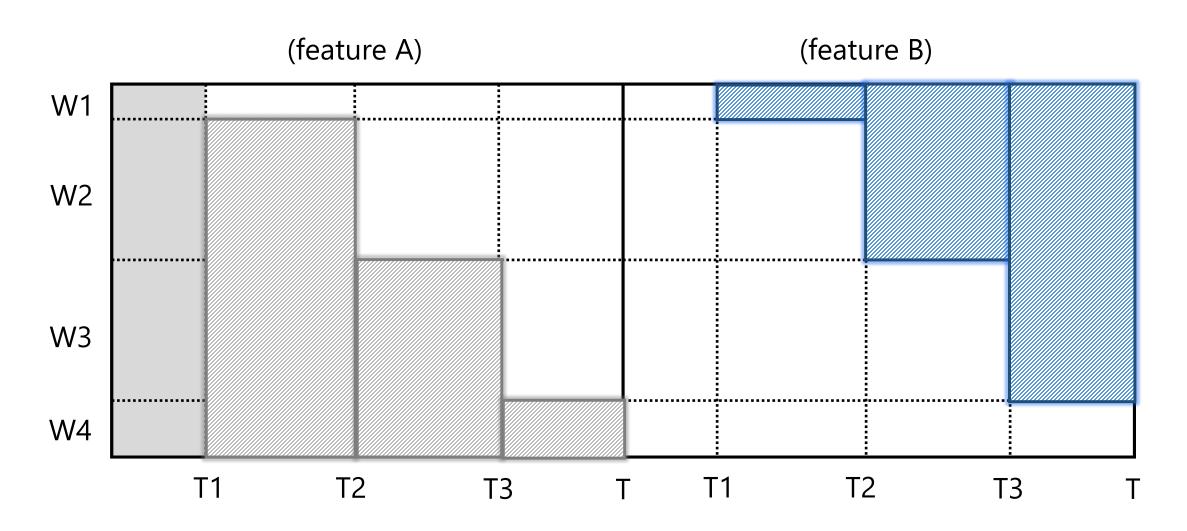
72 week study

~180 cities

2 features

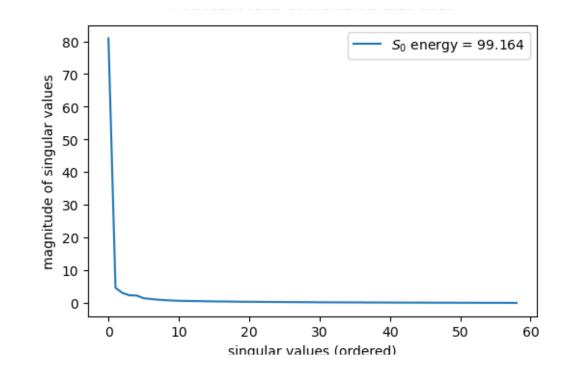


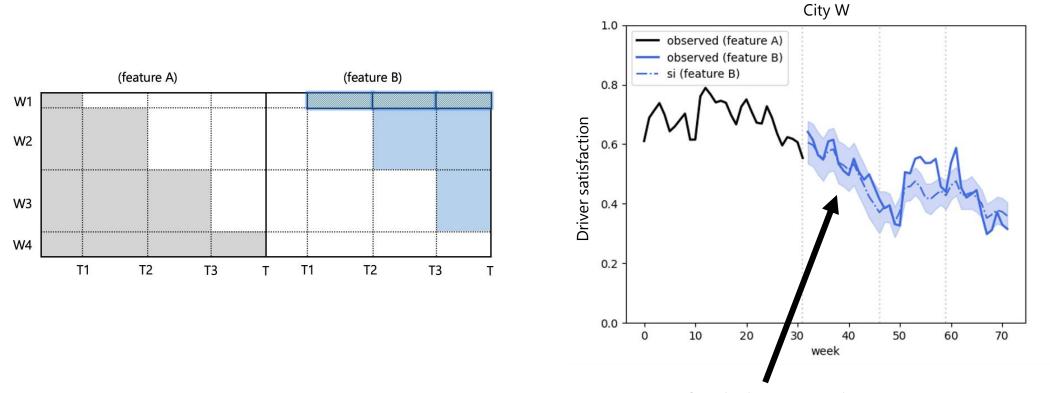




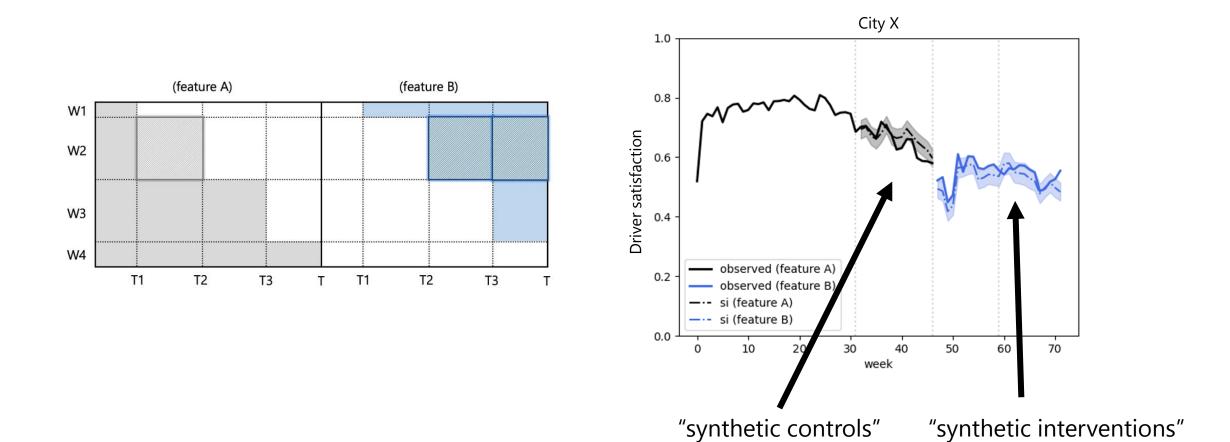
Diagnostic: look for low-rank structure!

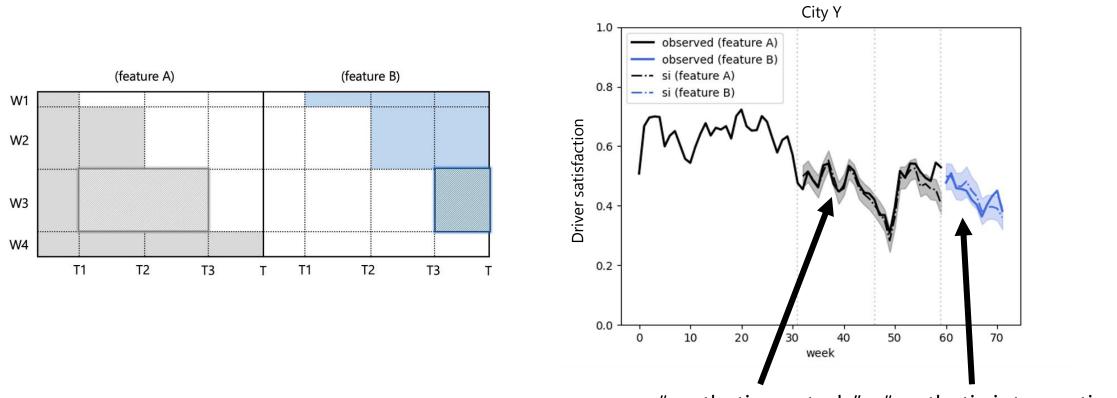
```
import numpy as np
import matplotlib.pyplot as plt
(u, s, v) = np.linalg.svd(data, full_matrices=False)
plt.figure()
plt.plot(s)
plt.show()
```



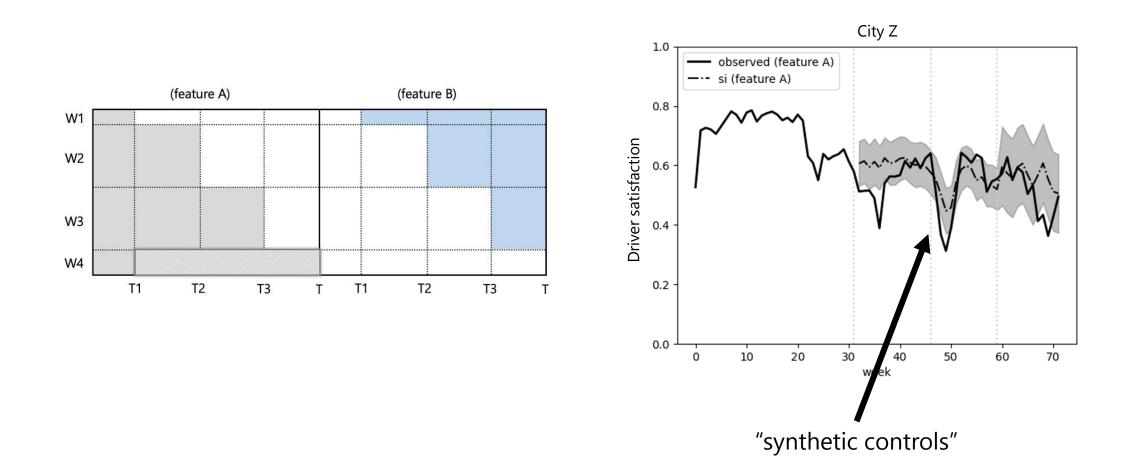


"synthetic interventions"

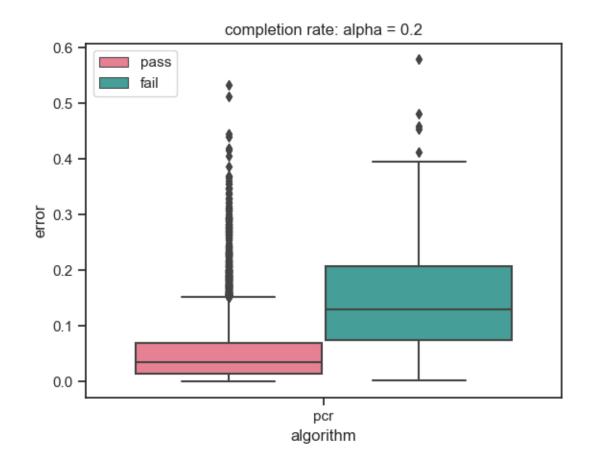




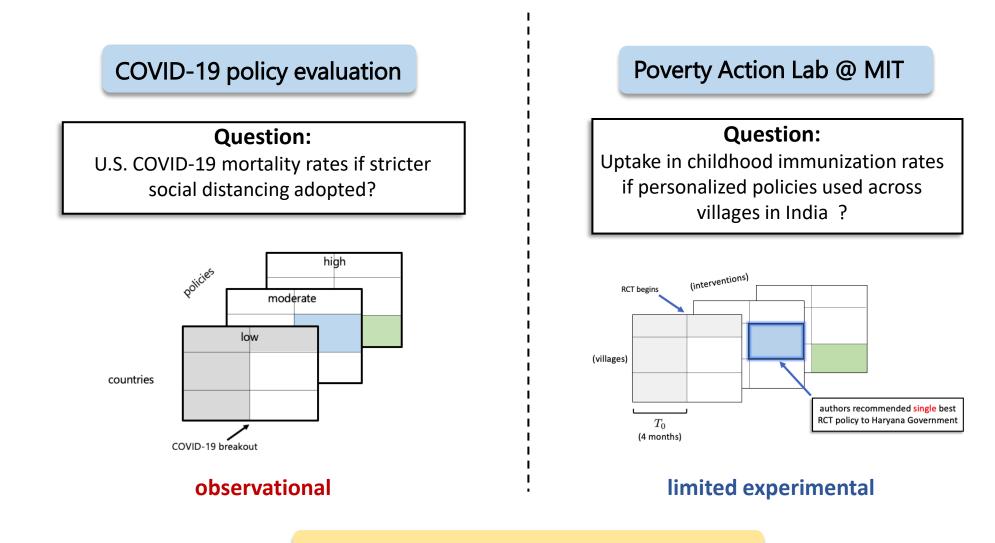
"synthetic controls" "synthetic interventions"



Validation study results—subspace inclusion

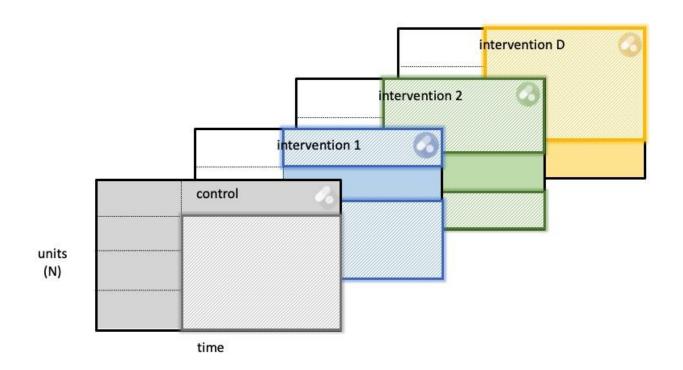


Additional studies

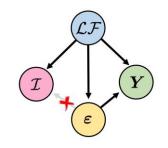


Block pattern ubiquitous in practice

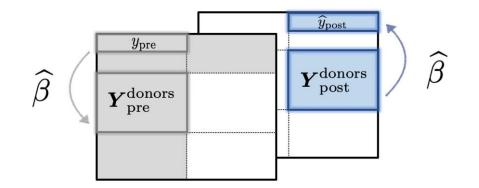
Key takeaway



provably learns all N × D causal estimands with
 N × 2 observations (requires meas. under common intervention)
 (ii) confounded data that respects *selection on latent factors*

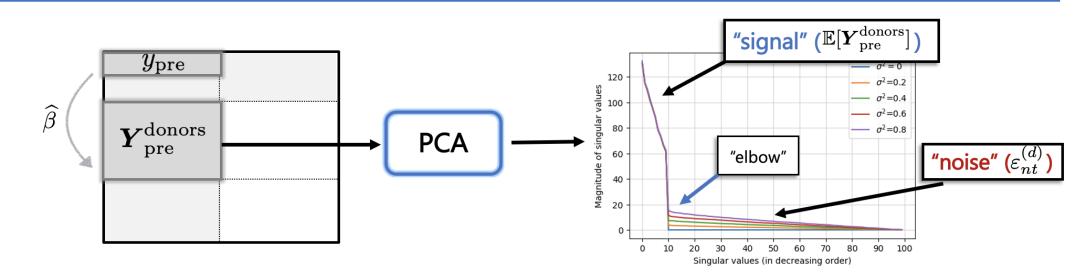


Numerous ways to estimate model parameter



- Ordinary least squares [Hsiao et al '12, Li-Bell '17]
- Convex regression [Abadie et al '03, 10, 15]
- Ridge regression ['Ben-Michael et al '21]
- Lasso regression [Carvalho '18, Chernozukhov '21]
- Elastic net regression [Doudchenko-Imbens '16]
- Non-negative weights [Li' 20]
- Fancy ML

Don't forget about PCR!



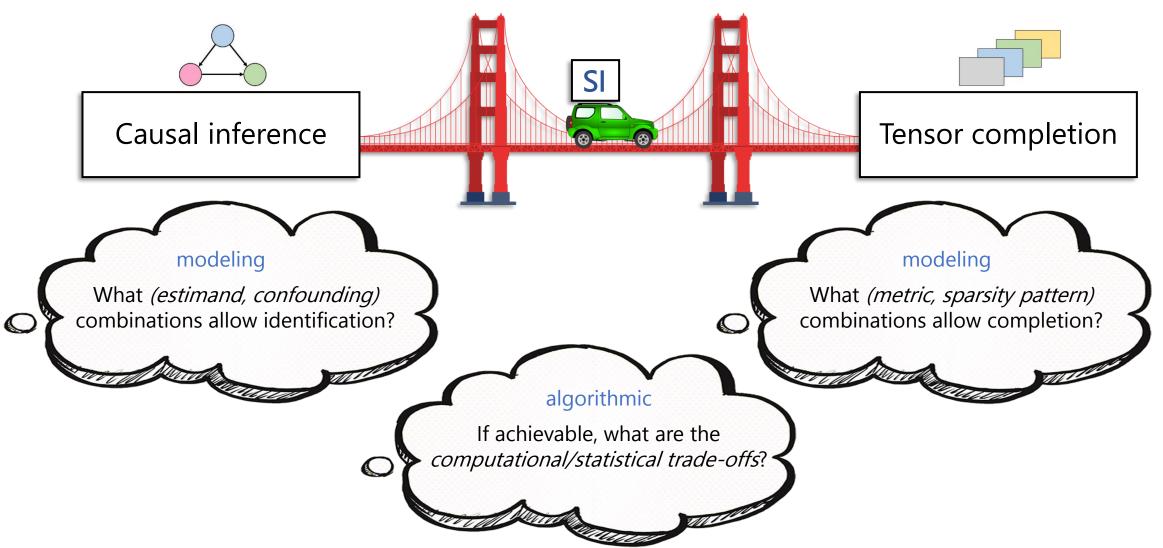
Intuition:

Low-rank signal is spectrally concentrated, noise is spectrally diffused

1. PCR enforces spectral sparsity in $m{Y}_{
m pre}^{
m donors}$ 2. PCR de-noises $m{Y}_{
m pre}^{
m donors}$

How to find "elbow": [Gavish-Donoho '14, Chatterjee '15]

Looking forward



https://arxiv.org/pdf/2006.07691.pdf

Acknowledgements:

Alberto Abadie, Abdullah Alomar, Romain Cosson, Esther Duflo, Anna Mikusheva, Rahul Singh