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Buyer Search and Price Dispersion: A Laboratory Study

1. Introduction

Retail transactions in modern economies occur predominantly in posted offer markets.

Typically each seller posts a price and each buyer chooses a seller.1 Buyer search is the main

competitive force in such markets: as long as the posted prices differ, buyers tend to choose

sellers with lower prices. In many circumstances buyer search enforces a unified, competitive

price. But sometimes different sellers post substantially different prices for essentially the same

good, and we have price dispersion. Our goal in this paper is to better understand when buyer

search enforces the law of one price and when it allows price dispersion.

The goal is important for three complementary reasons. First, dispersed prices are a

persistent fact of life, even when buyer search is relatively cheap (Brynjolfsson and Smith, 1999;

Baye and Morgan, 1999). Second, despite a large theoretical literature, price dispersion is not yet

well understood. The next several paragraphs will highlight some of the outstanding theoretical

issues. Third, a deeper understanding of forces behind price dispersion may help

macroeconomists construct better cost shock propagation models and business cycle models, and

surely will help microeconomists construct better models of imperfect competition.

Theoretical debates on price dispersion go back at least to Bertrand (1883) and

Edgeworth (1925). Bertrand argued that buyer search in a posted offer market will enforce a

unified competitive price even when there are only two sellers. The intuition is simply that

undercutting is profitable at any higher price; at least one seller will be able to substantially

increase volume and profit by slightly decreasing his price. Edgeworth noted that the outcome is

more complicated when the sellers have binding capacity constraints at the competitive price. He

                                               
1 Similar considerations apply to variants such as labor markets, in which buyers (firms) post price (wage) and
sellers (workers) search. For expositional simplicity we focus below on simple seller posted offer markets and
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assumed myopic price adjustment and predicted a price cycle in which sellers reduce price in

small increments when there is excess capacity but jump to much higher prices when the

capacity constraints bind. Modern textbook treatments such as Tirole (1988) downplay price

cycles and instead focus on dispersed prices, in the sense of mixed strategy Nash equilibrium.

This literature relies on capacity constraints despite their short-run nature, and does not explicitly

model buyer choice despite its crucial role.

Stigler (1961) started a large literature on buyer choice when search is costly but the

distribution of posted prices is exogenous and constant. Gastwirth (1976) pointed out that buyer

behavior and payoffs are quite vulnerable to misperceptions of the price distribution.

Diamond (1971) apparently was the first to model simultaneous buyer search and seller

price setting, and he reached a surprising conclusion. If all buyers have positive search costs

(uniformly bounded below by an arbitrarily small positive number), then the unique Nash

equilibrium is a unified price, but at the monopoly rather than the competitive level. The

intuition is that when other sellers charge a price below the monopoly price, it is more profitable

to choose a slightly higher price, given buyers’ search costs; we refer to this as cream skimming.

Several later authors find equilibrium  dispersed prices in models with heterogeneous buyers. For

example, Salop and Stiglitz (1977) derive equilibrium price dispersion in a model where some

buyers are costlessly and fully informed while the other buyers have prohibitive search costs and

are totally ignorant of posted prices. Stahl (1989) shows that if some buyers have zero search

costs while others have identical positive search costs then there is a unique symmetric NE in

mixed strategies. The NE price distribution changes continuously from the monopoly price

(Diamond) to the competitive price (Bertrand) as the fraction of zero search cost buyers varies

from 0 to 1.

                                                                                                                                                      
ignore the variants.
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Burdett and Judd (1983) model price dispersion in its starkest form, without resorting to

heterogeneous buyers or small numbers of sellers or capacity constraints. In the sequential search

version of their model the buyers decide the number of prices to sample at a given search cost

per price, while in the noisy search version the sample size is random. Both versions have

dispersed price equilibria that shift systematically with the parameters of the search technology.

The intuition is that the incentives to undercut and to skim balance over a specific range of prices

that varies with the parameters.

The empirical relevance of these models is open to question. Gastwirth’s results suggest

that buyers might not behave properly until they know the equilibrium price distribution

precisely. The results of Hopkins and Seymour (1999) suggest that convergence to dispersed

price equilibrium is unlikely even with large numbers of well-behaved buyers and sellers. They

show that the unified price Diamond equilibrium is dynamically stable but all relevant dispersed

price equilibria are unstable under a wide class of learning dynamics.2

In this paper we present a laboratory study based on the noisy search version of the

Burdett and Judd (1983) model. We simplify by eliminating samples of size three and larger

(they play a negligible role in the Burdett and Judd analysis anyway) and by normalizing sellers’

production cost to zero and buyers’ willingness to pay to $2.00. The simplifications involve no

true loss of generality but allow us to solve the model explicitly, and to compare the theoretical

predictions directly to the lab data. Our experiment varies the search technology parameters and

also the number and type (human or automated) of buyers. Thus we have a sharp environment

for testing the effect of buyer search on price dispersion.

Two earlier laboratory studies suggest that the theory may not predict very well. Abrams,

                                               
2 Indeed, in private conversations, two eminent theorists (neither apparently aware of the Hopkins and Seymour
paper) conjectured to us that stable dispersions would be unlikely to emerge in laboratory experiments.
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Sefton and Yavas (2000) study a posted offer laboratory market with search, and examine only

cases predicted to have unified prices at the Bertrand and Diamond equilibria. They find that

most prices were closer to the halfway point than to either the Bertrand or the Diamond extreme,

and the sample size parameter had much smaller impact than predicted. Davis and Holt (1996)

obtained similar results. Both studies gave sellers a public identification number and neither told

traders the distribution of prices chosen in previous trading periods. On the other hand, in three

of four relevant trial sequences, Grether, Schwartz and Wilde (1988) obtained results closer to

the Diamond extreme in an experiment that featured anonymous sellers and public information

on the previous period’s price distribution.3

We begin in the next section by writing out the noisy buyer search model and stating

three formal results. The first result demonstrates the optimality of buyer reservation price

strategies taken for granted by Burdett and Judd (1983), and the second result repeats one of their

main findings. The third result and its corollary give apparently new explicit formulas for the

distribution of dispersed prices as a function of search cost and expected sample size. Section 3

describes the experiment and lays out the research hypotheses.

Section 4 presents the laboratory results. Overall the data conform to theory much more

closely than in previous posted offer market experiments with buyer search. The data track the

comparative static predictions on search cost and sample size parameters remarkably well,

especially in the treatments with automated buyers. Still, there are systematic departures from the

theory. Buyers’ reservation prices are biased away from the extremes and sellers’ posted prices

have positive autocorrelation and cross sectional correlation.

                                               
3 Brown Kruse et al. (1994) study the role of capacity constraints in generating price dispersion in laboratory
oligopolies. They find that Edgeworth’s price cycle theory explains the data better than three alternatives
(competitive equilibrium, dispersed prices as given by the symmetric Nash equilibrium in mixed strategies, and tacit
collusion), although none does especially well.
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A concluding section summarizes the results, offers some interpretations and

implications, and lists possible avenues for future research. Formal proofs are collected in

Appendix A. [For the benefit of referees, instructions to subjects are attached as Appendix B.]

Details of the experimental procedures can be found in a companion paper, Cason and Friedman

(1999), that uses a subset of the same data to study the exercise of market power.

2.  An Equilibrium Model

Our experiment is based on streamlined version the Burdett and Judd (1983) noisy search

model. The model assumes a continuum of sellers with zero cost for producing a homogeneous

good, and a continuum of buyers with identical search cost c≥0 and with identical willingness to

pay (say $2.00) for a single indivisible unit of the good. Each seller posts a single price at which

he is prepared to sell as many units as buyers order. Sellers maximize profit (or revenue, since

production costs are zero) py, where the sales volume y depends on the seller’s posted price p, on

other sellers’ prices, and on buyer characteristics.

Each buyer initially has an independent sample of sellers’ posted prices; the sample

contains one price with probability q≥0 or two prices with probability 1- q≥0. The buyer can

quit, or can purchase at the (lower) observed price p, or can search by paying c to obtain a fresh

sample. New samples again are independent and either of size 1 (with probability q) or size 2

(with probability 1- q). The values of q and c are common knowledge. After m≥0 searches the

buyer’s payoff is – mc if she quits, and is 2.00 – p – mc if she purchases at posted price p from

the last sample; there is no recall from earlier samples. Buyers maximize expected payoff.

Buyers are endowed with a fixed belief F about the distribution of sellers’ posted prices;

F is not altered by observed samples. For now F is an arbitrary cumulative distribution function
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with support contained in (0, ∞), i.e., F is right-continuous and increasing, and F(p) =0 (resp. =1)

at all points p below (resp. above) its support. Recall that the lower price in a sample of size 2

has distribution (1 - (1-F(p))2), so the overall distribution of the lowest price in a sample not yet

drawn is G(p| q) = qF(p) + (1 - q)(1 - (1-F(p))2).

A buyer is said to follow a reservation price strategy if there is some p*≤ 2.00 such that

she purchases her unit at the lowest price p in the current sample if  p is at or below p*, and she

searches again if p is above the reservation value p*. A buyer’s strategy is said to be optimal

with respect to c, q and F if no other buy/search/quit plan yields higher expected payoff.

2.1       Analysis

Consider the equation

(1) c =  ∫
z

dp| qGz-p
0

)()(

The notation G(dp| q) indicates a Stieltjes integral over the variable p, so the right hand side

(RHS) of (1) is the incremental benefit of search, the expected price reduction, when the best

current price is z. The left hand side is, of course, the incremental cost of another search.

Proposition 1. Given search cost c>0, sample size parameter q∈ (0,1) and perceived posted

price distribution F, there is a unique solution z=z*(c,q,F)≥0 to equation (1). If the solution z* is

no greater than the willingness to pay 2.00, then it is optimal for each buyer to follow a

reservation price strategy with p*=z*.   

All proofs are collected in Appendix A.

How should sellers choose price when all buyers follow identical reservation price

strategies? The model assumes Nash equilibrium for a continuum of sellers, i.e., a distribution F

of sellers’ posted prices such that, given q and p*, no seller can increase profit by unilaterally
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changing price. This comes down to an equal profit condition for all prices in the support of the

distribution, which quickly leads to the following result.

Proposition 2. Given sample size parameter q∈ (0,1) and identical reservation price strategies

with reservation value p*≤ 2.00  for all buyers, there is a unique Nash equilibrium distribution F

for sellers’ posted prices. On its support interval [qp*/(2-q), p*], the distribution takes the value

(2) F(p) = 
q

q

p

p

22

*
11

−







−+ .

In equilibrium, the reservation price z*(c,q,F)=p* is consistent with the distribution F

and conversely. More formally, for given exogenous parameters c and q, say that (F, p*) is a

Burdett-Judd Noisy Search Equilibrium (NSE) if (a) F is a Nash equilibrium distribution with

respect to q and p*, and (b) p* defines an optimal reservation price strategy with respect to c, q

and F. Our main result is

Proposition 3. For each sample size parameter q∈ (0,1) and positive search cost c<2.00(1-q),

there is a unique NSE (F, p*). The NSE reservation price is p* = c/(1-q) and hence the NSE

price distribution is F(p) = 0.5(2-q)/(1-q) – 0.5[cq/(1-q)2] p-1 on the support interval

[cq/((2-q)(1-q),  c/(1-q)].

Corollary. In NSE, buyers never search. For q∈ (0,1) and c∈ (0, 2.00(1-q)),

1. the NSE posted and transacted price densities, upper and lower endpoints, and mean and

median are as listed in Table 1;

2.  all sellers earn the same profit µqc/(1-q), where µ is the number of buyers per seller; and

3. the NSE demand for a seller posting price p is y =  µ s(p), where the relative share is  s(p) =

q + 2(1- q)(1-F(p)) and F is the NSE price distribution given in Proposition 3.

Note that in Table 1 the transaction prices are lower than the corresponding posted prices in the
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sense of first-order stochastic dominance. The intuition simply is that buyers who see two prices

transact at the lower price.

For 0<q<1 and moderate c>0, the NSE features dispersed prices, as illustrated in Figure

1. It is not hard to show (see Burdett and Judd) that prices are unified in the limiting cases.

Specifically, if q=0 or if c=0, the NSE price distribution is degenerate at p=0 and we have the

competitive or Bertrand equilibrium. If q=1 and c>0, the NSE distribution is degenerate at the

buyers’ true willingness to pay, p=2.00, and we have the monopoly or Diamond equilibrium.

2.2       Empirical Issues

The model shows that the incentive to undercut dominates when q=0 (so every buyer sees

more than one seller’s price), and the incentive to skim dominates when the search cost c is

positive (however small) and q=1 (so every buyer sees just one seller’s price). For intermediate

values of q and positive c, the incentives balance over a specific range of prices and we have

price dispersion. As the parameters change, the balance shifts in the particular manner given in

Table 1 and Figure 1.

The model is crisp and intuitive, but is it useful empirically? NSE is a static, one-shot

equilibrium of a continuum economy. One might ask whether finite numbers of buyers and

sellers interacting dynamically in a real market (field or lab) will converge to NSE. There are at

least six empirical issues:

1. Real markets have only finite numbers of buyers, so sellers posting the same price often will

be sampled by different numbers of buyers and earn different profits. Sellers’ differing

experience is likely to encourage differing behavior and that may delay convergence to

equilibrium. With more buyers per seller, sampling variability is reduced and convergence

may be faster.
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2. Human buyers are unlikely to follow strictly a reservation price strategy, much less identical

reservation price strategies as called for in NSE. Again this source of variability may delay

or bias convergence.

3. Human sellers are unlikely to draw prices randomly and independently each period from a

common distribution. The same issue arises in zero-sum matrix games. O’Neill (1987)

argued that laboratory evidence confirmed the Nash equilibrium theory because the overall

choice frequencies approximated the Nash frequencies. Brown and Rosenthal (1990), on the

other hand, showed that individual subjects’ choices were correlated and biased, contrary to

the best-response behavior presumed in Nash equilibrium. We will examine the correlations

of sellers’ prices across and within periods, but for us the primary question is whether NSE

correctly predicts the overall price distribution and its response to parameter shifts.

4. As noted in the introduction, Hopkins and Seymour (1999) show that the unified price

Diamond equilibrium is dynamically stable but all dispersed price equilibria in our model

are unstable. Their Proposition 13 (case N=2) demonstrates that if (large populations of)

buyers and sellers have positive definite adaptive (PDA) learning processes, then the

dispersed price NSE are asymptotically unstable. Hence the dispersed price NSE may be

unreachable empirically.

5. Finite numbers opens the possibility of strategic manipulation by sellers or buyers. By

contrast, the NSE model assumes price-taking behavior, and therefore may give inaccurate

predictions.

6. The NSE prediction regarding the law of one price is especially interesting and subtle. The

law is predicted to hold only in the extreme cases (c = 0, or q = 0 or 1) and the unified price

in these cases is also extreme at p = 0 (the competitive price) or p = 2.00 (the monopoly
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price). Such extreme outcomes are hard to obtain in laboratory (or field) markets.  On the

other hand, the intermediate cases (c > 0 and 0<q<1) could well produce a unified price at

some intermediate level each period rather than dispersed prices.

The next section describes the laboratory environment we constructed to address such

issues. The environment is intended neither to be “realistic” (since that can cloud inferences) nor

to implement the theory precisely (as just noted, that is impossible). Instead, the environment is

intended to be informative given what is already known. For example, unlike Abrams et al., we

“unrealistically” tell everyone the prices posted last period and do not reveal sellers’ identities to

buyers. This sharpens the focus on the forces included in the model, such as the incentives to

undercut or skim. We also include treatments in which robot buyers play known, equilibrium

strategies. This allows subjects to focus on the inter-seller competition that is the central feature

of the theory and eliminates strategic uncertainty regarding buyers.

3. Laboratory Procedures

The experiment uses the posted offer market institution described in Cason and Friedman

(1999, p. 73-77). We summarize the key features here for completeness.  As shown in Figure 2,

each period each seller uses a scroll bar to post a single price. Each buyer sees one or two of the

sellers’ current posted prices, and clicks the appropriate button to indicate her choice: quit for

that period (“Reject”), accept a posted price she sees, or search. If the “Search” button is clicked,

the search cost is immediately deducted from the buyer’s profit, a fresh sample of one or two

posted prices is displayed and the buyer again has the same three choices. After all buyers have

transacted or quit, the buyers and sellers review their own profit or loss and see all posted and

transaction prices for the past period. Prices are displayed in random order to obscure seller
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identities. The next period then begins with new random matching of buyers to sellers.

Subjects were recruited from undergraduate classes in Economics and Biology at UCSC

and Purdue. They received the written instructions attached as Appendix B and were assigned

randomly to buyer and seller roles. At the end of the session they received total profits, converted

from lab dollars into U.S. dollars at a fixed exchange rate and averaging about $20 for sessions

that lasted about 90-100 minutes. Sellers had zero production cost and no capacity constraint.

Buyers had an induced $2.00 value for a single indivisible unit. Seller costs, buyer values, and

the treatments described below were posted on the blackboard, displayed on traders’ screens and

announced in the instructions.

3.1       Treatments

Our experiment features three treatment variables: search cost c, sample size q and buyer

population. The search cost is controlled at two levels: 20 cents and 60 cents. The probability q

that any sample of prices has only one seller’s price (rather than two different sellers’ prices) is

controlled at four levels: q = 0, 1/3, 2/3 and 1. When a buyer searches, the new sample is drawn

with replacement of earlier samples. The parameter values are chosen to provide a good

separation of predicted (NSE) prices, as shown in Table 2.

The buyer treatments vary the number of buyers per seller and the buyer search strategy

in order to address the first two empirical issues raised earlier. The baseline buyer population is

six human buyers. The alternative treatments replace the human buyers by computer algorithms

(or “robots”) that follow NSE reservation price strategies. The robot implementations are

straightforward, with the number of robots controlled at 6, 12 and many.  For example, with 12

robot buyers, c=0.60 and q=1/3, the equilibrium reservation price is  $0.90 and (with six sellers)

µ =2. We tell the sellers that there are no human buyers and there are 12 automated buyers, each
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of which immediately accepts the lowest price it sees if it is below $0.91 and otherwise keeps

searching.

There were two modifications to this general procedure. First, to avoid trivialities when

q=0, we set the reservation price to ten cents instead of zero. Second, the many-robots treatment

(described to subjects as 600 robots) uses the continuum formula given at the end of the

Corollary. Here a seller posting price pi sells exactly yi =  µ s(pi) units, where µ =100 and

(3)         s(pi) = q + 2(1- q)(1-Fa(pi))  =  q + 2(1- q)(ri-1)/(n-1).

Thus seller i sells to a fraction of the µ 2(1- q) potential buyers who see two prices; the fraction

can be expressed as in the Corollary using the actual (empirical) distribution Fa  for that period,

or can be expressed directly in terms of the rank ri of his price pi among the n≤6 sellers currently

posting prices at or below the reservation price p*.

3.2       Design

In pilot tests of the new user interface we varied both the number of buyers and sellers,

but the experiment is designed to hold constant the number of sellers at six. Each run (usually

20-30 consecutive periods) holds constant all treatments, and the value of q switches across runs

in a balanced fashion. The buyer treatment (with one human plus three robot conditions) and the

search cost treatment are constant within each session but vary across sessions.

Table 3 lays out the design of our 18 sessions. It approximates a factorial design with 4

buyer conditions × 2 search cost conditions. Most of the eight cells include at least one session at

each site (indicated by the UC- or PU- prefix for UCSC and Purdue University respectively) and

most cells include one or more sessions with subjects experienced in a previous session

(indicated by an –x suffix). The numerical part of the session name indicates the calendar

sequence, essentially random. Most sessions have four runs, with the first two using the extreme
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values of the q parameter. Experienced sessions required less instruction time, so we were able to

use longer runs or more runs. There are a few minor irregularities, e.g., one or two extra or fewer

periods in the human buyer sessions due to time constraints. Also, an early many-robot session

used 45 robots instead of the later standard 600 robot algorithm, and the first experienced session

had missing subjects and so was run with 5 human buyers and sellers rather than 6. A number of

diagnostic tests on price distributions and other outcomes disclosed no impact of these

irregularities on our conclusions.

4. Results

We begin in Section 4.1 with graphs of the raw data and summary statistics. Tests of the

main comparative static predictions are presented in Section 4.2. Section 4.3 compares actual

price distributions to the equilibrium predictions in the dispersed price treatments. Section 4.4

examines the behavior of individual buyers, and Section 4.5 looks at individual sellers.

4.1       Overview

Figures 3, 4 and 5 summarize some illustrative runs. The solid circles represent posted

prices that result in transactions, and the open circles represent unaccepted price offers. Figure 3

shows the third run of session UC9x, featuring 6 experienced human sellers and a continuum of

robot buyers that followed equilibrium reservation price strategies for a 20 cent search cost. The

equilibrium in this third run (q=1/3) has prices in the interval [0.06, 0.30], and all posted prices

fall into the predicted interval except one that misses by a penny. The distribution, however,

seems to oversample the higher prices and there appears to be cross sectional and serial

correlation.

Figure 4 summarizes the q=2/3 run of session PU2, which featured 12 robot buyers and
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60-cent search costs. Most prices are inside the predicted range (now [0.90, 1.80]); the main

exception is a single seller pricing about 10 cents too low. The first half of the run looks like the

beginning of an Edgeworth cycle, as mean prices decline gradually via undercutting until near

the bottom of the price range when sellers begin to favor skimming. But the “cycle” does not

repeat itself and prices look dispersed in the second half of the run. Similar patterns can be seen

in the q=1/3 and q=2/3 runs with human buyers, as illustrated in Figure 5.

Graphs of the other 71 runs show considerable variability but suggest some general

tendencies. The extreme unified price predictions hold up quite well for q=0 and 1 runs with

many robot buyers, but prices are less extreme with fewer (and especially human) buyers. The

dispersed price predictions also seem to fare well in most sessions with many robot buyers and in

some (but not all) sessions with fewer robots and humans. Prices seem correlated in varying

degrees across buyers and across time.

Figure 6 illustrates the overall price trends in the q=1/3 and q=2/3 runs. We focus here on

these interior values of q; the companion paper (Cason and Friedman, 1999) reports (only) the

results for the q=0 and q=1 runs. Panel A shows mean transaction price by period and treatment

in all sessions with human buyers. Mean prices in the first few periods are rather tightly clustered

in a 20 cent interval but gradually spread out with the predicted ordering: highest in the q=2/3,

c=60 treatment and lowest in the q=1/3, c=20 treatment, with the other two treatments in

between and close together. The separation never quite reaches the predicted degree, however,

and it narrows somewhat towards the end, mainly from a decline the last 10 periods of the q=2/3,

c=60 runs. Panel B shows the corresponding data for the sessions with many robot buyers. Here

the magnitude of separation as well as the ordering is about right, and the final mean prices are

only a few cents above the NSE predictions. Mean transaction prices for the 6 and 12 robot buyer
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treatments shown in panels C and D are quite similar to panel B. Mean posted prices (not shown)

are a bit higher and more variable but generally parallel to the mean transacted prices.

It is standard in laboratory markets to measure the efficiency with which potential gains

from trade (or surplus) are actually realized. Our experiment has a $2.00 potential surplus for

each buyer each period, which is dissipated when buyers search or fail to transact. Sellers almost

never price above robot buyers’ reservation prices, so efficiency is virtually 100 percent in all

robot buyer sessions. Table 4 shows that efficiency is usually high in the human buyer sessions

as well, averaging in excess of 97 percent in the q<1 treatments. Efficiency is lowest, but still

averages over 92 percent, in the extreme q=1 treatment, perhaps because human buyers resist the

equilibrium that awards all surplus to sellers. Gross trading efficiency (ignoring search costs)

exceeds net efficiency only slightly because buyers rarely search. Human buyers search 277

times overall, compared to 3512 purchases. The search rate increases monotonically in q, and it

is three to five times higher with 20-cent rather than 60-cent search costs.4

Table 5 shows that sellers’ share of this high trade surplus is usually greater than

predicted by the NSE model, except when more than half of the $2.00 surplus is predicted to

accrue to sellers. In the q=1/3 and q=2/3 treatments (Panel A), sellers’ share of the exchange

surplus nearly always exceeds the NSE level. Nevertheless, the NSE model is able to describe

the main differences in seller earnings across treatments. The data provide remarkably strong

support for the highly asymmetric predicted distribution of exchange surplus with q=0 (Panel B).

When q=0 sellers receive only about one or two percent of the exchange surplus, except for the

human buyers treatment. Even for the human buyers treatment, the mean profits shown in Table

                                               
4 Although this overall search rate is low, it is not on the boundary equilibrium prediction of zero searches. As
documented later, sellers sometimes deviate from equilibrium price strategies. Some searches seem due to high
(disequilibrium) posted prices. Other searches may be due to noisy buyer decisions. Both explanations are consistent
with the observed monotonicity of search rate in q and c.
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5 are misleadingly high because they are influenced by outliers; median seller profits in the

human buyers treatment with q=0 are 5 cents with 20-cent search costs and are 34 cents with 60-

cent search costs.

4.2 Comparative Statics

The main predictions from the equilibrium model are how transaction prices vary with

search cost c and sample size 2-q. Table 6 summarizes the evidence, using simple and very

conservative nonparametric Wilcoxon tests to compare mean transaction prices in pairs of runs.

For tests on the within-session treatment variable q each session contributes one independent

observation—the difference in mean prices between q runs. For tests on the across-session search

cost treatment variable we pair sessions with identical buyer types and (where possible)

experience conditions. Each pair of sessions contributes a single observation.

As predicted by the NSE model, there is an insignificant (4 ± 5 cents) difference in

transaction prices between high and low search cost runs when q = 0 and also when q = 1 (now

–1 ± 12 cents). In other comparisons, NSE predicts significant differences and the predictions are

remarkably accurate. For example, the predicted difference between high and low cost when q =

1/3 is 20 cents and the actual is 29 ± 3, and the predicted difference for q = 2/3 is 80 cents and

the actual is 59 ± 12. In every case but one, the differences are significant and in the predicted

direction. The only exception is the low search cost q = 1/3 vs. q = 0, where the actual difference

of  8 ± 8 cents is insignificant but still very close to the 9 cent predicted difference. Actual

differences are somewhat smaller than the very large predicted differences in the q = 2/3 vs. q =

1 comparisons mainly because the mean prices for q = 1, although nearly equal at $1.64 and far

higher than the other mean prices, still fall short of the extreme prediction of $2.00. One should

bear in mind that q = 1 runs always either begin the session or follow q = 0 runs, so the mean
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price calculation includes trials when the price is low but rapidly increasing.

4.3       Price Distributions

The histograms in Figures 7 and 8 confirm that the predicted and actual distributions shift

in parallel as we vary the q and c parameters. But the histograms also suggest some systematic

prediction errors. For the human buyer sessions (Figure 7), the observed range of prices is wider

than predicted, usually extending more towards the middle and away from the 0.01 and 2.00

extremes. For the many robots sessions (Figure 8), the predicted price ranges seem quite

accurate, but not the predicted skewness.

Table 7 more carefully examines the location and skewness of actual prices where the

NSE predictions should be sharpest, in the final 10 periods of each run. 5 As suggested by earlier

tables on profits and transaction prices, the posted prices track the predictions rather well but are

usually biased towards 100 cents. (The only exception is rather minor: the q=2/3, c=60 human

buyer median and mean fall one or two cents on the wrong side of 100.) The bias in both mean

and median is always largest in the six Human Buyers condition.  Actual skewness often falls

below the NSE values, although 11 of the 16 skewness estimates have the predicted positive

sign. A more robust directional measure of skewness is the sign of the mean minus the median.

This difference has the predicted positive sign in 14 of 16 cases. Thus the skewness predictions

do better in the last ten periods than the overall histograms suggest. Not surprisingly, however,

tests such as Kolmogorov-Smirnov (K-S) strongly reject the null hypothesis that the data come

precisely from the NSE distribution.

                                               
5 Particularly in the human buyer sessions, the data sometimes exhibit significant hysteresis across runs as the q
treatment is changed. For example, prices are usually higher on average in the early periods of a q=1/3 run when that
run follows a q=1 rather than a q=2/3 run. This is one reason that the range of prices is quite wide in the histograms
with human buyers (Figure 7), but similar histograms that exclude the early periods still have a range of prices that
extends beyond the equilibrium range. Such hysteresis typically cannot be detected after 5 or 10 trading periods. For
this reason, some tests of equilibrium predictions below employ data from only the later periods of each run.
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So far we have looked at empirical distributions that pool observed prices across periods.

Such pooling cannot distinguish between true price dispersion and the alternative prediction,

noted near the end of the theory section, that there is a unified price each period that changes

across periods.  To make the empirical distinction, we measure dispersion separately each period

as the standard deviation of posted prices across sellers. Table 8 reports a robust summary

statistic, the median dispersion measurement over the final 10 periods in each run. The results

confirm NSE theory quite nicely in the robot buyers treatments. Dispersion is very low where

NSE calls for unified prices—in the many robot buyer treatments with q=0 and q=1—and is

about the right magnitude where NSE predicts dispersion.6

4.4       Buyer Behavior

The results so far broadly support the main NSE predictions but include several

interesting discrepancies.  To follow up we now explore individual behavior, beginning with

human buyers.

Table 9 collects estimates of all human buyers’ reservation prices in the q = 1/3 and 2/3

runs. The maintained assumption is that each buyer has a constant reservation price but may

occasionally err either (a) by purchasing at a higher price or (b) by not purchasing (quitting or

searching) at a lower price.  The estimates are the lowest reservation price that minimizes total

errors subject to the constraint of equal numbers of type (a) and (b) errors.7 The number of

periods—and therefore the number of opportunities to violate the reservation price rule—varies

across sessions, but is typically about 30 (see Table 3). For 48 of the 70 buyers we are able to

                                               
6 We also ran a regression (not shown) of the dispersion measure on various explanatory variables including the
treatments, their interactions and time. The estimates indicate that dispersion tends to decline in early periods of a
run.
7 For 6 of the 70 buyers we cannot identify reservation prices with an equal number of violations of each type, so we
report reservation prices that minimize the difference between the violation counts of each type. Results are
substantially unchanged for reservation price estimates that simply minimize the total number of violations.
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identify reservation prices with no violations of either type.

The table indicates that the estimated reservation prices are less extreme than predicted.

A large majority of the estimates are between the midrange (100) and the MSE prediction, and in

69 of 70 cases, the estimates are above the predictions for less than 100 and below the

predictions for more than 100. (The one exception, inexperienced Buyer 5 in PU7 for q=1/3, is

off by only 5 cents.) Equally important, the reservation price estimates are consistent with

comparative static predictions in that they are higher for higher q (with only 6 exceptions) and

for higher search costs. The estimated reservation prices differ somewhat by session, which is

not predicted by NSE but is consistent with session differences in posted prices. For example,

posted prices rarely exceed 100 in UC5 but do so frequently in PU5, consistent with the

estimates reported near the top of Table 9.

We should also note that buyers occasionally quit—that is, refuse to buy in a particular

period at any available price. Overall we observe 58 quits, compared to 277 searches and 3512

purchases. Posted prices almost never exceed the buyers’ value of the good ($2.00), so most of

the quits are demand withholding, analogous to rejected proposals in ultimatum games.

Consistent with ultimatum game results and with Ruffle (2000), quits are most common at high

prices that leave little surplus to buyers. Two-thirds of the quits (39 out of 58) occur in the q=1

treatment in which buyers receive no surplus in NSE, and also about two-thirds occur at posted

prices that offer buyers less than one-third of the surplus.

4.5       Seller Behavior

Are the observed price dispersions symmetric across sellers, supported by independent,

and identically distributed draws from a common distribution like that in Table 1? Or are they

asymmetric, with some sellers perhaps favoring undercutting strategies and other sellers favoring
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skimming? To address this question (flagged earlier as empirical issue 3), we first estimated the

simple autocorrelation coefficient corr(pit, pit-1) for each seller i separately for the q=1/3 and 2/3

treatments. The mean autocorrelation across the 212 estimates is 0.455, and 193 of the estimates

are greater than zero. We used a Monte Carlo simulation to determine the 95th percentile of the

estimated correlation coefficients based on iid price draws from the equilibrium distributions.

Table 10 shows that 164 of the 212 sellers’ estimated correlation coefficients exceed the relevant

95th percentile. Therefore we reject the null hypothesis of iid draws from the equilibrium

distribution. The rejection rate is highest for human buyers and for q=1/3.8

Prices are also correlated across sellers within a given period. We show this by estimating

the correlation coefficient corr(pit, itp− ), where itp−  denotes the mean price posted by the

sellers other than seller i in period t. We estimated this correlation separately for each seller for

each q=1/3 and q=2/3 run. We again use a Monte Carlo simulation to estimate the distribution of

correlation coefficients according to the NSE null hypothesis, again centered at zero. Table 11

shows that 159 of the 212 sellers’ estimated correlation coefficients exceed the relevant 95th

percentile and therefore reject the null hypothesis of iid draws from the equilibrium distribution.

The patterns are less pronounced here than in the previous table, but it appears that the rejection

rate is lowest for the 6 robot buyers treatment and is lower when q=2/3 in the 20-cent search cost

treatment.9 Brown Kruse et al. (1994) also found that prices in their experiment were

significantly correlated both across time and across sellers. Table 12 shows that price decreases

are more frequent for sellers who sold no units last period, especially for low values of q. In

particular, the ratio of price decreases to increases when a seller fails to sell any units last period

                                               
8 We also estimated a simple cross-sectional OLS regression using the autocorrelation estimate as the dependent
variable, with the various experimental treatments as explanatory variables. The estimates indicate that the
autocorrelation is also higher with experienced subjects.
9 A simple cross-sectional OLS regression using the correlation coefficient as the dependent variable indicates that
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falls monotonically from four for q=0 to one for q=1. Clearly there are non-trivial price

dynamics here not captured in the static NSE model.

A full evaluation of price dynamics and learning models is beyond the scope of the

present paper. In an earlier version we explored two approaches for modeling learning and price

dynamics: a myopic deterministic price adjustment model and a stochastic logit best response

model with adaptive expectations. The myopic price adjustment model is based on the

specification used in Brown-Kruse et al. (1994). It indicates only a weak tendency of sellers to

adjust price in the direction of last period’s ex post optimal price.

The stochastic logit best response model considers all available price information and it

smoothes the deterministic but discontinuous decision rule, as in the Quantal Response

Equilibrium (McKelvey and Palfrey, 1995). Following Capra et al. (1999a, 1999b) the model

assumes that sellers update beliefs using “geometric fictitious play.” The results show that sellers

are more likely to choose prices that have higher expected profits but these prices are not chosen

with an overwhelmingly high probability. The results further suggest that the sampling

variability with small numbers of buyers (and human buyers with unobserved reservation prices)

make seller price choices noisier. A simulation indicates that this learning model can explain

some regularities in the data not captured in the NSE model, in particular the moderate skewness

and some of positive cross-sectional correlation.10 The simulation, like the NSE, predicts zero

price autocorrelation within sellers and therefore cannot generate the significantly positive

autocorrelation noted in Table 10.

                                                                                                                                                      
across-seller price correlation also increases with experience.
10 The median simulated cross-sectional price correlation is 0.10, compared to the observed value of 0.51 and the
NSE prediction of 0.00.
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5. Discussion

Noisy Search Equilibrium (NSE) is a wonderful theoretical model, stark in its

assumptions, crisp in its predictions, and intuitive in the role it assigns to buyer search in

promoting or preventing price dispersion. Our experiment shows that it may also have empirical

value. NSE is far better than we anticipated in predicting when our laboratory markets converge

to a unified price and when dispersion persists. It also predicts rather well the high efficiency and

the observed range of prices, the central tendency as well as a measure of dispersion. Its

comparative statics capture the impact of the buyer search parameters, the expected sample size

2-q and the search cost c. The predictions are especially accurate in the many robot buyer

treatment, which eliminates extraneous (with respect to NSE) variability arising from sampling

variance and buyer idiosyncrasies. Even the NSE predictions of human buyer behavior hold up

well: our estimates of reservation prices account for the large majority of actual choices and they

shift with the search parameters in the predicted directions.

Good theories accurately predict large scale empirical regularities, but even the best

theory will eventually break down when pressed hard enough. It is instructive to see where and

how the breakdown occurs. We observed several interrelated departures from NSE predictions.

Although it was much less severe than in previous studies such as Abrams et al. (2000), we also

observed a bias in prices towards the center of the overall price range, i.e., towards equal splits of

the $2.00 surplus. The bias was clearest with human buyers and with search parameters (q=1,

q=2/3 and c=60 cents) that award little or no surplus to buyers in NSE.  Actual price distri-

butions are somewhat less skewed than in NSE. Perhaps more important and contrary to NSE,

there is considerable price correlation across sellers and across time.

These anomalous empirical regularities open the way to new theory and new empirical
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work. On the theoretical side, one could extend the static model by incorporating seller risk

aversion and possibly explain the price bias in the cases that NSE awards little surplus to buyers.

More ambitiously, one could try to model price dynamics using more sophisticated learning

models than those we explored. Autocorrelated posted prices and the dependence on recent sales,

for example, might be captured by individual differences in learning parameters or perhaps by

differing experience even in a reinforcement learning model. It will be interesting to see whether

one gets Edgeworth-like price cycles from such models. There may be limit cycle attractors in

the space of distributions of the Hopkins and Seymour (1999) model.11 Such cycles potentially

could account for correlated dispersed prices. One might also try to adapt the behavioral models

recently used to explain ultimatum game data. Such models might account for the differences

observed across sessions and the aversion to prices that split the exchange surplus very unevenly.

On the empirical side, one might try to see whether the NSE buyer search parameters can

be mapped onto different search technologies available in various field markets (e.g., in the

available internet search engines), and if so, whether they can account for the observed degree of

price dispersion. New laboratory experiments also are in order. One could investigate the gap

between human and robot buyers, using Selten’s “strategy method” for buyers. That is, before

seeing posted prices, each buyer would enter a reservation price that commits him to the

corresponding accept/search decisions.12 One could use methods similar to ours to investigate the

sequential search model in which the sample size is endogenous. Another useful task is to

systematically investigate the effect of treatments used in Abrams et al., e.g., not announcing

previous prices.  Finally, an extension we plan to undertake is to examine “customer markets” in

                                               
11 We are grateful to Ed Hopkins for mentioning this conjecture to us.
12 This raises at least two practical problems, however. If a buyer sets his reservation price below all the posted
prices when c>0, this algorithm will bankrupt him. Also, some buyers might try to use the reservation price as a
signaling device.
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which buyers observe costlessly the price of the seller from whom they last purchased but have

to pay a switch cost to find an alternative seller. Such markets are ubiquitous in the modern

world but the theory is less well developed.
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 Appendix A. Mathematical Details

Proposition 1. Given search cost c>0, sample size parameter q∈ (0,1) and perceived posted

price distribution F, there is a unique solution z=z*(c,q,F)≥0 to equation (1). If the solution z* is

no greater than the willingness to pay 2.00, then it is optimal for each buyer to follow a

reservation price strategy with p*=z*.   

Proof. The RHS of (1) can be re-written as ∫
z

dpqpG
0

)|( ; one integrates by parts, noting that the

term (z-p)G(p| q) is zero at p=0 and at p=z. Hence the derivative of the RHS is G(z| q). It follows

that the RHS is strictly increasing in z on (and above) the support of F (or G), i.e., at all points

where its value is positive.  The RHS is zero at z=0, and is unbounded as z à ∞.  The LHS of (1)

is positive and constant, so the equation has a unique solution z* by the Intermediate Value

Theorem.

To see that there is an optimal reservation price strategy, note that the buyer’s expected

payoff when she decides to search is some value VS(c, q, F) ≤ 2.00 – c, and VS is independent of

the current lowest price p because there is no recall and no learning about the distribution. When

she decides not to search her expected payoff is VN(p) = max{0, 2.00-p}. Since VN is a

continuous decreasing function of p with VN(0) = 2.00 > VS, we conclude that the set of prices p

for which not searching is better than searching, i.e., for which VN(p) ≥ VS, is an interval [0, p*].

To complete the proof, it remains only to show that p* = z* whenever p*≤ 2.00. If

p*>2.00, then we must have VS < 0, i.e., the buyer will never find it worthwhile to search and

will accept the lowest currently available price if it is below 2.00 and will otherwise quit. If p*≤

2.00 then the buyer is indifferent at posted price p* between searching and not searching. But

this indifference condition is exactly equation (1) with z = p*. QED.
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Proposition 2. Given sample size parameter q∈ (0,1) and identical reservation price strategies

with reservation value p*≤ 2.00  for all buyers, there is a unique Nash equilibrium distribution F

for sellers’ posted prices. On its support interval [qp*/(2-q), p*], the distribution takes the value

(2) F(p) = 
q

q

p

p

22

*
11

−







−+ .

Proof. This result follows directly from Burdett and Judd (1983, Claim 2, p. 963). For

completeness we reproduce here the derivation of equation (2). All sellers must have the same

nonnegative profit in NE (nonnegative since a seller can ensure zero profit by posting a price

above p*). A seller posting price exactly at the upper endpoint p* of the distribution sells only to

the fraction q of buyers who have sample size 1, and thus earns p*µq, where µ is the number of

buyers per seller. Sellers choosing a lower price p trade off the larger sales volume (due to

pricing below a rival when the buyer sees two prices) against smaller profit margin, and thus

earns pµ(q + 2(1-q)(1-F(p)). That is, the seller retains all of the q buyers who see one price but

doesn’t retain the fraction F(p) of the 2(1-q) buyers who see a second price that is lower than p.

One gets (2) by equating the two earnings expressions and solving for F(p). QED.

Proposition 3. For each sample size parameter q∈ (0,1) and positive search cost c<2.00(1-q),

there is a unique NSE (F, p*). The NSE reservation price is p* = c/(1-q) and hence the NSE

price distribution is F(p) = 0.5(2-q)/(1-q) – 0.5[cq/(1-q)2] p-1 on the support interval [cq/((2-

q)(1-q), c/(1-q)].

Proof. Existence and uniqueness follow from Propositions 1 and 2. One obtains the value of p*

by inserting (2) into (1) with p*=z, and integrating by parts. Using the notation a=zq/(2-q) for the

lower endpoint of the interval and b=q/(2-2q) for the coefficient of (1 – p*/p) in equation (2), we
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To get the NSE price distribution F one simply inserts p* = c/(1-q) into equation (2). QED.

Corollary. In NSE, buyers never search. For q∈ (0,1) and c∈ (0, 2.00(1-q)),
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1. the NSE posted and transacted price densities, upper and lower endpoints, and mean and

median are as listed in Table 1;

2.  all sellers earn the same profit µqc/(1-q), where µ is the number of buyers per seller; and

3. the NSE demand for a seller posting price p is y =  µ s(p), where the relative share is  s(p) =

q + 2(1- q)(1-F(p)) and F is the NSE price distribution given in Proposition 3.

Proof. In equilibrium, buyers correctly perceive the price distribution and do not actually search

since no posted price exceeds their reservation price p*. As noted in the proof of Proposition 2,

seller profit is p*µq for all sellers; one obtains 2. by inserting the NSE reservation price p* =

c/(1-q).  The next to last sentence in the proof of Proposition 2 established 3. for an arbitrary

distribution F.

Thus we need only verify the formulas in the Table. The upper and lower endpoints of

the support intervals are, of course, the same as in Proposition 3. The posted price density f(p) is

the derivative of the distribution function F(p) obtained in Proposition 3, and is zero off the

support interval. The transaction price density is obtained by multiplying the posted price density

f(p) by the relative customer share s(q) = q + 2(1- q)(1-F(p)). Inserting equation (2) for F(p), one

has s(q) = q + 2(1-q)(-1)(1 – p*/p)q/(2 - 2q) = qp*/p = [cq/(1-q)] p-1, and the expression for the

transaction price density follows directly. The means and medians are obtained by direct

calculation as follows.

Mean posted price:
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(The last step follows from substituting in z=c/(1-q) and a=zq/(2-q) and simplifying.)

Median posted price is the solution pm to

½ ≡ F(pm) = 1+½(1-z/pm)q/(1-q) ⇔ 1 = (z/pm-1)q/(1-q) ⇔ z/pm-1 = (1-q)/q

⇔ z/pm = 1/q ⇒ pm = qz = qc/(1-q).

Mean transacted price:
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(The last steps substitute in z=c/(1-q) and a=zq/(2-q).)

Median transacted price is the solution pM to the following, where 
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Appendix B

INSTRUCTIONS TO TRADERS

Market with Search (DIA)

January 18, 1999

I.  General

1. This is an experiment in the economics of market decision making. The National Science

Foundation and other research organizations have provided funds for the conduct of this

experiment.  The instructions are straightforward, and if you follow them carefully you

can earn a CONSIDERABLE AMOUNT OF MONEY which will be PAID TO YOU IN

CASH at the end of the experiment.

2. In this experiment we create a simulated market.  As a BUYER or SELLER in this

market, you can use your computer to purchase or sell units of the good. Remember that

the information on your computer screen is PRIVATE.  To insure the best results for

yourself and complete data for the experimenters, DO NOT TALK with other market

participants while trade is in progress, and DO NOT DISCUSS your information with

others at any point during the experiment.

3. Your computer screen will tell you whether you are a buyer or a seller and will display

useful information about buying and selling opportunities.

4. Each time for buying and selling is called a TRADING PERIOD and will usually last two

minutes or less.  At the start of each period, sellers POST PRICES, i.e., each seller enters a

price for his or her units. Then some of the prices are shown to each buyer as explained

below. Each buyer decides whether or not to search for other prices and whether to buy a

single unit at the posted price. Then the trading period is over.

5. At the end of the trading period, all units are "consumed" and your profits for that period

are computed as explained below. The computer screen will display your profits for that

period and your total profits over all periods so far. Other information on last period’s

trading activity may also be displayed. Then the new trading period will begin. Everyone

has new opportunities to buy or sell each period; old units do not carry over into the new

period. At least 40 trading periods are scheduled in most experiments.
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6. At the end of the last trading period, you will be paid in cash with your total profits

converted at the rate written at the end of your instructions, plus a $5.00 participation fee.

For example, if your total profits for all 50 trading periods were $24.36 and the conversion

rate (written at the back of your instructions) were 0.5, then you would take home 0.5 x

24.36 + 5.00 = $17.18 in cash. All buyers have the same conversion rate and all sellers

have the same conversion rate, but these two conversion rates may differ.

7. Important information will be written on the board at the beginning of the experiment. The

information may include: buyer search cost, probability buyers see one vs. two prices, and

the number of buyers and sellers.

II.  Sources of Profit

1. Each buyer can purchase a single unit of the good each period. All buyers have a value of

$2.00 for the unit. A buyer who purchases a unit at price p earns PROFIT = $2.00 - p that

period. For example, a buyer would earn a profit of  $2.00 - $0.94 = $1.06 if she purchases

a unit at price $0.94. Note that she would earn a negative profit (lose money) if she paid a

price above her value of $2.00.  Buyers who don’t buy a unit automatically earn a profit of

zero that period.

2. Each seller can sell several units of the good each period. All sellers have zero costs in this

experiment. A seller who posts price p earns PROFIT = p - 0 on every unit sold that

period.  For example, a seller posting a price of $0.94 would earn a per unit profit of

$0.94 - 0; his profit for that period would be $0.94 if he sells 1 unit, $1.88 if he sells 2

units, etc. Sellers who don’t sell any units automatically earn a profit of zero that period.

III.  How to Buy or Sell

1. If you are a seller, you post your price each period using the scroll bar in the Seller

window.  You adjust the price, shown at the left of the scroll bar, by clicking on the

arrows at either end of the scroll bar.  See figure 1 below.  Then click on the OK button to

post the price you chose.  The computer will then wait for all other sellers to post.
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Figure 1

2. After all sellers have posted prices, then each buyer’s computer screen initially displays a

seller’s posted price. A buyer can only purchase units from a seller whose price appears on

her screen. The computer randomly and independently determines which sellers’ prices

are displayed on each buyer’s screen each period. Which price(s) a buyer sees does not

depend on the actions of any buyer or seller, and different buyers are likely to observe

different sellers’ prices. Each period every seller’s price is equally likely to be shown to

each buyer.

3. In some periods each buyer may be shown the price posted by a second seller, again

randomly determined. The chance of seeing a second price is the same for all buyers, and

is determined independently for each buyer. Therefore, in some periods some buyers will

see two prices as in Figure 2a  and the other buyers see only one price, as in Figure 2b.

Figure 2a Figure 2b

4. The probability  that any buyer observes only one price can take on four possible values.

The experimenter will announce the probability that buyers observe only one price in each

period and it is also displayed on the screen in the Experiment Description window shown

in Figure 3.



36

Figure 3

 The table below describes the four possible cases:

                             Likelihood of One Price vs. Two                                                                   .

      All buyers see two prices with certainty. (Probability of seeing one price is 0).

 All buyers see one price with probability 1/3, two prices with probability 2/3.

 All buyers see one price with probability 2/3, two prices with probability 1/3.

 All buyers see one price with certainty. (Probability of seeing one price is 1).

5. Buyers who want to see other posted prices can always pay a fee and search. The fee is

announced at the beginning of the experiment, and must be paid on every search. For

example, a buyer who searches twice when the fee is $0.25 will have $0.50 deducted from

her profits that period.  When a buyer searches, the prices they had seen go back into the

pool of seller prices and a new sample of prices is drawn using the exact same rules the

original sample was drawn.  Neither the number of prices nor the identity of the seller(s)

from whom the prices sampled in a search come have any relationship to earlier prices

observed.  All samples are independent.

6. To make a purchase, the buyer clicks on the price at which she wants to buy, see figure 4.

If a buyer chooses to search and draw a another sample she clicks on the Search button.

A buyer who chooses not to buy this period clicks on Reject button and is finished for

that period, and will earn zero profit.
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      Figure 4

IV. At the End of the Period

1. When all buyers have finished, every trader’s screen will summarize the period’s

activities as follows. A History window will appear summarizing your actions in the

previous five periods as well as your Total Profit for all periods.  Figure 5 below shows a

buyer's history window, seller windows are identical except they read "Shares Sold" and

there is no search cost column.

Figure 5

2. In addition, your own profit calculations for the period are shown in detail in the Interim

window on your screen. Figure 6a shows an example of a seller's interim screen and 6b

below shows that of a buyer. For a seller each line, labeled Sale, represents one unit sold in

the period. Cost for a seller reflects production cost (in this case zero).  For a buyer, each

line shows a search or a purchase/not purchase decision.  Cost for a buyer is either search

cost (as in the first row) or the price of the good (shown in the second row). The Net Profit

column lists your profit on each transaction, which is totaled at the bottom.
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    Figure 6a (seller) Figure 6b (buyer)

3. A third window may appear which summarizes all market activity in the period, see Figure

7.  (Whether or not this window appears in today's experiment will be announced.)

Figure 7

In this example there were three sellers.  One seller sold 5 units at $0.39 each, another

sold 3 units at $0.42 each, and the third sold 0 units at $0.59 each.

4. When you are finished viewing this information, click on the "CONTINUE" button in the

Interim window.  Once all traders have continued or when time expires another period

begins as explained in III. 1. above.

V. Frequently Asked Questions

1. Q: Is this some psychology experiment with an agenda you haven’t told us?

A: No. It is an economics experiment. If we do anything deceptive, or don’t pay you cash
as described, then you can complain to the campus Human Subjects Committee and we
will be in serious trouble. These instructions are on the level and our interest is in seeing
how people make decisions in market situations.

2. Q: The price scroll bar seems to keep scrolling. Is it stuck?

A: No, but if you double click on the arrow at either end of the scroll bar, the price will
continue to scroll as long as your pointer is positioned over that arrow, even after you
release the mouse button.  Be very sure that the price has stopped on the price you
want to post before clicking the OK button.

3. Q: If a buyer searches but decides not to buy in that period, does she still pay the search
cost(s)?
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A: Yes, the search cost is deducted from a buyer's profit whether she ends up buying or
not.  This could mean a negative profit in a period where she searches but does not buy.

4. Q: Does everyone face the same cost of searching?

A: Yes, search costs are identical for all buyers and announced by the experimenter and
are posted on the blackboard.

5. Q: When a buyer searches, how many prices does she see?

A: This depends on the probability, call it q, (which is set by the experimenter, announced
to all players and posted on the board and her screen) of a buyer seeing one price vs. two.
A buyer search reveals one price with probability q or two with probability (1-q), as
explained in section III. 3. above. For example, if q = 1/3, a buyer who searches has a 1 in
3 chance of observing a single price and a 2 in 3 chance of observing two prices.  If the
buyer sees two prices, each will always be from different sellers.

6. Q: If I saw two prices one time does that mean I will see two again if I search?

A: Not necessarily. The number of prices observed in a search is independent of the
number observed from earlier observations or searches.  A buyer who sees one price
initially has the same chance as one who initially sees two of observing a single price
again when he searches.

7. Q: If I search, will I see prices different from those I’ve already seen this period? Can I
still buy at a price I saw before I searched?

A: Not necessarily.  Once a buyer decides to search, the price(s) he saw initially or in a
previous search go back into the pool from which the new price observations are randomly
drawn. It is possible for a buyer to observe the same seller's price again in a search, though
there is no way of knowing whether it is the same seller's price or another seller posting an
identical price. You can only buy at a price that is currently shown on your screen.



Table 1:
Noisy Search Equilibrium Price Distributions
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Table 2:
Testable Predictions

• Buyers never search.

• Prices are unified for q=0 and q=1, but are dispersed for q=1/3 and q=2/3.

• With more robots, learning should be faster and less biased and therefore the NSE
predictions should be more accurate.

• Noisy Search Equilibrium (NSE) prices in dollars:

q=0* q=1/3 q=2/3 q=1

[Lower bound, Reservation Price] = [a, z]

c=0.20 0.01, 0.01 0.06, 0.30 0.30, 0.60 2.00, 2.00

c=0.60 0.01, 0.01 0.18, 0.90 0.90, 1.80 2.00, 2.00

Mean transaction =  Median posted price

c=0.20 0.01 0.10 0.40 2.00

c=0.60 0.01 0.30 1.20 2.00

*In the experiment, the lowest price sellers can post is one cent, not zero.



Table 3:
Summary of Laboratory Sessions

Session Name Search Cost Number of
Sellers

Number of
Buyers

Human
Buyers?

Number of
Periods

Experienced? q-sequence

UC5 20 cents 6 6 Yes 100 No 1, 0, 2/3, 1/3
PU5 20 cents 6 6 Yes 81 No 0, 1, 1/3, 2/3
PU8x 20 cents 6 6 Yes 131 Yes 1, 0, 2/3, 1/3
PU7 60 cents 6 6 Yes 98 No 1, 0, 2/3, 1/3
UC8 60 cents 6 6 Yes 100 No 0, 1, 1/3, 2/3
UC7x 60 cents 5 5 Yes 100 Yes 0, 1, 1/3, 2/3
PU4 20 cents 6 6 No 100 No 1, 0, 2/3, 1/3

UC11 20 cents 6 6 No 140 No 1, 0, 2/3, 1/3
PU3 60 cents 6 6 No 100 No 1, 0, 2/3, 1/3

UC10x 60 cents 6 6 No 140 Yes 0, 1, 1/3, 2/3
UC2 20 cents 6 12 No 80 No 1, 0, 2/3, 1/3
UC1 20 cents 5 10 No 80 No 0, 1, 1/3, 2/3
PU2 60 cents 6 12 No 100 No 0, 1, 1/3, 2/3
PU6 60 cents 6 12 No 100 No 1, 0, 2/3, 1/3

UC9x 20 cents 6 600 No 140 Yes 1, 0, 1/3, 2/3,
1/3, 2/3

PU9 20 cents 6 600 No 100 No 0, 1, 1/3, 2/3
UC6 60 cents 6 45 No 100 No 1, 0, 2/3, 1/3

UC12x 60 cents 6 600 No 150 Yes 0, 1, 1/3, 2/3,
1/3, 2/3



Table 4:

Trading Efficiency in Human Buyer Sessions

q Experience Search Cost = 20 cents Search Cost =60 cents
treatment Level Net Gross Net Gross

0 Inexperienced 98.9 99.6 99.5 100
0 Experienced 98.3 98.3 100 100

1/3 Inexperienced 99.2 100 99.2 99.7
1/3 Experienced 99.5 99.6 99.6 100
2/3 Inexperienced 97.8 99.2 97.2 98.0
2/3 Experienced 97.2 97.8 100 100
1 Inexperienced 92.0 95.3 92.5 95.0
1 Experienced 92.7 95.0 95.1 98.0

Notes: Net trading efficiency is gross efficiency (the actual gains from trade) minus the incurred
search costs. Efficiencies are expressed as a percentage of maximum possible gains from trade.



Table 5:
Mean Seller Profit

Panel A: q=1/3 and 2/3
      Search Cost

20 cents 60 cents
Buyer Population q=1/3 q=2/3 q=1/3 q=2/3
NSE Prediction 10 40 30 120

6 Human
Buyers

42.4
(2.2)

79.7
(3.8)

75.5
(3.6)

100.9
(4.6)

6 Robot
 Buyers

18.1
(0.9)

52.4
(2.5)

42.2
(2.4)

119.9
(6.2)

12 Robot
 Buyers

13.9
(0.7)

44.8
(1.9)

40.4
(1.7)

124.1
(4.4)

Many Robot
 Buyers

16.1
(0.3)

44.7
(0.4)

50.3
(1.1)

141.8
(1.8)

All Buyers 24.8
(0.8)

56.6
(1.4)

53.6
(1.3)

121.4
(2.3)

Panel B: q=0 and 1
      Search Cost

20 cents 60 cents
Buyer Population q=0 q=1 q=0 q=1
NSE Prediction 1 200 1 200

6 Human
Buyers

50.9a

(3.5)
110.5
(5.4)

56.4 a

(4.0)
138.2
(7.1)

6 Robot
 Buyers

3.7
(0.3)

185.7
(9.3)

3.3
(0.3)

168.6
(9.2)

12 Robot
 Buyers

3.3
(0.2)

188.9
(7.4)

3.1
(0.2)

160.0
(7.6)

Many Robot
 Buyers

1.9
(0.1)

199.0
(0.3)

3.0
(0.2)

194.0
(3.1)

All Buyers 20.0b

(1.4)
159.8
(3.5)

18.5b

(1.4)
162.9
(3.8)

Notes: q is the probability that buyers observe one price instead of two prices. Entries are mean
seller profit per buyer in cents. Standard errors are shown in parentheses.
aMedian profit for 6 human buyers for q=0 is 5.0 when search cost is 20 cents and is 34.0 when
search cost is 60 cents.
bMedian profit across buyer number/type treatments for q=0 is 2.4 when search cost is 20 cents
and is 2.0 when search cost is 60 cents.



Table 6
Comparisons of Mean Transaction Prices

q

9 sessions with
20-cent search cost
Mean ± Std. Error

9 sessions with
60-cent search cost
Mean ± Std. Error

Mean Paired
Difference for

60 cent – 20 cent
Wilcoxon p- Value

0
17.4 ± 9.5 21.2 ± 9.3

NSE = 0
3.7 ± 4.9

p=0.73

1/3
25.1 ± 4.9 54.0 ± 6.6

NSE = 20
28.9 ± 3.0

p<0.01
Mean Paired Difference

for (q=1/3) – (q=0)
Wilcoxon p- Value

NSE = 9
7.7 ± 7.7

p=0.16

NSE = 29
32.8 ± 6.0

p<0.01

2/3
60.1 ± 7.6 118.6 ± 7.5

NSE = 80
58.5 ± 12.0

p<0.01
Mean Paired Difference

for (q=2/3) – (q=1/3)
Wilcoxon p- Value

NSE = 30
35.0 ± 3.6

p<0.01

NSE = 90
64.6 ± 10.2

p<0.01

1
164.3 ± 14.5 163.7 ± 8.1 NSE = 0

-0.7 ± 12.1
p=0.55

Mean Paired Difference
for (q=1) – (q=2/3)

Wilcoxon p- Value

NSE = 160
104.2 ± 20.3

p<0.01

NSE = 80
45.1 ± 7.6

p<0.01
Notes: NSE denotes noisy search equilibrium predictions in cents, shown in bold. Mean
transaction prices and price differences ± standard errors are shown to the nearest tenth of a cent.
Wilcoxon p-values, shown in italics, are for the test that the paired difference is significantly
different from zero.



Table 7:
Mean, Median and Skewness of Posted Prices for the Final 10 Periods of Each Treatment

Run

Mean Posted Price Median Posted Price Skewness of Posted Price
q=1/3, Search Cost=20 Cents
NSE Prediction 12.1 10 1.191
6 Human Buyers 35.8 30 2.363
6 Robot Buyers 17.4 15 0.604
12 Robot Buyers 13.0 12.5 0.929
Many Robot Buyers 18.3 18 -0.030
q=2/3, Search Cost=20 Cents
NSE Prediction 41.6 40 0.486
6 Human Buyers 84.7 78.5 0.687
6 Robot Buyers 51.6 54 -0.924
12 Robot Buyers 44.2 42 0.481
Many Robot Buyers 47.0 45.5 -0.007
q=1/3, Search Cost=60 Cents
NSE Prediction 36.2 30 1.191
6 Human Buyers 72.3 70 0.969
6 Robot Buyers 40.8 34.5 0.893
12 Robot Buyers 44.3 41.5 0.583
Many Robot Buyers 54.9 52 0.330
q=2/3, Search Cost=60 Cents
NSE Prediction 124.8 120 0.486
6 Human Buyers 98.3 99.5 -0.310
6 Robot Buyers 106.0 100.5 0.694
12 Robot Buyers 120.5 120 0.184
Many Robot Buyers 142.2 139.5 -0.131



Table 8:
Standard Deviation of Posted Prices over the Final 10 Periods of Each Run

Panel A: q=1/3 and 2/3
      Search Cost

20 cents 60 cents
Buyer Population q=1/3 q=2/3 q=1/3 q=2/3
NSE Prediction 5.9 8.4 17.6 25.2
6 Human Buyers 9.0 11.4 8.0 16.0
6 Robot Buyers 5.9 3.9 19.7 23.0

12 Robot Buyers 3.6 7.7 18.6 19.1
Many Robot Buyers 4.6 7.0 14.8 26.4

Panel B: q=0 and 1
      Search Cost

20 cents 60 cents
Buyer Population q=0 q=1 q=0 q=1
NSE Prediction 0 0 0 0
6 Human Buyers 12.0 7.5 14.0 8.9
6 Robot Buyers 1.3 14.8 3.1 17.1

12 Robot Buyers 1.2 3.8 0.7 8.7
Many Robot Buyers 1.1 0 0.9 2.1

Notes: Entries are the median, over the final 10 periods of each run in the given treatment, of
price dispersion measured as the standard deviation of posted prices in cents in a given period.



Table 9:
Human Buyer Reservation Price Estimates (in cents)

q=1/3       q=2/3
Reservation Price (violations) Reservation Price (violations)

Search Cost=20 Cents
NSE Reservation Price 30 60

Session UC5 (inexperienced)
Buyer 1 51 (none) 84 (none)
Buyer 2 51 (none) 73 (2 A, 2 B)
Buyer 3 110 (none) 79 (none)
Buyer 4 69 (none) 75 (1 A, 1 B)
Buyer 5 53 (none) 85 (none)
Buyer 6 51 (none) 75 (none)

Session Mean (Median) 64 (52) 79 (77)
Session PU5 (inexperienced)

Buyer 1 70 (2 A, 4 B) 111 (3 A, 3 B)
Buyer 2 94 (none) 116 (1 A, 1 B)
Buyer 3 141 (none) 120 (none)
Buyer 4 109 (1 A, 1 B) 125 (none)
Buyer 5 120 (none) 123 (none)
Buyer 6 123 (1 A, 1 B) 119 (1 A, 2 B)

Session Mean (Median) 110 (115) 119 (120)
Session PU8x (experienced)

Buyer 1 54 (1 A, 0 B) 110 (0 A, 1 B)
Buyer 2 51 (none) 100 (1 A, 0 B)
Buyer 3 54 (none) 104 (2 A, 2 B)
Buyer 4 83 (none) 103 (1 A, 1 B)
Buyer 5 51 (1 A, 1 B) 104 (1 A, 1 B)
Buyer 6 53 (none) 109 (1 A, 1 B)

Session Mean (Median) 58 (54) 105 (104)
Search Cost=60 Cents

NSE Reservation Price 90 180
Session PU7 (inexperienced)

Buyer 1 107 (none) 120 (none)
Buyer 2 135 (none) 118 (none)
Buyer 3 104 (none) 120 (none)
Buyer 4 127 (none) 115 (none)
Buyer 5 85 (none) 110 (1 A, 1 B)
Buyer 6 101 (none) 125 (none)

Session Mean (Median) 110 (106) 118 (119)
Session UC8 (inexperienced)

Buyer 1 125 (none) 175 (none)
Buyer 2 123 (1 A, 1 B) 135 (1 A, 1 B)
Buyer 3 117 (1 A, 0 B) 167 (none)
Buyer 4 130 (none) 179 (none)
Buyer 5 135 (none) 143 (1 A, 1 B)
Buyer 6 130 (none) 137 (none)

Session Mean (Median) 127 (128) 156 (155)
Session UC7x (experienced)

Buyer 1 111 (none) 133 (none)
Buyer 2 150 (none) 124 (none)
Buyer 3 100 (1 A, 1 B) 144 (none)
Buyer 4 125 (none) 132 (none)
Buyer 5 125 (none) 144 (none)

Session Mean (Median) 122 (125) 135 (133)



Table 10:
Price Autocorrelation within Sellers

Rejection Rates of Mixed Strategy NSE—95% Confidence Level

    Search Cost
20 cents 60 cents Row

Buyer Population q=1/3 q=2/3 q=1/3 q=2/3 Totals
95th percentile
of simulation

0.241 0.238 0.265 0.219

6 Human
Buyers

17/18 16/18 16/17 13/17 62/70

6 Robot
 Buyers

9/12 4/12 11/12 9/12 33/48

12 Robot
 Buyers

10/11 2/11 10/12 7/12 29/46

Many Robot
 Buyers

11/12 9/12 12/12 8/12 40/48

Column Totals 47/53 31/53 49/53 37/53 164/212
q is the probability that buyers observe one price instead of two prices.

Table 11:
Price Correlation Across Sellers, within a Period

Rejection Rates of Mixed Strategy NSE—95% Confidence Level

     Search Cost
20 cents 60 cents Row

Buyer Population q=1/3 q=2/3 q=1/3 q=2/3 Totals
95th percentile
of simulation

0.289 0.286 0.337 0.300

6 Human
Buyers

17/18 13/18 13/17 13/17 56/70

6 Robot
 Buyers

9/12 3/12 8/12 8/12 28/48

12 Robot
 Buyers

10/11 8/11 9/12 10/12 37/46

Many Robot
 Buyers

11/12 10/12 8/12 9/12 38/48

Column Totals 47/53 34/53 38/53 40/53 159/212
q is the probability that buyers observe one price instead of two prices.



Table 12:
Frequency of Posted Price Increases and Price Decreases by (Normalized) Number Sold in

the Previous Period

Panel A: q=0

  Units Sold Last Period (Divided by Number of Buyers Per Seller)
Relative to last period,
price this period… 0 1 2 3 4 5 & 6 Total
Decreases 549 225 65 29 12 0 880
Increases 138 201 113 36 4 2 494
Stays Unchanged 267 378 166 49 13 7 880

Panel B: q=1/3

  Units Sold Last Period (Divided by Number of Buyers Per Seller)
Relative to last period,
price this period… 0 1 2 3 4 5 & 6 Total
Decreases 827 503 127 29 15 0 1501
Increases 231 429 156 55 8 1 880
Stays Unchanged 331 377 167 40 15 1 931

Panel C: q=2/3

  Units Sold Last Period (Divided by Number of Buyers Per Seller)
Relative to last period,
price this period… 0 1 2 3 4 5 & 6 Total
Decreases 677 439 113 29 9 2 1269
Increases 319 493 115 32 3 0 962
Stays Unchanged 309 424 160 51 11 0 955

Panel D: q=1

  Units Sold Last Period (Divided by Number of Buyers Per Seller)
Relative to last period,
price this period… 0 1 2 3 4 5 & 6 Total
Decreases 262 226 84 23 4 0 599
Increases 258 368 109 20 4 1 760
Stays Unchanged 181 563 117 30 4 0 895



Figure 1: Posted Price Equilibrium Density Functions
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Figure 2A: Seller Window for Posting Prices

Figure 2B: Buyer Window for Purchase, Search or Reject Decision

Figure 2C: Interim Screens with Profit Summary and All Posted Prices



Figure 3: Prices in Session UC9x 
(Experienced, Many Robot Buyers, c= 20 cents , q=1/3)
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Figure 4: Prices in Session PU2 
(Inexperienced, 12 Robot Buyers, c= 60 cents , q=2/3)
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Figure 5: Prices inSession PU7 
(Inexperienced 6 Human Buyers, c= 60 cents , q=1/3)
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 Figure 6 - Mean Transaction Price
 

Panel A: 6 human buyer sessions
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  Figure 6 - Mean Transaction Price
  

Panel B: Many robot buyer sessions
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 Figure 6 - Mean Transaction Price
  

Panel C: 6 robot buyer sessions
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  Figure 6 - Mean Transaction Price
 

Panel D: 12 robot buyer sessions
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Figure 7 - Price Frequency: 6 Human Buyer Sessions
Panel A: q=1/3, 20-cent search cost 
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Figure 7 (continued) - Price Frequency: 6 Human Buyer Sessions
Panel C: q=2/3, 20 cent search cost
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Figure 8 - Price Frequency: Many Robot Buyer Sessions
Panel A: q=1/3, 20 cent search cost
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Figure 8 (continued) - Price Frequency: Many Robot Buyer Sessions
Panel C: q=2/3, 20 cent search cost
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Panel D: q=2/3, 60 cent search cost
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