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Abstract

Kreps and Scheinkman’s (1983) celebrated result is that in a two-stage
model of a market with homogeneous products in which firms noncooper-
atively pick capacities in the first stage and set prices in the second stage,
the equilibrium outcome is that of a one-shot Cournot game. This note
derives capacity best response functions for the first stage and extends the
Kreps and Scheinkman result to the case of differentiated products.
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1. Introduction

Kreps and Scheinkman (1983) develop an extension of the Cournot and Bertrand
duopoly models in which (1983, p. 327)

Capacities are set in the first stage by the two producers. Demand is
then determined by Bertrand-like price competition, and production
takes place at zero cost, subject to capacity constraints generated by
the first-stage decisions.

Equilibrium in this two-stage game has firms selecting capacities in the first
stage that are just sufficient to produce the Cournot equilibrium outputs, and
producing those outputs in the second period.

The Kreps and Scheinkman model is frequently cited as providing a justifi-
cation for use of Cournot model, which is characterized as being differentially
unsatisfactory compared with the Bertrand model. For example (Maggi, 1996, p.
240):!

The Cournot model of quantity competition has been the subject of
considerable criticism in the theory of industrial organization. If taken
literally, the Cournot model assumes that firms dump their production
on the market and that an auctioneer determines the price that clears
the market. In most industries there is nothing that resembles an
auctioneer, and firms use prices as a strategic variable.

Such criticisms may be put forward in part to motivate interest in analyses
of the Kreps and Scheinkman type. This does not make them compelling. All
models are abstractions from reality. The mechanism by which price is determined
is also unspecified in the standard model of a perfectly competitive market, a
model that is not set aside on that account.

Nor are such criticisms needed to justify interest in the Kreps and Scheinkman
model: it is a seminal example of analysis of rivalry in an imperfectly competitive
market in which outcomes depend critically on the sequence in which decisions
may be taken, and the way in which earlier decisions condition the payoffs asso-
ciated with later decisions.

!Friedman (1982, p. 505) compares the Cournot model, the Bertrand model, and a model
of price-setting oligopoly with product differentiation, and concludes that the latter is to be
preferred on the grounds that it relies on more satisfactory assumptions without being compu-
tationally more complex.



Kreps and Scheinkman assume that the product is homogeneous. One im-
plication of this assumption is that they must include in the model an assumed
rationing rule that determines the quantity demanded of a higher-price firm if
the capacity of a lower-price firm does not allow it to supply the entire quantity
demanded at the lower price. Their results depend on the particular form of ra-
tioning rule that is used, as they suggest (Kreps and Scheinkman, 1983, p. 328)
and as Davidson and Deneckere (1986) show formally.

If one extends the Kreps and Scheinkman model to differentiated products,
the quantity demanded of each firm in the second stage of the game is well defined
for all price pairs. This avoids the need to have a rationing rule as part of the
model.

In these lecture notes, I show that the Kreps and Scheinkman result holds
when the model is extended to the case of differentiated products.

There is a sense in which this result is intuitive. One would not expect firms
to hold excess capacity in equilibrium. If there is no excess capacity in the second
stage, then when firms maximize profit in the first stage, they are maximizing a
payoff function that has then same demand and cost structures as in the corre-
sponding one-shot Cournot game, the difference being that in the first stage of
the two-stage game, firms select capacities rather than outputs. This leads to the
result that with product differentiation, firms’ capacity best response functions in
the neighborhood of equilibrium are functionally identical to the Cournot quan-
tity best response functions. It is thus to be expected that the equilibrium of the
two-stage game should reproduce the Cournot outcome.

This result is obtained by Yin and Ng (1997), who do not present the capacity
best response functions.

The analysis reported here is tedious. It has in common with many spatial
models of imperfectly competitive markets that a complete treatment requires
working through many cases which never occur in equilibrium, and which one
knows from the beginning, or at least strongly suspects, will not occur in equilib-
rium. It turns out nonetheless to be necessary to work these cases out in order to
demonstrate that they do not occur in equilibrium, and to verify that the most
plausible suspect is in fact an equilibrium.

Section 2 presents the model of demand for differentiated products, due to
Bowley (1924), that is used in these notes. Section 3 gives the cost function.

For comparison and background, Sections 4.1 and 4.2 give abbreviated treat-
ments of the Bertrand and Cournot duopoly models with product differentiation.



As is standard in two-stage models, the analysis begins in the second stage and
works backward. Section 5 introduces the possible segments of a firm’s second-
stage price best response function, and Section 6 works out the three possible
shapes of the price best response functions.

Section 7 states the results, in the form of four Lemmas and a Theorem. Lemma,
1 gives the relationship between the capacity level chosen in the first stage and the
shape of the firm’s price best response function in the second period. Lemma 2
gives the relationship between the capacity levels chosen in the first period and the
nature of the price best response functions in the neighborhood of equilibrium.
Lemma 3, the proof of which is entirely mechanical, gives equilibrium prices,
quantities, and payoffs for the alternative second-stage equilibria. Lemma 4 gives
the properties of the (first-stage) capacity best response functions. The Theorem
is that the result of the Kreps and Scheinkman model holds when products are
differentiated.

2. Demand

For the Bowley (1924) linear product differentiation model the representative
consumer utility function is

1
Ulqr,q2) = alqn + q2) — §b(CI% +20q1q2 + ¢3) + m, (2.1)

where 0 < 0 < 1.
A Lagrangian function to describe the constrained optimization problem is

Ly =

1
Ulqr, ¢2) = alqr + q2) — §b(Cﬁ +20q1q2 + ¢3) +m (2.2)

+M (Y —m —pigs — poga)

where Y is income, m all other goods, and p,, = 1 the price of all other goods.
The Kuhn-Tucker conditions are

a—blgr+0q¢)—Ip1 <0  qla—blg+0q)—Iml=0 ¢>0 (23)
a—b0qg+q) —Ap2 <0 @la—b0g+q)—Apl =0 >0 (24)

1-M <0 ml-=X\)=0 m>0 (2.5)
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Y—m—pig1—p23>0 MY -—m—pg—pq)=0 A >0. (2.6)
Assume Y is sufficiently large so that m > 0. Then (2.5) implies that
Ar=1 (2.7)

and (2.6) implies
m =Y — (p1q1 + p2g2)- (2.8)
Substitute (2.7) in (2.3) and (2.4) to obtain
a—blg+0g)—p<0 qloa-ba+lep)-—p=0 @=0 (29)

a—b0qg+q)—p2<0  @la—blqa+q)—p]=0 ¢>0. (2.10)

Case 1: g1 >0, ¢o > 0.
Then (2.9) and (2.10) imply that the inverse demand curves are

p1=a—blg + 0g2) (2.11)

p2 =a—b(0q + ¢). (2.12)

The equations of the inverse demand curves can be inverted to obtain the
equations of the demand curves when consumption of both varieties is positive:,

a—p—0(a—ps)

= 2.13
a1 b(l o 02) ( )
a—p2 —0(a—p)
= 2.14
Case 2: ¢1 >0, g3 = 0.
Then (2.9) implies that the inverse demand curve for variety 1 is
p1 = a— bq, (2.15)
with corresponding demand curve
g =2 _bpl, (2.16)
(2.10) implies
P2 > a — blg,. (2.17)



Case 3: ¢g1 =0, ¢ > 0.
(2.10) implies
p2 = a — bigs. (2.18)

with corresponding demand curve

0
@ = bm. (2.19)

(2.9) implies that
p1 > a— blg. (2.20)

3. Cost

Let

k; = firm ¢’s capacity

p = long-run cost per unit of capacity

The cost of capacity is fixed; once the firm gets to the second period, its cost
function is

C(qi; ki) = cqi + pki, ¢; < k;. (3.1)

The units in which capacity is measured are normalized so that one unit of capacity
allows production of one unit of output.

4. Benchmark cases

4.1. Bertrand duopoly

If firms compete in prices, marginal cost is x, and the quantity demanded of both
firms is positive, firm 1’s profit function is

(1-0)a—z)—(p1 —z)+0(p2 — x)

pr— _— 4.1
™1 (pl 55) b(1—92) ( )
The first-order condition is
2(p1 —z) —0(p2 —z) = (1 —0)(a —x) (4.2)
and symmetric Bertrand equilibrium prices are
1-46
pi(a) =+ 7—p(a— 1) (4.3)

8



Substitute in the equation of the demand function to obtain Bertrand equilib-
rium quantities demanded:

1 a—x
= 4.4
45(7) 1+6)2—0) b (44)
The Bertrand equilibrium payoff with marginal cost x is
2
— 1 1-6 —x)?

b(1—6%)  1+60(2-60)2 b

4.2. Cournot duopoly

If firms compete in quantities and marginal cost is x, firm 1’s profit function is
m = [a— 2 —b(q1 + 0g2)]n (4.6)

The first-order condition is

a—x

2, + 0g = =, (47)
leading to symmetric equilibrium outputs
1 a—x
- 4.8
@) =557 (4:8)
The corresponding Cournot equilibrium prices are
a—x
= 4.9
pole) =+ 5— (4.9
Cournot equilibrium profit per firm is
1 (a—u2)?
= 4.10

5. Segments of the price best response function

Firms first choose capacities, then set prices, then produce the quantities de-
manded at those prices.

Here we consider the nature of firm 1’s price best response function, taking
capacity as given. There are at most four segments of the price best response

9



function; the actual number of segments may be two, three, or four, depending on
the capacity level chosen in the first stage and on the parameters of the model.
Once k; has been chosen, firm 1’s profit function for

(1—0)a—p+0p,  (1—0)a—(p1—c)+0(p—c)
b(1 — 6?) b(1 —6?)

is
(1 —=0)a—p; +0py
= — — pky. 5.2
Call the first-order condition to maximize (5.2) when the capacity constraint
(5.1) is not binding branch one of firm 1’s price best response function; this is the

Bertrand best response function with marginal cost equal to ¢, with equation

2(pr —¢) —0(pa —c) = (1 —0)(a — ¢). (5.3)

If the capacity constraint is binding, firm 1’s output equals capacity; the equa-
tion of the binding capacity constraint may be variously written

(1—0)a—p; + 0p2

Q= b(1— 07 = ky, (5.4)

or
by — P (1— 6)a€+ b(1 — 6*)k; (5.5)

or
p1=0ps + (1 —0)a— b(1 —0*)k,. (5.6)

Call this branch two of firm 1’s price best response function
On branch two of its best response function, firm 1’s profit function is

T = (p1 —c— p)ky. (5.7)

If py rises sufficiently, the quantity demanded of firm 2 goes to zero. At that
point, the quantity demanded of firm 1 is less than min (&, gm()), where gpm is
the output of a single-variety monopolist with marginal cost ¢ per unit. The
nonnegativity constraint ¢go > 0 becomes binding, and it is the g = 0 equation,

—0p1 +p2 = (1 —0)a (5.8)

10



(from (2.14)) that is the equation of firm 1’s price best response function. Call this
segment of the price best response function branch four of firm 1’s best response
function.

In the KSPD model, there is no branch three of the price best response func-
tion. Maggi (1996) develops an extension of the Kreps and Scheinkman model
in which firms may expand capacity after demand is realized, at a differentially
higher unit cost, if it is profitable to do so. In the Maggi model, branch three
is the segment of a firm’s price best response function when it maximizes profit,
expanding capacity beyond the level chosen in stage one. Branch three does not
appear in the KSPD model.

Finally, if p; rises sufficiently, the quantity demanded of firm 1 equals min(ky, gm()),
at which point firm 1’s price best response function becomes vertical: firm 2’s price
is so high that firm 1 can sell as close to monopoly output as its capacity level
permits, without creating a positive demand for variety 2. Call this segment of
the price best response function branch five of firm 1’s best response function.

6. Price best response functions

Four configurations are possible for firm 1’s price best response function, depend-
ing on its capacity level and on the parameters of the model.

(b2,b5): for very low capacity levels (as specified in Lemma 1), firm 1 is
capacity constrained until p, reaches such a high level that the quantity demanded
of firm 2 is zero even when firm 1 sells all it can produce, given its capacity; see
Figure 6.1.2

(b1,b2,b5):For larger capacity levels, but not exceeding a limit specified in
Lemma 1, firm 1’s price best response function begins with the unconstrained,
branch one segment, then moves on to branch two and branch five. See Figure
6.2.

(b1,b2,b4,b5): For still higher values of k1, but not exceed a level specified in
Lemma 1, firm 1’s price best response function has all four segments. See Figure
6.3.

(b1,b4,b5): For very high capacity levels, firm one is not capacity constrained,
and sets price along its branch one, until p, rises so high that firm 1 is able to set
the unconstrained monopoly price and sell the unconstrained monopoly output.
See Figure 6.4. Firm 1’s price best response function is of form (b1, b4, b5).

2Unless otherwise noted, figures are drawn fora =12, b=c=p=1,6 =1/2.
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Figure 6.1: Firm 1’s (b2, b5) price best response function, ky < k4.
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Figure 6.2: Firm 1’s (b1, b2, b5) price best response function, ks < ki < gy,.
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Figure 6.3: Firm 1’s (b1, b2, b4, b5) price best response function, ¢,, < k; < kp.
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Figure 6.4: Firm 1’s (b1, b4, b5) price best response function, k; > kp
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7. Results

7.1. Lemma 1

Lemma 1: Let

Then

(7.1)

(7.2)

(a) the relation between first-stage capacity k; and the configuration of the second-

stage price best response function is

ki < ka

ka < ki < @ue)

Gm(e) < ki < kp

kp < ki < ¢

b4l

firm 4’s best response function is of the form (b2,b5)
firm i’s best response function is of the form
firm 4’s best response function is of the form (b1,b2,b4b5)
firm 4’s best response function is of the form (b1,b4,b5)

b1,b2,b5)

(b) in the second stage, there are 16 possible combinations of price best response
functions of the two firms, one combination for each of the 16 regions shown Figure

7.1.
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Figure 7.1: Price best response function configurations, capacity space
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7.2. Lemma 2

Lemma 2: Let ]
a—c
* o= 7.3
PO (14+6)2-0) b (73)
denote the capacity that is just sufficient to allow a firm to produce the Bertrand
equilibrium output with marginal cost ¢ and let

1 a—-c
br .
kg (ki) = T ( T 9k?j> (7.4)
be the capacity level that just allows firm ¢ to produce its Bertrand best-response
output when both firms have marginal cost ¢ and firm j produces output level &;.
There are four second-stage equilibrium types:

Region of capacity space Firm 1 Firm 2
(b1,01) Ky > k:*B(C), koy > kg(c) branch one branch one
(b1,02) k1 > kfg(c)(kg), ke < ko branch one branch two .
(02,b1) k1 < Ky, ko > k;’g(c)(k:l) branch two branch one
(02,02) k1 < k. (ka), ko < k(K1) branch two branch two

These regions are shown in Figure 7.2.
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Figure 7.2: Segments of price best response functions that intersect in equilibrium,
capacity space; (bi,bj) indicates that in second-stage equilibrium, firm 1’s branch
¢ intersects with firm 2’s branch j.
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7.3. Lemma 3

Lemma 3: Second-stage equilibrium prices, outputs, and payoffs for the four
equilibrium types described in Lemma 2 are

(a) (b1,b1)
Firm 1 Firm 2
Pivipt = ¢+ 2 (a—¢) Pavier = ¢+ 4 (a—¢)
_ 1 a—c _ 1 a—c
Qo101 = TTe)@=6) b ; Q26101 = TT0)2=0) b )
_ 1-0  (a—0 _ 10 (a—0)
T1b161 = (1+9)(2,9)2 b - Pkl Top161 — (1+9)(279)2 b - ka
(b) (b1,52)
Firm 1 Firm 2
— a—c)—2(1—62
Disibe = C + ;:zi (a—c— Obks)  poprpe = c+ 0)(2+0)(279)2 2(1—62)bk,
Q10162 = ﬁLzebkz Q2p102 = k2
a—c— 2 — a—C)— —62
Tibi = (21:9922)2( b@bkz) T ((1 9)(2+9)(279)2 2(1—-62)bky ,0) oy
(c) (b2,01)
Firm 1 Firm 2
— a—c)—2(1—62 _
i = c+ 1 9)(2+9)(2_9)2 20k Pav2pr = €+ % (a — ¢ — 0bk1)
Q21 = K Qopop1 = 2_192 %ﬁbkl )
— a—cCc)— —6? — 2 a—Cc— 2
T1p261 = <(1 9)(2%)(279)2 2007 )bkr _ P) ki Topop = (217992)2( bebkl) — pko
(d) (b2,02)
Firm 1 Firm 2
Prvave = a — b(ky + O0ks) Pavare = @ — b(0ky + k2)
q162p2 = Ky Qopar2 = ko

Tz = (@ — ¢ — p— bk + 0k2)) k1 Tapme = [(a — ¢ — p — b(Ok1 + k2)] ks

20



7.4. Lemma 4

Lemma 4: Let
1lfa—-c—p 1-0*[1—-0)(2+0)(a—c)— (2—6%))p
S I 22_92[ 11— ] =

Equilibrium capacity best response functions are

Firm j’s capacity Firm i’s best response capacity

0<k;j<ks ki(kg) = k&oy p(B2) = 5 (_’“;27 - 9@-) :
a—c— 1-0)(240)(a—c)—(2—0

ks <k <=2 ki(k;) = +4()1(792))1) S

where /{;ZT(C +p)(k2) is the capacity level that just allows firm ¢ to produce its Cournot
best-response output if both firms have unit cost ¢ + p and firm j is producing
output £;.

The best response functions are shown in Figure 7.3.
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Figure 7.3: Capacity best response functions, Kreps & Scheinkman model with
product differentiation, a =12, b=c=p=1,60 =1/2.
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7.5. Theorem

Let

1 a—c—p
2460 b
denote the minimum capacity that permits a firm to produce the Cournot equi-
librium output of the one-shot game when both firms have marginal cost ¢ + p.

Kcers) = (7.6)

Theorem: In the unique noncooperative equilibrium of the Kreps and Scheinkman
model with product differentiation, firms select capacities k; = k¢4, in the first
stage and set the Cournot equilibrium prices in the second stage.

Proof: this follows from the facts that the segment of the capacity best response
function that is functionally identical to the Cournot quantity best response func-
tion rises above k*B(C), the capacity level that permits a firm to produce the
Bertrand equilibrium output when marginal cost is ¢,

kg > k*B(c)

and that Bertrand equilibrium output with marginal cost c is greater than Cournot
equilibrium output with marginal cost ¢ 4 p:

Ble) > kc(ern)-

The best response functions are shown in Figure 7.3. Figure 7.4 shows the
price best response functions for the continuation game when the noncooperative
equilibrium capacity levels are chosen in the first stage.
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Figure 7.4: Second-stage (b2, b2) equilibrium for equilibrium capacities; both firms
(b1,b2,b5) price best response functions.
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8. Proof of Lemma 1

8.1. (b1,b4,b5)

Rewrite firm 1’s branch one profit function, (5.2), in terms of deviations from
marginal cost:

T = (pl _ C) (1 — 0)(@ — c)bzl(fleg)c> + e(pQ - C) o Pk’1 (81)

The first-order condition to maximize (8.1) with respect to p; is:

omy  (1=0)(a—c)—2(p1—c)+0p2—c)
oo 1) =0. (8.2)

Note that (8.2) implies that when the first-order condition holds, firm 1’s
output is

(1-0)la—c)—(pr—c)+0p2—c) pi—c

= = 8.3
N b(1— 6% b(1— 6% (8:3)
so that along this segment of its best response function, firm 1’s payoft is
(pr — )
= —— — pky. 8.4
T b(l . 92) PR1 ( )

Solving (8.2) for p; gives the equation of the branch one (¢; < k;) segment of
firm 1’s best response function:

p=ct 2l —0)a—c) + 0 ) (8.5)
Firm 2 would never charge a price below p, = ¢. For p;, = c,
P =ct 51— 6) a0
In the (b1,b4,b5) case, the initial point of firm 1’s price best response function
is
A1 (p1a,p24) = <C + % (1—-0)(a—c) ,c) (8.6)
(Figure 6.4).
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Even though firm 1’s branch one best response price rises as ps rises from
p2 = 0, pp rises relatively less than po, with the result that ¢; rises, and ¢, falls,
moving up along firm 1’s branch one price best response function. This continues
until ps reaches such a high level that gs falls to zero. As ps rises from this point,
D; in Figure 6.4, firm 1’s price rises, and ¢, falls, moving along the ¢, = 0 line
(firm 1’s branch four).

It follows that for firm 1’s price best response function to have the (b1,b4,b5)
configuration, its capacity k; must permit it to produce the quantity demanded
of it at point Dy, the intersection of firm 1’s branch one and firm 1’s branch four.

The system of equations formed by the equation of branch one, (8.5), and the
equation of branch four, (5.8), both rewritten in terms of deviations from c, is

<_29 _1'9)(222:2):(1—0)(&—0)(1); (8.7)

—c 1—-0 1+46
Firm 1’s branch one and branch four intersect at point

D:: (pip,pap) = <c+ L~ 0 (a—c),c+ w(a—c)) : (8.9)

with solution

2 —¢* 2 —6°
From (8.3), the quantity demanded of firm 1 at point D is

pL— ¢ 1 1—6° 1 a-—c

- P2 )T

Oip = (8.10)
Note that q1p > g (c), the unconstrained monopoly output with marginal cost
c per unit
1 a—c a-c 6? a—c
_ — > 0. 8.11
2—-6* b 26 212—6%) b (8.11)
The condition for firm 1’s price best response function to have the (b1,b4,b5)
configuration is then

ky > kp. (8.12)

Firm 1’s best response price runs along the g, = 0 line, (5.8), until p; reaches
the unconstrained monopoly price, which occurs for

(p2—c) = (1= )(a—c)
0

1
:c+§(a—c)
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1
Py = c—|—§(2—9)(a—c) = Doy.

The second segment of firm 1’s Bertrand best response function is the straight
line connecting point Dy: (p1p,p2p) and point

s (e, pon) = (o %(a —o)e4 %(2 —0)a—0)). (8.13)
For higher values of ps, firm 1 charges the unconstrained monopoly price and
sells the unconstrained monopoly quantity.
If (8.12) is met, firm 1’s best response function has three segments, branch one
from point A; to point Di, branch four from point D; to point Hy, and vertical
at p1 = p1y thereafter.

8.2. (b2,b5)

At point A;, po = ¢; the quantity demanded of firm 1 at point A; along firm 1’s
branch one (¢; < k) is

Pia—C 1 a—-c
= = . 8.14
MA= 1= 1+6 2 (8.14)
q14 is less than the unconstrained monopoly output of a single variety:
a—c 1 a-—c 0 a—c>0
26 1+60 26 1+6 2b '
Let ]
a—c
ka=-—— 8.15
YT116 2 (8.15)
be the capacity that is just sufficient to allow the firm to produce g 4.
If
ki < ka, (8.16)

firm 1 is on the capacity constrained (branch two) segment of its price best re-
sponse function until py rises so much that ¢ falls to zero.
If po = c on firm 1’s branch two, then from (5.6) firm 1’s price is

p=0c+(1—0)a—bl—0"k =
c+ (1= 0)(a—c) = b(1—60")k = pip. (8.17)
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If ky < ka, firm 1’s best response function begins at point
Ey(k1) : (P pop) = (¢ + (1= 0)a—b(1 = 6"k, c) (8.18)

(Figure 6.1).
At what point do firm 1’s branch two and branch four intersect? Solve the
system of equations formed by (5.8) (g2 = 0) and (5.6) (q1 = k1)

<_19 _19><§;>:(1—9)a<1>—b(1—92)k1<é> (8.19)
<§;>:a<i>_b’ﬁ<é>- (8.20)

The g5 = 0 line and the ¢; = k; line intersect at point

Fl(k’l) . (plp,pgp) = (CL — bk’l,CL — Qbkzl) (821)

(Figure 6.1).

Firm 1’s branch two and branch four segments intersect at point Fj(k;), with
coordinates given by (8.21).

If ¢ = 0, we obtain the same results if firm 1’s constrained optimization
problem is formulated with price or with quantity as firm 1’s decision variable.
We proceed in terms of quantity.

For py > por and ky < k4, firm 1 maximizes

(@ —c—bq)a
subject to the capacity constraints
k1> aq

and subject to the Kuhn-Tucker inequality for ¢o = 0 for the representative con-
sumer constrained optimization problem,

p2 > a — 0bg,.
A Lagrangian for firm 1’s constrained optimization problem is

Ly =(a—c—=bq)gr + ik —q1) + Xa(p2 — a+ 0bqy).
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The Kuhn-Tucker conditions are
a—c—2bg — A\ +0bXy <0 qila—c—2bgg — A1 +60bXs] =0 ¢ >0

kFi—¢ >0 Mki—q@)=0 X2>0
pg—a—l—ﬁbqle )\g(pg—a—l—qul):O )\220
Suppose ¢; = k1 > 0. Then

a—c—2bq; — A+ 0bXy = 0.
For this to be a solution, we must also have
p2 > a — Obk; = pap,

which condition is met. For p; > a — 0bk;, Ay = 0; then

a—c
2b

When k; < k4 and pa > por, firm 1’s best response is to set price p1p = a— bk,
and sell at capacity.

When capacity satisfies (8.16), the price best response function has a branch
two segment connecting point Fj(k;) to point Fj(k;) and is vertical thereafter.

Figure 6.1 shows firm 1’s (b2, b5) price best response functions for three alter-
native levels of k. As ky falls, firm 1’s branch two segment shifts right, and the
point at which firm 1 shifts from its branch two to its branch four moves up the
g2 = 0 line.

>\1:Qb< —k1>>0.

8.3. (b1,b2,b5) and (b1,b2,b4,b5)

If kg < ky < kp, firm 1’s best response function begins on branch one, but its
capacity is not sufficient to allow it to produce along branch one until it reaches
branch four. If

ka < ki <kp, (8.22)

then when p, rises sufficiently from p, = ¢, firm one moves from branch one to
branch two.

What is the point of intersection of branch one and branch two? The equations
of branch one and branch two are

2(p1 —¢) = 0(p2 —c) = (1= 0)(a—c)
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and
p1—0py = (1 —0)a — b(1 — 0k,

respectively.
Rewritten in terms of deviations from ¢, the system of equations formed by
the equations of firm 1’s branch one and branch two is

(1 2)(37)-o0-me-a(1)-weom(2). m

with solution

D) p1 -0y ) -0 O ). 820)
(n7) (200) (1)

The point of intersection of branch one and branch two is
Gi(k1): (p1a,pec) =
20(1 — 0*)k; — (1 — 0)(a — c)>

(8.25)

<c+b(1—92)k1,c+ 5

(Figures 6.2 and 6.3).
By (8.11), kp > Gm(e)- On the other hand, k, is less than gp):

I _a-—c 1 a—c
I = FPA= ") " 150 20

(1_ 1 )a—c_ 0 a—c>0
1+60) 26 1460 2b '

For k4 < k1 < @m(e), firm 1’s best response function has three segments, branch
one from point A; to point G1(kq), branch two from point G1(k;) to point Fj(k;),
and vertical (branch five) thereafter; see Figure 6.2.

For gp() < k1 < kp, firm 1’s best response function has four segments, branch
one from point A; to point G1(k;), branch two from point G;(k;) to point Fj(k;),
branch four from point Fj (k1) to point Hi, and vertical (branch five) thereafter;
see Figure 6.3.

8.4. Summary

The results obtained above are summarized in Table &.1.
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0<k <kyu (b2,b5) Ey(ky) — Fy(kp)— vertical

k’A S ]{51 S qm(c) (bl,b?,b5) Al — Gl(kil) — Fl(k’l)— vertical

Am(c) S k’l S ]{ID (bl,b?,b4,b5) Al — Gl(kil) — Fl(kl)l — Hl— vertical
]{?D S ]{31 (bl,b4,b5) A1 - D1 - Hl— vertical

Table 8.1: Capacity and configuration of price best response function

9. Proof of Lemma 2

9.1. Cell (4,4)
Cell (4,4) — row 4, column 4 in Figure 7.1 — is defined by the inequalities

kp < ki, kp < ka.
In cell (4,4) both firms have best response functions with configuration (b1,b4,b5).

Figure 9.1 shows an equilibrium with both firms on branch one of their price
best response functions when both

When both firms have (b1,b4,b5) best response functions, equilibrium occurs
at the intersection of the branch one segments if point D; lies above firm 2’s
branch one and point D, lies to the right of firm 1’s branch one.

From (8.9), the coordinates of point Dy are

16 (1-0)2+0)
2_02(a—c),c+v(a—c)>.

(p1p,p2p) = <C +

The equation of the branch one segment of firm 2’s price best response function
is
—0(p1 —c) +2(p2 —c) = (1 = b)(a—c). (9.1)
The condition for point D; to lie above firm 2’s branch one is

—0(p1p — ¢) +2(p2p —¢) > (1 = 0)(a —c). (9.2)

Substituting the coordinates of point Dy, the condition is met if

0 [1_92@—(3)1 2 lw(a—c) > (1-0)(a——c)

2 — 02 2 — 02
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|
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C ______________________________
Ay
P1

C a

Figure 9.1: (bl,bl) second-stage equilibrium, both firms (b1, b4, b5) price best
response functions
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1+6 2+6
-0 2 > 1
2-%*'2—92—
4460 —6°
7 7 >
26> =
44+60—60°>2— ¢

2+60>0,

which is always the case. In the same way, point Dy is always to the right of
firm one’s branch two in cell (4,4). When both firms have (b1,b4,b5) price best
response functions, equilibrium always occurs at the intersection of the branch
one segments.

9.2. Cell (3,4)
Cell (3,4) — row 4, column 3 of Figure 7.1 — is defined by the inequalities

am < k1 <kp, kp < k.

In this region of capacity space, firm 1’s price best response function is of form
(b1,b2,b4,b5). Firm 2’s price best response function is of form (b1,b4,b5).

This configuration is shown in Figure 9.2. One condition for (b1,bl) equilib-
rium in cell (4,3) is that point D be to the right of firm 1’s branch 1; by the
argument of Section 9.1, this condition is always met. The second condition is
that point GG; be above firm two’s branch one.

The coordinates of point G;(k;) are

b(1 — 02k — (1 — 0)(a — c))

2
(P, p2c) = (C +b(1 — 02)k1, c+ 7

From (9.1), the condition for point G; to lie above firm 2’s branch one is

—0(p1g — ¢) + 2(pag — ¢) > (1 — 0)(a — ¢); (9.3)
01 — )bk, + 2200tk _9(1 —90@=9 5 (1 _gya—o)
o 1 a—c .
R oI A (CY (9:4)
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D2

41 = Gm, 2 =10
p2 > a — 0bk;

Figure 9.2: (b1, b1) equilibrium, cell (4,3): ¢, < k1 < kp , kp <k
=~ =~ ) = h2
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where, from (4.4), the capacity level K} 18 the capacity level that is just sufficient
to allow the firm to produce Bertrand equilibrium output when both firms have
marginal cost c.

The range of k; in cell (3,4) is ¢, < k1 < kp. Since

g _a—c 1 a—c
I =B = Do T T+ 6)(2-0) b

1 B 1 a—c
2 (1+6)2-0)) b
B 0(1—-0) a—c
S 2(1+60)(2-0) b
condition (9.4) is always met in cell (3,4).
By similar arguments, in cell (4,3), equilibrium is of type (b1,bl) for ky > k5
and the condition is always met.

> 0,

9.3. Cell (2,4)

Cell (2,4) — row 4, column 2 of Figure 7.1 — is defined by the inequalities
ka < k1 < Gm, kp < ka.

In this region of capacity space, firm 1’s price best response function is of form
(b1,b2,b5). Firm 2’s price best response function is of form (b1,b4,b5).
From the discussion of cell (3,4), ¢, > k(- We also have

Ble) — ka =

1 a—c 1 a—c

(1+6)2—-6) b 1+6 2b

1 <1 _1)@—0_
1+460\2—-6 2) b

0 a—c
(1+6)(2—0) 2b

> 0.

Hence

and the cases , k1 > Kk}, k1 > k() can both occur in cell (2,4).
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D2

¢ =k, =0
p2 > a — Obk;

Figure 9.3: (bl,bl) equilibrium, firm 1 (b1,b2,b5) price best response function,
firm 2 (b1,b4,b5) price best response function
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By the argument of Section 9.2, for ki > Kk}, second-stage equilibrium is of
type (bl,bl), as shown in Figure 9.3.

For k1 < K}, second-stage equilibrium is of type (b2,b1) as shown in Figure
9.4.

In the same way, second-stage equilibrium in cell (4,2) is of type (b1,bl) for
ko > k%, and second-stage equilibrium is of type (b1,b2) in cell (4,2) for ks <

B
9.4. Cell (1,4)
Cell (1,4) — row 4, column 1 of Figure 7.1 — is defined by the inequalities

0 <k <ka, kp <ks.

In this region of capacity space, firm 1’s price best response function is of form
(b2,b5). Firm 2’s price best response function is of form (b1,b4,b5).

The conditions for (b2,bl) second-stage equilibrium in cell (1,4), as shown in
Figure 9.5, are that point F} be above firm 2’s branch one and that point D, be
to the right of firm 1’s branch 2.

The coordinates of point F} are

(p1F7p2F) = (a — bky,a — ebkl),

and the condition for point F} to be above firm 2’s branch one is

—0(p1r — ¢) +2(par —¢) > (1 = 0)(a —¢)
—0(a — c—bky) +2(a — ¢ — 0bky) > (1 —0)(a—¢)
—0(a — ¢) + 0bk; +2(a — ¢) — 20bk; > (1 — 0)(a — ¢)
—(1—=0)(a—c)—0(a—c)+2(a—c)> bk
by < ae_bc.

(a—c)/bis the long-run equilibrium output of a perfectly competitive industry;

(9.5) will be met for all k; of interest.
The coordinates of point Dy are

(1—-6)(2+6) 1—6°
W(G—C),C+2_02(CL—C)> .

(9.5)

(p1p,p2p) = <C +
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Figure 9.4: (b2,bl) equilibrium, firm 1 (b1,b2,b5) price best response function,
firm 2 (b1,b4,b5) price best response function
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@1 =0,0 <qn
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Figure 9.5: Firm 1’s price best response function, k; < k4
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The condition for point D5 to be to the right of firm 1’s branch two is

—0(pap — ¢) +pip —c > +(1 —0)(a—c) — b(1 — 6*)k,

1—6° (1-60)(2+0) 2
—92_02(a—c)+v(a—c)Z(l—@)(a—c)—b(l—@ k1
b(1— 6%k > (1—6) 1+921j;2 — 221_;2 (a —c)

b(1+6)k; >0

and this condition is always met.
In cell (1,4), second-stage equilibrium is of type (b2,b1). In cell (4,1), second-
stage equilibrium is of type (b1,b2).

9.5. Cell (3,3)

Cell (3,3) — row 3, column 3 of Figure 7.1 — is defined by the inequalities
dm(c) < kl < kD; Gm(c) < kQ < kD-

Figure 9.6 shows a second-stage equilibrium with both firms on branch one of
their (b1,b2,b4,b5) best response functions, producing less than capacity. This
combination of price best response functions occurs in the (3,3) cell of Figure 7.1.

The conditions for second-stage equilibrium to have this configuration are that
point G(k;) be above firm 2’s branch one and point Ga(k2) be to the right of
firm 1’s branch one. From Section 9.2, the conditions for this are ki > Kj ),
ka2 > Ko

Since
a—c 1 a—c

i) = Koo = 5 T Tr @0 b
01—-0) a—c >0,
2(1+6)(2—-6) b
this condition is always satisfied, and in cell (3,3) the second-stage equilibrium is
always of type is (b2,b2).

9.6. Cell (2,3)

Cell (2,3) — row 3, column 2 of Figure 7.1 — is defined by the inequalities
ka < k1 < Gm, Gmey < k2 < kp. Firm 1’s best response function is of form
(b1,b2,b5). Firm 2’s best response function is of form (b1,b2,b4,b5).

40



D2
a |

I

I @1 =Gm, @2=0

: P2 > a — Obky >

I

I

I

[ 42 =qm> @1 =0

: p1 > a — 0bk;

I

I

I

I

I

I

I

I Fy(k

I )2( 2) Q2 < gm

! g =0

I

I
b1
a

Figure 9.6: (b1,bl) equilibrium, both firms (b1,b2,b4,b5) price best response func-
tions
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D2

Fi (k1)

42 =qm; @1 =0
P > a— 0bk;

Ay

Figure 9.7: (b2,b1) second-stage equilibrium, firm 1 (b1,b2,b5) price best response
function, firm 2 (b1,b2,b4,b5) price best response function
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Figure 9.7 shows a (b2,b1) second-stage equilibrium when firm 1 has a (b1,b2,b5)
price best response function and firm 2 has a (b1,b2,b4,b5) price best response
function.

The conditions for such an equilibrium are first that point Fi(k;) be above
firm 2’s branch one while point G;(k;) is below firm 2’s branch one, and second
that point Gy(ks) be to the right of firm 1’s branch two.

From Section 9.4, point F} (k1) is above firm 2’s branch one for all k; of interest.
From Section 9.2, the condition for point G;(k;) to be below firm 2’s branch one
is that k1 < k).

The coordinates of point G(ksy) are

<c N 2(1 — 6%)bks —0(1 —0)(a—rc)

e+ (1— 92)bk2> .
The condition for point Ga(k2) to be to the right of firm 1’s branch two is

pr—c—0(py—c)>(1—-0)(a—c)—(1—6%)bk

2(1 — 6*)bky — (1 —6)(a — ¢)
0
2(1 — 0*)bky — (1 —0)(a — c) — 0*(1 — 6*)bky > 0(1 — 0)(a — c) — O(1 — 6*)bk,
0(1 — 6%)bky + (1 — 6%)(2 — 6*)bky > (1 — 0)(a — ¢) + (1 — O)(a — ¢)
0(1 — 60%)bky + (1 — 6*)(2 — 6%)bky > (1 — 6*)(a — ¢)

—0(1 — 6%)bky > (1 — 0)(a —c) — (1 — 6*)bk,

a

b

Oy + (2 — 0%)ksy >

1 a—c

where kzg’(c) (k1) is the capacity level that is just sufficient to allow firm 2 to produce
its Bertrand best response output if firm 2’s marginal cost is ¢ and firm 1’s output
is ]{/’1.

If (9.6) is met, second-stage equilibrium in cell (2,3) is of type (b2,bl). If
ke < k;g(c)(k;l), second-stage equilibrium in cell (2,3) is of type (b1,bl).
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Figure 9.8: (b2,b2) second-stage equilibrium, cell(1,3)
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9.7. Cell (1,3)

Cell (1,3) - row 3, column 1 in Figure 7.1 — is defined for gm) < k2 < kp,
0 < ky < kyu. Firm 1’s best response function is of form (b2,b5). Firm 2’s best
response function is of form (b1,b2,b4,b5).

The conditions for equilibrium to occur at the intersection of the branch two
segments of the price best response functions in cell (1,3) are that point Fi(k;)
be above firm 2’s branch two, that point F5(ks) be to the right of firm 1’s branch
two, and that point Ga(k2) be to the left of firm 1’s branch two.

The coordinates of point Fj(k;) are

(p1r, por) = (a — bky,a — Obk;).
The equation of firm 2’s branch two is
—0(p1—c)+pr—c=(1-0)(a—c)—(1—6%)bk,.
The condition for point Fj(k;) to be above firm 2’s branch two is
—0(a—c—Dbky) +a—c—0bk; > (1 —0)(a—c)— (1—60%)bky

—0(a — ¢) + Obky +a — ¢ — Obky > (1 — 0)(a — ¢) — (1 — 6%)bk,
k2 2 07
and this is satisfied for all k.
In the same way, point Fy(ks) is always to the right of firm 1’s branch two.

From Section 9.6, the condition for point Ga(k2) to be to the left of firm 1’s
branch two is

kQ < kg(c) (kl)a

and if this condition is met, the second-stage equilibrium in cell (1,3) is of type
(b2,b2). See Figure 9.8. If instead ky > kg’(c)(kjl), second-stage equilibrium in
cell (1,3) is of type (b2,b1).

In the same way, in cell (3,2), second-stage equilibrium is of type (b1,b2) if
]{/’1 S k%r‘(c) (1{52) and of type (b2,b2) if ]{/’1 Z kg(c) (]{32)
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Figure 9.9: Second-stage (b2, b2) equilibrium for equilibrium capacities; both firms
(b1,b2,b5) price best response functions
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9.8. Cell (2,2)

Cell (2,2) is defined by the inequalities kx4 < k1 < Gmee)s ka < k2 < @m(e)-

Figure 9.9, which is Figure 7.4 reproduced here for convenience, shows a
second-stage (b2,b2) equilibrium in cell (2,2). The condition for this to occur
is that point Fj(k1) be above firm 2’s branch two, G(k;) below firm 2’s branch
two, Fy(k2) to the right of firm 1’s branch two, and G5(ks) to the left of firm 1’s
branch two.

From Section 9.7, F (k1) and Fy(k2) always have the required positions, while
G1(k1) and Ga(k2) have the required positions if

ki < Kpey(ka), ko < Ko (k). (9.7)
If (9.7) is not met,
kv 2 Kpey(k2), k2 = kg (kr), (9.8)

cell (2,2) second-stage equilibrium is of type (b1,bl).

If point F(k;) is above firm 2’s branch two, point G (k;) below firm 2’s branch
two, and point Gg(kz) to the right of firm 1’s branch two, then second-stage
equilibrium is of type (b2,b1). From Section 9.6, the condition for point Gy (ko)
to be to the right of firm 1’s branch two is

ky > ki) (k1)
Thus the conditions for (b2,bl) second-stage equilibrium in cell (2,2) are
ky < Kpy(ka), ko > KB (kr). (9.9)

In the same way, the conditions for (b1,b2) second-stage equilibrium in cell
(2,2) are
ky > ko (k2), ko < Ky (k). (9.10)

9.9. Cell (1,2)

Cell (1,2) — row 2, column 1 in Figure 7.1 — is defined by the inequalities
0 < k1 < ka, ka < by < ge)- Firm 1's price best response function is of form
(b2,b5). Firm 2’s best response function is of form (b1,b2,b5).

Figure 9.11 shows a (b2,b2) second-stage equilibrium in cell (1,2). The condi-
tions for the type of equilibrium to occur are that point Fj(k;) be above firm 2’s

47



Figure 9.10: cell 12: firm 1 (b2,b5), firm 2 (b1,b2,b5)
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branch two, point Fy(ks) be to the right of firm 1’s branch (which conditions are
always satisfied, and that point Fj (k1) be below firm 2’s branch two, while point
Ga(k2) be to the right of firm 1’s branch two.

Point E;(k;), which is on the horizontal axis, is always below firm 2’s branch
two. From Section 9.6, the condition for point G(k2) to be to the right of firm
1’s branch two is

ko > k3 (k). (9.11)
If on the other hand

second stage equilibrium in cell (1,2) is of type (b2,b2).
In the same way, if

then second-stage equilibrium in cell (2,1) is of type (b2,b2), while if
ke < ki (ka), (9.14)

then second-stage equilibrium in cell (2,1) is of type (b1,b2).

9.10. Cell (1,1)

Cell (1,1) is defined by the inequalities 0 < k; < ky, 0 < ky < k4.

Figure 9.11 shows a second-stage (b2,b2) equilibrium in cell (1,1). The con-
ditions for cell (1,2) second-stage equilibrium to have this form are that point
Fi (k1) be above firm 2’s branch two while point Fy(ks) is to the right of firm 1’s
branch two. These conditions are always satisfied.

10. Proof of Lemma 3

10.1. (b1,b1)

In (b1, b1) equilibrium, equilibrium prices are the Bertrand equilibrium prices with
marginal cost equal to c:

1-46
Poip1 = C + 2_e(a—c); (10.1)
(see (4.3)); equilibrium quantities are
1 a—c

Qoip1 = 1502-0) b ; (10.2)
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Figure 9.11: (b2, 2) equilibrium, both firms (b2, b5) price best response functions
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equilibrium payoffs are

- 1-46 (a—c)?
T T2 - 02 b

— k. (10.3)

10.2. (b2,52)

If both firms are on their quantity constraint lines, equilibrium prices are

<_19 _19><§;>:(1—0)<}>a—b(1—92)<2> (10.4)

with solution
Pz = a — b(ky + 0ky) (10.5)

Pavare = @ — b(Oky + ka), (10.6)

which simply recovers the equations of the inverse demand curves (2.11), (2.12).
Equilibrium outputs are k; and ky. Second-stage payoff functions are

T2z = [@ — ¢ — p — b(ky + 0k2)] Ky (10.7)
Toper = [a — ¢ — p — b(Oky + k2)] ka. (10.8)

10.3. (b2,b1)
If point C}(k;) is below the ¢ < ko line,
k< Ko, (10.9)
and point Cy(ks) is to the right of the ¢; = k; line,
ky > kg (ka), (10.10)

then equilibrium occurs where firm 1’s branch two intersects firm 2’s branch one.
This case is symmetric with the (b1, 52) equilibrium.
Firm 1 is capacity constrained; the equation of firm 1’s price best response
function is (5.6)
p1=0ps + (1 —0)a—b(1 — 0%k,

or, rewritten in terms of deviations from c,

pr—c—0(pa— ) = (L—6)(a—c) — b(1 - 6*)h.

o1



Firm is not capacity constrained; the equation of firm 2’s price best response
function is (9.1)

—0(p1 —¢) +2(p2 —c) = (1 = 0)(a — ¢).

Equilibrium prices solve

<_10 —29> <Z;:z>:(1_9)(a_c)<1>—b(1—92)k1<é>,

leading to
(1—60)(2+0)(a—c)—2(1 — 6%)bk,

Piv2s1 = €+ 5 5 (10.11)
1 -6
Povop1 = C + m (CL — C— Gbk:l) . (1012)
Equilibrium quantities demanded are
qo2s1 = k1
1 a—c— 0bk
= . 10.1
q2p2b1 5 _ 02 b ( 0 3)
Second-stage payoffs are
1—60)(2+0)(a—c)—2(1—6%)bk
T1p261 — ( )( )( )2 ( ) ! —pP k’l (1014)
2—40
1—6* (a—c—0bky)
= — pko. 10.15
T 2b2b1 (2 — 02)2 b PR2 ( )

10.4. (b1,52)

The equation of the branch one segment of firm 1’s price best response function
is

2(pr —¢) = 0(p2 —c) = (1 = O)(a —¢). (10.16)

The equation of the branch two segment of firm 2’s best response function is

Py =0p1 + (1 —0)a — b(1 — 0*)k,. (10.17)
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Rewrite (10.17) in terms of deviations from c:
—0(p1 —¢) +po —c= (1= 0)(a—c) — b(1 — 6*)ks,.

The system of equations is

<_% ]9><§;:2>=ﬂ—ﬂxa—@<i)—%1—¥M@<?>. (10.18)

Prices in (b1, 2) equilibrium are

1—6°
Prew = ¢+ 53 (a — c— 0Obky) (10.19)
1-60)(2+6)(a—c)—2(1 — 6))bk
Davibz = €+ ( ) )(; — ;)2 ( )bk (10.20)

Firm 1 is on branch one of its best response function; from (8.3), the quantity
demanded of firm 1 is

pL—cC 1 1—6°
= = —c— 6bk
Q16162 W10 bI—0%)2— ¢ (a—c 2)
1 a—c— 0bk,
= : 10.21
Firm 1’s second-stage payoff is
1—6% (a—c— 0bky)’
= — pkq. 10.22
T 16162 (2 — 02)2 b PR1 ( )
Firm 2’s second-stage payoff is
T2b162 = (p2b1b2 —C— P)k’Q =
1—0)(2+60)(a——c)—2(1—6°)bk

2 — 02

11. Proof of Lemma 4

By the way in which the first-stage payoff functions are derived, they must be
continuous in capacities. I have verified this, but omit the details of these parts
of the proof.
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11.1. Lower region: ky; < kzg(c)

Let ko < kj). Firm 1’s payoff function is

7T1(791,/52) =

(11.1)

[a — ¢=p- be(bzzl + Oko)l k1 0 < ky <k (ko) (b2,02)
pE s ok kg (k) Sk (01,02)

If ki, < k;%?"(c)(k;g), second-stage equilibrium occurs where both firms are on
branch two, producing at capacity.

By (10.5), firm 1’s equilibrium price is given by the equation of its inverse
demand curve, writing capacities in place of quantities demanded:

P1=a— b(kl + ek’g)
Its payoft is
m1(k1, k) = (p1 —c— p)k1 = (a — ¢ — p — b(ky + Ok2)) k1. (11.2)

If ky > k) (k2), then in second-stage equilibrium, firm 1 is on its branch one
(g1 < ki), while firm 2 is on its branch two (¢ = k2). From (10.22), firm 1’s
equilibrium payoff is

1—6% (a—c— 0bky)?
(2 — 6%)2 b

7'('1(]{31,]{32) = —pk’l (113)

For the numerical example, firm 1’s payoff function for k&, = 4 is shown in
Figure 11.1.

Comparing (11.2) and (4.6), for k; < k%r(c)(k:g), firm 1’s payoff function has the
same functional form as firm 1’s payoff function in the standard Cournot duopoly
model with product differentiation and marginal cost ¢+ p, (4.6), and the capacity
that maximizes firm 1’s payoff in the left-hand region k; < k;’l’;"(c)(k;g), which with
a certain abuse of notation we denote as

1 /a—c—
ko (k2) = 3 (Tp - 0k:2> , (11.4)

has the same functional form as the Cournot best response output with marginal
cost ¢+ p, (4.7).
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Figure 11.1: Firm 1’s profit function, ky =4
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In order for (11.4) to give the value that maximizes firm 1’s equilibrium profit
in the (b2, b2) region, the capacity level identified by (11.4) must be in the (b2, 2)
region. The condition for this is

1 /a—c—
0*(a—c)+(2—6*)p
kQ S 03[) = kLLint- (116)
We know that in the region now under analysis
1 a—-c

< k¥, =
b < Ko (1+6)2-6) b

Comparing ki and k’E(C);
KrLine — k*B(c) =
2 — ? 1 a—c 1p
o lnxoe—0 v &b "

b
Hence in the case we are now considering

k2 < kpe) < krpint,

and the global maximum of (11.2) occurs within the (b2, 52) region.
To the right of the line k; = k) (k) firm 1’s payoff, (11.3),

1—6% (a—c— 0bky)
(2 — 6%)2 b

- pkb

is its payoff for (b1,b2) equilibrium. This is maximized by making k; as small
as possible within the relevant region, that is, by setting k1 = kg(c). Since the

payoff function is continuous, and rising moving to the left from k; = k;g"(c)(k;g),
the global maximum of the payoff function for the left-hand segment occurs within
the left-hand segment, and firm 1 maximizes its payoff for ky < kj by setting

the capacity (11.4),
l/a—c—p
br _ _ _
leour - 92 ( b 6k2> )

which is the equation of the segment of firm 1’s capacity best response function
0 < ko < K-
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11.2. Upper region: ;=5%< <k,

7T1(/<?1,/<?2> =

2—6

L * L)
(1+91)(20_9)2( 7 — ok Ky <k (b1,01)

{ {wﬁ(a —c)—p— Q%bkl} ki 0 <k <kp, (b2,01)

Firm 1’s payoff function in the left-hand region is its payoff in (b2,b1) equilib-
rium,

(1 _2ez<22+ Via—e)—p—2"u | (11.8)

16261 = [ 5 _ 02
The global maximum of (11.8) is at

(1-0)2+0)(a—c)— (2= 6")p

kll)Zle - 41— 92)6 (11.9)
This is interior to the left-hand region, for which k1 < kj) = m%:
k*B(c) - k%zm =
1 6> a—c 2—0%p
— . 11.1
4(1+0)[2—0 T R (11.10)

k%r,,, may be negative, if p is sufficiently large. We will assume that k57, > 0.
This assumption will be used several times below to determine the signs of various
expressions.

Firm 1’s payoff at (11.9) is

1—6?

LS

b (kllnl;le)Q -

b2 — 6> [(1—9)(2+0)(a—c)—(2—92)/)]2, (11.11)

81— 67 (2—6°)b
Firm 1’s payoff in the right-hand region, (10.3), is its payoff in (b1, b1) equi-
librium,
1—-6 (a —c)?
(1+6)2—0)*> b

- Pkl,
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and this is maximized by making k; as small as possible within the relevant range,
that is, by setting k1 = kj. By continuity of the payoff function and the fact
that the payoff function rises moving left from the boundary k; = Kp(c)» the global
maximum in the top region occurs at (11.9).

: ) : 1
Figure 11.2 shows firm 1’s payoff function for ky > ;=5 %<,

Figure 11.3 shows the lower (0 < k; < k) and upper (ﬁg% < ky < =-2)
segments of the capacity best response functions.

ks

(b2, b1) (b1, b1)

Firm 2’s capacity
best response function

Firm 1’s capacity
best response functian

T
|
|
|
|
|
|
|
|
|
|
|
|
|

kp(e)

k(e

Figure 11.3: Capacity best response functions, upper and lower segments, Kreps
& Scheinkman model with product differentiation
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11.3. Middle region: kj, < ks < T

The equation of the boundary between the (b2,52) region and the (b2, b1) region

1S
a—cC

Oky + (2 — 0*)ky = 7 (11.12)
or
ks = ki (1)
or

ki = [’fg(c)] (k).

If k; = 0 along this line, then ky = ﬁ% For k;g(c) < kg < ﬁ%, firm
1’s payoff function has three segments:

7T1(k’1, k’g) = (1113)
—1
(a—c— p—b(ky + Oks))ky 0<hi <[k, (k) (62,02)
2 —1
(U2 (0 —¢) — p— 28250k ) by (Kl (ko) < ki < Ky (62,01) -
e S — ph ke < ki (b1,b1)

11.3.1. Left segment: 0 < k; < [k;’g(c)}il (k2)

In this region, firm 1’s payoff is that of (b2,52) equilibrium; this case has been
analyzed in Section 11.1.
Firm 1’s profit-maximizing capacity is (11.4),

1l /a—c—
kll)z'our = 5 ( b i - 9k2> ;

if kY7, lies with the left-hand range of the middle region 0 < k; < 3 {% —(2— 02)1@} .
The condition for k%, .. to be within the left-hand range of the middle region is

l/a—c—p lJa—c 9
S r_ < Z —(2—
(L o) < 5 | - - 0k

or

by < (2—0)(a—c)+06p

= karint. 11.14
= (4—302)17 M Lint ( )
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In the middle region

1 a-—c

Compare ks with the upper end of the range of k; that defines the middle
region:
1 a—c 60 (1—=0)2+0)(a—c)—(2—60%p
————— — kMLint = 5 5
2—-60° b 4 — 360 2—40

> 0,

where the sign depends on the assumption that (11.4), firm one’s best-response
capacity in the upper region, is positive.

Now compare kpsri: with the lower end of the range of ky that defines the
middle region:

kyvipie — ke =

0 6° a—c n Pl <o
4-30* |[(14+6)(2-6) b b '
Hence 1
. a—c
Ky < knmrine < S b

For firm 2 capacity levels falling in the range
Be) < k2 < karpine, (11.15)

k&7, . is interior to the left-hand segment of the middle region, firm 1’s payoff
function has an interior maximum at k%7, on the left-hand segment, and firm
1’s payoff at this maximum is

In contrast, for

- T 2-60 b
the local maximum of firm 1’s payoff function on the range 0 < k; < % [% - (2- 92)]{32}
is at the right-hand border of this range, ki = 3 {% - (2 - 62)/92}.
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11.3.2. Middle segment: [ki5,| " (k) < k1 < ki,

Firm 1’s payoff function in the middle segment of the middle region is its payoff
in (b2,b1) equilibrium,

1—6)(2 1—6?
W(a—c)—p—Q—ebkl k.

T1v261 — l 5 _ 02

The global maximum occurs for (11.9)

o _(1=0)@2+0)(a—c) - (2-6)p
16261 41— 6090 :

We know from our discussion of the upper region (see (11.10) and the associ-
ated text) that
Kbam < Kp(e)-

The condition for

lTa—c

0 b - (2 - 02)k2 < k11)71;2b17

so that k%7,,, lies within the middle range of the region, is

4+20—-60* a—c 0 p
PTA1+0)(2-60%) b a1 —eHp o M (11.16)
kararine can also be written
1 a—c .
k]\lMint = m <T - Gk’{bglﬂ) . (11.17)
We know that
P < 1 a-c
Compare kprprine and k:*B(C):
0 6 a—c 1 p

> 0.
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a—c.

Compare kprprine and ‘2_19? b

1 a—c 0 (1-0)2+60)(a—rc)—(2—-6)p

= — karagine = 0.
56 b MMt n gy 1162 ~

where once again the sign depends on the assumption that (11.4), firm one’s
best-response capacity in the upper region, is positive.
Hence
1 a-—c

Kpey < kararint < 5 b

For
Kooy < k2 < knrasine,

the maximum of firm 1’s profit function on the range

1 [a—c

occurs at the left-hand boundary,

lla—-c
== — (2 -6 }
by 9{ —C—(2- M)k
while for .
a—c
PRI U < A
k]V[J\hnt_kQ_2_02 b )

firm 1’s profit function on the range

lTa—c

01 b

— (2= 0%)ko| < k1 < Ky

has an interior maximum at k¥,

o _(1=0)@2+0)(a=c) - (2-6)p
16261 41— %0 ’

and firm 1’s payoff at this capacity level is

1—6?

25—z ()
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11.3.3. Right segment: kj, < ki
Firm 1’s payoff in the right-hand region,

1-6 (a —c)?
(14+0)(2—-0)2 b

- Pkl,

is maximized by making k; as small as possible while remaining in the region,
kl - kg(c)

11.3.4. Middle region: overall

On the left-hand segment of the middle region, for firm 2 capacity levels falling
in the range
kg < k2 < knmpint, (11.18)

-1
firm 1’s payoff function has an interior maximum on the range 0 < k; < {k:%”(c)} (ka),

at 1
b :_<2:£:£_9k>
1Cour 2 b 2]

and firm 1’s payoff at this maximum is

b/a—c—p 2
Z( b _9@>‘

In contrast, for
1 _
a—c (11.19)

knirim < ko <
MLint S F2 S 57y

1
the local maximum of firm 1’s payoff function on the range 0 < k; < [k,’%”(c)} (k2)

is at the right-hand border of this range, k1 = {k;g(c)} o (k).
In the middle segment of the middle region, for

a—c
k*B(c)T < k2 < knarine (11.20)

the maximum of firm 1’s profit function on the range

1
[k”bé‘(c)} (k2) < k1 < K
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left middle global
ki) < k2 < Knragint interior max left boundary | left interior max
k]tf]\h’nt S ]{?2 S k]MLint interior max interior max ?
knrpint < ko < ﬁ% right boundary | interior max | middle interior max

Table 11.1: Maxima, middle region

occurs at the left-hand boundary, ki = 3 (% —(2- 92)/<:2> while for

1 a-—c
2—927’ (11.21)

knraring < ko <
firm 1’s profit function on the range
-1
[kbé‘(c)} (k2) < k1 < K

has an interior maximum at

o _(1=0)@2+0)(a—c) = (2-6)p
16261 41— %) ;

and firm 1’s payoff at this capacity level is

1—92bl(l—0)(2+9)(a—c)—(2—02)pr.

2
2 — 6 4(1 - 6%)b

Compare kit and Eararing:

6 (1=0)2+0)(a—c)— (2—6%)p
4(1+6) (4-36°) (2-6)

Enrpint — Eararine = > 0.

For
Kooy < k2 < knrarine,

the global maximum of firm 1’s payoff function is k{7, (k2), which therefore is
the best-response capacity for 0 < ks < kpasazine-
For

1 a—c

karpimt < ke < —— :
MLint = RF2 S 5
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the global maximum of firm 1’s payoff function is k{7,

o _(1=0)@2+0)(a—c) = (2-6)p
16261 41— %) ;

which therefore is firm 1’s best response capacity for kyrine < ko.

Figure 11.4 extends the segments of the best response functions shown in
Figure 11.3 to include the upper and lower segments of the middle range of the
best response functions.

ko

(b2, b1) (b1, b1)

Firm 1’s capacity

Firm 2’s capacity
best response functign

best response function

!

+-————-—-—-—-—-—-—-—-—-—-0

kb

\ k
k(e '

Figure 11.4: Capacity best response functions, upper and lower segments, upper
and lower segments of middle range, Kreps & Scheinkman model with product
differentiation
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For
kit < k2 < knrping
firm 1’s payoff function has two local maxima, k7, . (k2) on the left segment and

kb, on the middle segment.
Firm 1’s payoff at k{7, . (k2) is

b/a—c—p 2
Z( b _%)'

Firm 1’s payoff at kb7,,, is

2 1_926[(1—e)(2+9)(a—c)—(2—e2)pr

1_925(14”“ ) -9
w21) = L5 g2 4(1—92)6

2—
2 — §?

We need to compare firm 1’s payoffs at the two local maxima to determine the
global maximum.
If ko = karasint,

lla—c—p 4+20—-60> a—c o  p
br _Z — 0 T =
k1Cour (K2) 5 l b <4(1 +0)(2-6%) b * 4(1—6%0b
4 — 362 Lo
2(2 _ 02) 16261

and firm 1’s payoff at the left-hand local maximum is

1-30* , 1
b mkmm :

When ks = kprarine, the difference between firm 1’s payoffs at the left and
middle local maxima is
p [ 4 36*
2(2 — 6%)

2 2 4
r 1-0 v 2 4 r 2
klljb2b1‘| - QWb (kll)bel) = mb (klbebl) > 0.

At the smallest level of ks for which firm 1’s payoff function has two local
maxima, the global maxima is in the center segment.

Now compare payoffs at the two local maxima for the largest value of ky for
which firm 1’s payoff function has two local maxima, kyspine. For ko = kprrine

Howtha =3 |52 -0 (S -
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1—6°
44 392 klebl

1-6> ., \°
b <44_—3925k§'b2b1>

and the difference between firm 1’s payoffs at the middle and left local maxima is

o ki | b (19 ) =
5] (77 J i)
e e [ e () 5
’ l;&_—gzz) = 30022] E - 92)9Z4 - 392)] (i) >0

The payoff at the center local maxima falls as ky rises. Payoffs at the two
local maxima are equal for

and firm 1’s payoft is

1—6° b /a—c—p 2
22_—92b <k1b2b1) - Z <T —9k2>
l|la—c—p — 6
hy = ks = 0 ( b -2 92k1b2b1) =
1 a—c—p , 21—92 (1—=0)2+0)(a—c)—(2—6%)p
- h b 2 — 6 4(1 —6*)b '

Overall in the middle region, firm 1’s capacity best response function is

k leour = % (%ﬁ - 9k2> for ]{? B(c) < ]{32 < ]{JS
1 k%le =4 0)(2+f()1( 92)) (2-0%p for ]{ZS < ]{?2 2_92% ‘

Figures 11.5 and 11.6 illustrate the profit function in the middle segment of
the middle region for the numerical example.
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In this instance,

36
Earatine = 2 = 5.1429
ks = 5.1869
68
kyrrine = — = 5.2308
MLint = 73

Figure 11.5 shows firm 1’s payoff function for ks = 5.1469, which is midway

T k< g (5 - (2 0)ky) ki)

13.75

13.50

13.25

13.00

Figure 11.5: Firm 1’s profit function, ky = 5.1469

between kprarine and kg. The payoff function has two local maxima, and the
global maximum is on the left.

Figure 11.6 shows firm 1’s payoff function for ks = 5.2089, which is midway
between kg and kpsyin:. The payoff function has two local maxima, and the global
maximum is on the right.
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13.75

13.50

13.25

13.00

Figure 11.6: Firm 1’s profit function, ks = 5.2089
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T a—c T 121 11 _—
ka | T 1+1200) 3 3.6667
ko | 7@ | 71T = % = 62857

Table 12.1: Critical capacity values

For the numerical example, at the switch point between the two branches of
the capacity best response function, firm 1’s best response capacity switches from

1712-1-1 1
== |~ Z(5.1
=3 - 5(5.1860)

k1 =3.7033

to
ko = k%zm =4.

The capacity best response functions are shown in Figure 7.3. Figure 7.4 shows
the price best response functions for the continuation game when the noncooper-
ative equilibrium capacity levels are chosen in the first stage.

12. Numerical Example

The figures are drawn for a particular set of parameter values,
e a = 12 (price-axis intercept of the inverse demand curve)
e b =1 (absolute value of the slope of the inverse demand curve)
e ¢ =1 (marginal production cost)

e p =1 (cost per unit of capacity)

0 = 1/2 (product differentiation parameter).

The units in which capacity is measured are normalized so that one unit of capacity
allows production of one unit of output.

The capacity levels k4 and kp are evaluated for the numerical example in
Table 12.1.

Values for the nodes of the segments of the price best response function are
given in Table 12.2.
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A, (c—{—(l 9(ac _ 151

Dy (c 2 92 a—c) _Lll 29 (922+9 (a— )) = (%,%

By | (c+ a—c)—b(1—02)k¢1, c) = (% - 3k,1)

F | ( —bkl,a—ebkl) (12— ky, 12 — 1ky)

Gy (c+ (1— 0%)bky, ¢ + 2P 00 A) — (] 4 2y —10 + 3k, )
H, ( (a—c)yc+ 3 (2—9)(a—c)>:(1—23,%>

Table 12.2: Nodes of firm 1’s price best response function, numerical example one,

numerical example one

ki | E(k1) F(ky)

2.75 | (4.4375,1) | (9.25,10.625)
3.125 | (4.15625,1) | (8.875,10.4375)
33 | (4.025,1) | (8.7,10.35)

Table 12.3: Points E(k;) and F'(k;), alternative values of k;

The capacity limits for the various configurations of price best response func-

tions are

ki < kg = 3.6667

6.2857 = kp < k; < S5 = 10
The (b2,b5) best response function arises for k1 < k4 = 3.6667.

=
=
=
=

=5.5

(b2,b5) best response function
(b1,b2,b5) best response function
(b1,b2,b4,b5) best response function
(b1,b4,b5) best response function
The coordi-

nates of the points in Figure 6.1 are given in Table 12.3.
For 3.6667 < ki < @) = 5.5, firm 1’s price best response function is of form

(b1,b2,b5).

The points used in Figure 6.1 are given in Table 12.4.

For 5.5 = gy() < ki < kp = 6.2857, firm 1’s price best response function is of

form (b1,b2,b4,b5).

e | A G (k1) F (k1)
400 | (3.75,1) | (4,2) (8,10)
55 | (3.7,1) | (5.125,6.5) | (6.5,9.25)

Table 12.4: Points F'(k;) and G(k;), alternative values of k;
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]{51 Al G(kl) F(l{}l) H1
6.00 | (3.75,1) | (5.5,8) (6,9) (6.5,9.25)
6.25 | (3.75,1) | (5.6875,8.75) | (5.75,8.875) | (6.5,9.25)

Table 12.5: Points F'(ky), G(ky), and H(k,), alternative values of k;

For 6.2857 = kp < k; < === = 10, firm 1’s price best response function is of
form (b1,b4,b5). The values for Figure 6.4 are

o A =(3.75,1)

e Dy = (5.7143,8.8571)

e H; =(6.5,9.25).

For the numerical example

1 a—c 1 12—-1 44
- = — — — 4.8889.
BO ™ (1+0)(2-0) b 1+He-1) 1 9

(b1,b2) equilibrium
For the numerical example, prices are
1-6° 1-—

2_92(a—c—0bk2):1+2_

Pivipz = C+

i ((12 1) - %(4)) _ 48571

1
4

(1-6)(2+0)(a—c)—2(1—6%)bk;

Pavibz = C+

2 — 6
1-He+hHaz-1)-20-3H4
2—4
In the numerical example, when ky = 4, the k; coordinate of the border

between the (b2, 52) and (b1, b2) regions is

36
Z(4)) == =5.142
1 2”) 7 =014

1 12—-1 1
k’lz < —

1
2—y

and the value of profit at this point is 14.69388.

73



For the numerical example, the equation of the best response function over

the range 0 < kg < % = 4.8889 is

1
k’l - 5 — Zkg
Endpoints are (0,5) and (3.7778, 4.8889).

For the numerical example, the top region is for

1 12-1 44
= — =062
2‘% 1 - 6.2857

ko >

and the value of (11.4) is
1-he+d-n-e-hHu
4(1- (1) '

For the numerical example, (11.14) is

2-H(12-1)+ L1
(2—35)( )5 _ 68 _ oo

ko <
(4-3(i) 13
while the range of ks is
1 a—c 1 a-c
=k < ks <
1+6)(2-6) b Bl =" =9 _ 9 b
1 12_1<k,’ 1 12-1
1+He2-3 1 ~ 77 2-5 1
44 44
— <k <=
9 == 7

4.8889 < ky < 6.2857.

For
4.8889 < ko < 5.2308,

firm 1’s payoff function has a local maximum at k%%,

1 /a—c—
W = 5 (2 — k)
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1
i(ks) = 5= 2k

and its payoff at this capacity is

b/a—c—p 2
Z( b _9@>

1 2
— (20 — kq)”.
T ( 2)
For 68 4
— =5.2308 < ks < 6.2857 = —
13 == 7’
the global maximum on the range 0 < k; < [k%”(c)} - (ko) occurs at ky = [k,’%”(c)} - (ka),

and firm 1’s payoff at this point is
1 l 1—6

% 7 (a—c) —p+%(1 —92)bk21 [a—c— (2—02)bk2} =

oA, G0t ene )

For the numerical example, this is

DO | =

B - <1z_1>—1+<—f>“—i><1>’f2] 2-1- -k
21 44
:7(1@—4) (7—]€2>-

For the numerical example,

A 4+ 20 — 62 a—c, _ 0 p
MMmt—4(1+9)(2_92) b 4(1—6%)b
4+2(3) -1 u (3)
i1+ (Fe-p1 -9

1
klljgour(ké) =5- ZkQ
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is the equation of firm 1’s capacity best response function for (0, 5) to (3.7143, 5.1429).

(2—0)(a—c)+6p
(4 —36%)b

C@-hHa2-1+ i
B0

68
= — =05.2308
13

k]VI Lint =

and . .
o -he+huz-n-e-hHa _,
4(1-7)1)
is firm 1’s best response capacity for ko > 5.2308.

1lJa—-c—p 1-[1-0)2+0)(a—c)—(2—0)p
ksé{ o 22—04 4(1—6*)b

Evaluate this for the numerical example:

L (l2—1-1 21—%((1-%)(2+§)(12—1
(é) 1 2-1 41— 1)(

20—1—76@21@

5.1869 > k.
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