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Abstract 

We study cooperation in four-person economies of indefinite duration. Subjects 

interact anonymously playing a prisoner’s dilemma. We identify and characterize the 

strategies employed at the aggregate and at the individual level. We find that (i) grim 

trigger well describes aggregate play, but not individual play; (ii) individual behavior 

is persistently heterogeneous; (iii) coordination on cooperative strategies does not 

improve with experience; (iv) systematic defection does not crowd-out systematic 

cooperation. 

 

Keywords:  repeated games, equilibrium selection, prisoners’ dilemma, random 

matching. 

JEL codes: C90, C70, D80 
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I. Introduction 

Fostering cooperation in society can be problematic when individual reputation is not easily 

established. The individual appeal of opportunistic behavior is especially strong when it is 

difficult to communicate intentions, to maintain stable partnerships, or to monitor and to enforce 

cooperation of others. Yet, folk theorems suggest that, over the long haul, none of these frictions 

present a fundamental obstacle to cooperation.1 Groups of self-regarding individuals can 

overcome the short-run temptation to cheat others by threatening permanent defection through a 

decentralized punishment scheme that spreads by contagion.  The open question is how, in 

practice, groups of individuals reach cooperation when theoretically feasible and what strategies 

they adopt to sustain it. 

To address the above question, we gathered data from an experiment where four subjects 

interacted over a long horizon. Subjects faced an indefinitely repeated prisoner's dilemma 

implemented through a random stopping rule (e.g., as in Palfrey and Rosenthal, 1994, Dal Bó, 

2005). Our design makes it possible to empirically identify and characterize strategies employed 

by subjects. Little is known about how individuals play indefinitely repeated games. The existing 

evidence on individual strategies is limited to two-person economies of short-duration with a 

subject pool of undergraduates (Engle-Warnick et al., 2004, Engle-Warnick and Slonim, 2006, 

Aoyagi and Fréchette, 2009, Dal Bó and Fréchette, 2009). The present study advances the 

understanding of how individuals play indefinitely repeated games by studying individual 

behavior in four-person economies of substantially longer duration than in the literature, and 

with a varied subject pool (undergraduates, MBA students, and white-collar workers).  

                                                 
1 The foundation for this affirmation traces back to the folk theorems in Friedman (1971) and the random-matching 
extensions in Kandori (1992) and Ellison (1994). 
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   Folk theorems show that long-run interaction can sustain a multiplicity of equilibrium 

outcomes, but do not offer much guidance regarding which equilibrium will be selected. 

Applications of theories of infinitely repeated games assume, often implicitly, that agents are 

homogenous and will select the most efficient among the available equilibria. We report that 

efficiency is rarely achieved in our experimental economies, which suggests that efficiency may 

not be the key equilibrium selection criterion. The individual-level analysis in this study sheds 

light on empirically-relevant equilibrium selection criteria.  

Folk theorems trace the efficiency frontier through a “grim trigger” strategy whereby all players 

cooperate under the threat of a contagious process of economy-wide defection. At the aggregate 

level the data look consistent with the notion of grim trigger play. However, when we dig deeper 

and analyze data at the individual level, this is no longer true. Only one out of four subjects 

behaves in a manner consistent with the use of the grim trigger strategy. 

   The data suggest that different subjects adopted different strategies, and no single strategy was 

prevalent. Subjects tried out a variety of strategies but this process failed to yield full 

cooperation, and did not improve coordination on cooperative strategies. Moreover, a substantial 

fraction of participants did not use conditional strategies: they either systematically cooperated or 

systematically defected, independently of the actions taken by their randomly encountered 

opponents. In short, theories based on the notion that cooperation emerges because individuals 

adopt an identical strategy based on the threat of unforgiving, generalized punishment have 

limited descriptive power. Our results challenge theory to provide more descriptive guidance. 

   The set-up we have adopted to study individual strategies, is novel relative to the existing 

experimental literature. An economy comprises four persons who interact locally and 

anonymously. The interaction is local because subjects observe only outcomes in their pair but 
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not in the rest of the economy. Subjects are not in a stable partnership but are randomly matched 

in pairs after every encounter. The interaction is anonymous because subjects cannot observe 

identities. This makes individual reputation impossible to build and coordination harder to 

achieve than in two-person economies.  

      Our design with four-person economies is a convenient abstraction for representing a wide 

range of economies where reputation is hard to establish, it is difficult or costly to monitor the 

actions of all other members of society, to communicate intentions, and where institutions for 

enforcement have limitations. By experimentally controlling the informational flows and the 

matching process, our small laboratory economies capture essential features observed in larger 

economies, without the need to let hundreds of people interact together. An important segment of 

the economic literature adopts anonymous random matching economies as the platform for 

theoretical analysis. For example, in macroeconomics consider the matching models as in 

Diamond (1982) and in microeconomics consider the decentralized trading models as in Kandori 

(1992) and Milgrom, North, and Weingast (1990). Experiments with anonymous economies 

provide much needed empirical evidence to assess the validity of such theories.  

Studying strategy adoption within this richer framework can offer novel insights about 

subjects’ behavior in long-term interactions. Anonymity implies that strategies based on 

reputation, which have a strong drawing power, cannot be employed.2 Hence, subjects are forced 

to consider other strategies. In economies with more than two persons, coordination on strategies 

and outcomes is more challenging. In addition, it is possible to study if and how a subset of 

subjects can separately coordinate on a strategy. Subjects are also exposed to a variety of 

                                                 
2 In Camera and Casari (2009) subjects in a Non-anonymous public monitoring treatment adopt widely different 
strategies than in Private Monitoring treatment. In particular, the representative subject defected mostly only when 
interacting with those participants who previously defected with her. 
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behaviour, which facilitated the empirical identification of strategies. In this way, our work 

complements and innovates on previous studies on the identification of individual strategies.  

     The paper proceeds as follows: Section II discusses related works; Section III presents the 

experimental design; Section IV provides a theoretical analysis; Section V describes the 

empirical estimation procedure; results are reported in Section VI; and Section VII concludes.  

II. Related experimental literature 

There are a few experimental studies of individual strategies played in repeated games. They 

all refer to two-person economies. The key differences in our set-up are the following: first, 

economies include four persons; second, subjects do not interact as partners; third, we consider 

long-duration economies. We now present an overview of the papers most related to our study. 

Engle-Warnick, McCausland, and Miller (2004) retrieve subjects’ strategies from 

experimental data on an indefinitely repeated prisoner’s dilemma. Though they model behavior 

using finite automata, as we do, there exist important differences both in the experimental design 

and in the empirical technique.  Regarding the design, their subjects interacted in a supergame as 

partners for 5 periods in expectation, while our subjects interacted as strangers for 20 periods in 

expectation. As already mentioned, both features of our experiment facilitate the empirical 

identification of strategies.  Regarding the underlying behavioral model, their automata choose 

action stochastically while transitions from state to state are deterministic. In other words, 

subjects can make mistakes in implementing actions. Instead, our automata choose actions 

deterministically and can transition from state to state stochastically. In other words, subjects 

experiment within the strategy, which can help moving an economy from a punishment mode to 

a cooperative mode. For example, if everyone follows a grim trigger strategy, an individual 
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mistake in implementing an action moves the economy to a permanent punishment mode. 

Instead, with experimentation within the strategy, it is possible to change state and revert to a 

cooperative mode. As a consequence, in Engle-Warnick et al (2004) the absorbing state of grim 

trigger is the punishment mode because a mistake is never forgotten. Our behavioral model 

instead allows for fresh starts and alternating sequences of cooperative mode and punishment 

mode. Moreover, they employ Bayesian methods and numerical techniques to estimate the 

distribution of strategies while we follow a straightforward maximum likelihood approach. 

Engle-Warnick and Slonim (2006) study an infinitely repeated trust game with 5 periods of 

average duration. They empirically identify the strategies employed by subjects by formalizing 

strategies using the notion of finite automata (Rubinstein, 1986), as we do. They consider a large 

number of automata, which exclude the possibility of errors in the implementation of strategies. 

They find that the vast majority of data can be explained using only a small number of strategies. 

In particular they find support for grim trigger play between partners.  

Aoyagi and Fréchette (2009) study an indefinitely repeated prisoners’ dilemma with 

imperfectly observable actions, and 10 periods of average duration. They consider a family of 

threshold strategies where transitions between cooperative and punishment state depend on four 

free parameters. They find support for the use of forgiving strategies, rather than grim trigger.3  

Dal Bó and Fréchette (2010) study an indefinitely repeated prisoner dilemma with an 

expected duration of two or four periods. They estimate individual strategies fitting the data via a 

maximum likelihood approach, to a set of six possible strategies. They look at the behaviour of 

experienced subjects. They find support for “tit for tat” and “always defect”, but unlike Engle-

                                                 
3 Ule et al. (2009) also study a random matching setting, as we do. However, the game is finitely repeated, there is 
costly personal punishment, and the underlying game is a gift-giving game. Their focus is not on equilibrium 
strategies identification, but on the classification of subjects into types according to their behavior.  
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Warnick and Slonim (2006), they do not find evidence for grim trigger strategies in their 

economies of two players and of very short duration. 

III. Experimental design 

The experiment is based on the same design of the Private Monitoring treatment in Camera and 

Casari (2009), which is suitable to study strategy selection in an indefinitely repeated prisoner 

dilemma where reputation formation is impossible. The underlying game is the prisoners’ 

dilemma described in Table 1. In the experiment, subjects could choose between Y, for 

cooperation, and Z for defection.  

[Table 1 approximately here] 

A supergame (or cycle, as it was called in the experiment) consists of an indefinite interaction 

among subjects achieved by a random continuation rule; see Roth and Murninghan (1978). The 

interaction is of finite but uncertain duration, because in each period a cycle continues with a 

constant probability  For a risk-neutral subject  represents the discount factor. In each 

period the cycle is expected to continue for 19 additional periods. To implement this random 

stopping rule, at the end of each period the program drew a random integer between 1 and 100, 

using a uniform distribution. The cycle continued with a draw of 95 or below. All session 

participants observed the same random draw, which means that cycles for all economies 

terminated simultaneously.  

Each experimental session involved twenty subjects and five cycles. We built twenty-five 

economies in each session by creating five groups of four subjects in each of the five cycles. 

Matching across cycles followed a perfect stranger protocol: in each cycle each economy 

included only subjects who had neither been part of the same economy in previous cycles nor 
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were part of the same economy in future cycles. Subjects did not know how groups were created 

but were informed that no two participants ever interacted together for more than one cycle. This 

matching protocol across supergames reduces the possibility of contagion effects, as opposed to 

a stranger protocol. In short, it is as if each subject had five distinct “lives” in a session. 

Participants in an economy interacted in pairs according to the following matching protocol 

within a supergame. At the beginning of each period of a cycle, the economy was randomly 

divided into two pairs. There are three ways to pair the four subjects and each one was equally 

likely. So, a subject had one third probability of meeting any other subject in each period of a 

cycle. For the whole duration of a cycle a subject interacted exclusively with the members of her 

economy. In each economy, subjects interacted locally in the sense that they could only observe 

outcomes in their pair. In addition, they could neither observe identities of opponents, nor 

communicate with each other, nor observe histories of others. As a consequence, subjects did not 

share a common history. With this private monitoring design, the efficient outcome can be 

supported as an equilibrium. 

The experiment involved three distinct groups of subjects: 40 undergraduate students from 

various disciplines at Purdue University, 20 full-time MBA students in the Krannert School of 

Management, and 40 clerical workers employed as staff throughout Purdue University. Both 

MBAs and undergraduates have a strong international component. The clerical workers are 

mostly long-time state residents, who exhibit a wide variation in age and educational 

backgrounds. Having multiple subject pools is methodologically appealing because it enhances 

the external validity of our results. 

All 100 subjects were recruited through e-mail and in-class-announcements. The sessions 

were run in the Vernon Smith Experimental Economics Lab. No eye contact was possible among 
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subjects. Instructions were read aloud with copies on all desks. A copy of the instructions is in 

the Appendix. Average earnings were $26.22 for undergraduate subjects, $40.15 for MBAs, and 

$23.59 for clerical workers. A session lasted on average 79 periods for a running time of about 2 

hours, including instruction reading and a quiz. Each session had 20 participants and 5 cycles. 4 

IV. Theoretical predictions  

The theoretical predictions are based on the works in Kandori (1992) and Ellison (1994), under 

the assumption of identical players, who are self-regarding and risk-neutral. Here we concisely 

present the relevant theoretical predictions; for additional details see Camera and Casari (2009). 

The stage game is the prisoner dilemma in Table 1. Players simultaneously and independently 

select an action from the set {Y,Z}. Total surplus in the economy is maximized when everyone 

cooperates, i.e., when all players choose Y. Thus, we refer to the outcome where every player in 

the economy selects Y as the efficient or fully cooperative outcome. If both pairs in the economy 

select {Z,Z}, then we say that the outcome is inefficient. There exists a unique Nash equilibrium 

where both agents defect and earn 10 points. 

   Under private monitoring, indefinite repetition of the stage game with randomly selected 

opponents can expand the set of equilibrium outcomes. Following the work in Kandori (1992) 

and Ellison (1994), we present sufficient conditions so that the equilibrium set includes the 

efficient outcome, which is achieved when everyone cooperates in every match and all periods. 

The inefficient outcome can be supported as a sequential equilibrium using the strategy 

“always defect.” Since repeated play does not decrease the set of equilibrium payoffs, Z is 

always a best response to play of Z by any randomly chosen opponent. In this case the payoff in 
                                                 
4 Sessions took place on the following dates: 21.4.05 (71), 7.9.05 (104), 29.11.05 (80), 06.12.05 (50), 07.02.07 (91). 
The total number of periods for the session is in parenthesis. Show-up fees are as follows: undergraduates received 
$5; clerical workers received $10; MBAs received $20. Data of the first two sessions are also analyzed in Camera 
and Casari (2009). 
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the indefinitely repeated game is the present discounted value of the minmax payoff, z/(). If δ 

is sufficiently high, then the efficient outcome can be sustained as a sequential equilibrium, by 

threatening to trigger a contagious process of defection, leading to minmax forever. In an 

economy with full cooperation, every player receives payoff y/(1). Hence, the main theoretical 

consideration is the following: 

Let *(0,1) be the unique value of  that satisfies 

032(2 =y)(hz)yhδ+z)(hδ  . 

If   *, then the efficient outcome is a sequential equilibrium. In the experiment, the efficient 

outcome can be sustained as an equilibrium, because =0.95 and *=0.443. 

   We now provide intuition for the above statement. Conjecture that players behave according to 

actions prescribed by a social norm. A social norm is a rule of behavior that identifies desirable 

play and a sanction to be selected if a departure from the desirable action is observed. We 

identify the desirable action by Y and the sanction by Z. Thus, every player must cooperate as 

long as she has never played Z or has seen anyone select Z. However, if the player observes Z, 

then she must select Z forever after. This is known as a grim trigger strategy. 

Given this social norm, in equilibrium everyone cooperates so the payoff to everyone is the 

present discounted value of y forever: y/(1). A complication arises when a player might 

consider defecting, however, as defection always grants a higher payoff in the stage game. To 

deter players from behaving opportunistically, the social norm employs the threat of contagious 

process of defection leading to minmax forever. Notice that a player deviates in several 

instances—first, in equilibrium, if she has not observed play of Z in the past but chooses Z 

currently, and second, off-equilibrium, if she has observed play of Z in the past but plays Y 
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currently. Cooperating when no defection has been observed is optimal only if the agent is 

sufficiently patient. The future reward from cooperating today must be greater than the extra 

utility generated by defecting today (unimprovability criterion). Instead, if a defection occurs and 

everyone follows the social norm, then everyone ends up defecting since the initial defection will 

spread by contagion. Given that our experimental economies have only four players, contagion 

can occur very quickly. 

Cooperating after observing a defection should also be suboptimal. Choosing Y can delay the 

contagion but cannot stop it. To see why, suppose a player observes Z. If she meets a cooperator 

in the next period, then choosing Y produces a current loss to the player because she earns y 

(instead of h). If she meets a deviator, choosing Y also causes a current loss because she earns l 

rather than z. Hence, the player must be sufficiently impatient to prefer play of Z to Y. The 

smaller are l and y, the greater is the incentive to play Z. Our parameterization ensures this 

incentive exists for all  so it is optimal to play Z after observing (or selecting) Z. 

   Two remarks are in order. First, due to private monitoring, T-periods punishment strategies 

cannot support the efficient outcome as an equilibrium. Suppose a pair of agents starts to punish 

for T periods, following a defection in the pair. Due to random encounters, this initial defection 

will spread at random throughout the economy. Hence, over time different agents in the economy 

will be at different stages of their T-periods punishment strategy. Hence, agents cannot 

simultaneously revert to cooperation after T periods have elapsed from the initial defection.  

Second, cooperation is risk-dominant in our design, in the following sense. Consider two 

strategies, “always defect” against “grim trigger.” Grim trigger is risk-dominant if a player is at 

least indifferent to selecting it, given that everyone else is believed to select each strategy with 
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equal probability. Indifference requires = 0.763.5 

V. Estimation procedure for individual strategies 

To empirically identify in the experimental data the strategies employed by each subject, we 

formalize strategies using the concept of finite automata. As a robustness check, we consider 

both deterministic automata as well as automata with a random element.  

An automaton is a convenient way to represent the process by which a player implements a 

rule of behavior in a repeated game (Rubinstein, 1986). The automaton is described by (i) a set 

of actions, (ii) a set of individual states, (iii) an outcome function that specifies the action to be 

taken given the individual state, and (iv) a transition function that specifies what individual state 

is reached next, given the current individual state and the actions of the opponent. 

Automata with sufficiently many states can describe any type of behavior observed in the 

experiment. We consider only two-state automata. There are various reasons for doing so. This 

class of automata is small—there are only 25=32 two-state automata—and yet it allows to 

represent most common strategies in the literature, such as “tit-for-tat,” “grim trigger,” “always 

defect,” and “always cooperate.”6 Clearly, not all of these automata describe equilibrium 

strategies. Moreover, two-state automata describe strategies that are relatively simple, hence 

likely to be devised and used by experimental subjects. As an example Figure 1a illustrates “tit 

for tat” and “grim trigger.” Actions are either C=Cooperate or D=Defect; a circle corresponds to 

an individual state, where the initial state is a bold circle; the outcome function is the identity 

function, i.e. the unique action prescribed is written inside each circle; the solid arrows represent 

                                                 
5 Details on derivations are available upon request. See Blonski and Spagnolo (2001) for an application to infinitely 
repeated games among partners. Blonski, Ockenfels, and Spagnolo (2009) and Dal Bó and Fréchette (2010) present 
experimental evidence on how risk-dominance impact partners’ play in indefinitely repeated games. 
6 There are 2 initial states identified by the action prescribed in that state, C and D, and 2 subsequent states, C or D, 
that are reached depending on the 4 possible outcomes of the match (each player has two actions). See Table 2. 
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transitions between states, which depend on the opponent’s action reported next to each arrow.  

    As seen above, an automaton defines a deterministic action plan, which provides a rigid rule to 

capture subject’s behavior. When fitting the data, we relax the rigidity of the rules of behavior by 

introducing a random element in the automata. This can accommodate subjects who make some 

mistakes in implementing a plan or who pursue some intentional experimentation within their 

strategy. The estimation procedure allows for random transitions, i.e., the possibility to reach an 

incorrect state with some probability p≥0. As a robustness check, we estimate strategy fitting 

from a range of values for p from 0 through 0.40. With two states, departures from a plan take 

one of two forms: the subject may either fail to switch state (say, keeps playing C instead of 

switching to D) or may incorrectly switch state (say, plays D instead of keep playing C). The 

dashed lines in Figure 1b represent such incorrect or accidental transitions for the case of grim 

trigger and tit-for-tat. Randomness on transitions is different from randomness on outcome 

functions, as in Engle-Warnick et al. (2004). 

[Figure 1 approximately here] 

We group the 32 strategies considered into six strategy sets (Table 2). The initial action is C 

for four strategy sets and is D for two sets. An additional distinction is whether play is 

unconditional or conditional on the observed outcome. Unconditional strategies prescribe only 

one action unless mistakes are made. Such strategies comprise the classes of automata called 

systematically cooperate and systematically defect, which include as a special case “always 

cooperate” and “always defect” (see the note to Table 2 for more details). Conditional strategies 

starting with C are divided into grim trigger, a set of forgiving strategies, and a set of 

opportunistic strategies. Forgiving strategies prescribe a switch to playing D only if an opponent 

chooses D, but allow a switch back to C (e.g., “tit for tat”).  Opportunistic strategies, instead, 
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may prescribe D even if no defection has been observed. 

[Table 2 approximately here] 

The strategy-fitting procedure is a mapping from the experimental data into the strategy sets 

of Table 2. The unit of observation is the sequence of all choices of a subject in a cycle, i.e., the 

behaviour of an individual or, simply, an individual. We may also refer to such a sequence as one 

observation.  For every individual, we first select the strategy that best describes (“fits”) her 

sequence of actions among the thirty-two strategies available. Then, we check whether the 

description of behavior provided by this best-fitting strategy is sufficiently accurate. If it is so, 

then we classify the individual by that strategy; otherwise, we say that the individual is 

unclassified by that strategy. Note that one individual could be classified by more than one 

strategy. Those who cannot be classified by any strategy are denoted unclassified individuals. 

We say that strategy q “fits” an observation (i.e., an individual) if it can generate an action 

sequence consistent with the behavior of the subject in the cycle. The definition of consistency 

allows for some experimentation or occasional mistakes. More precisely, let xq,t=1 if a subject’s 

action in period t of a cycle corresponds to the outcome generated by a correct implementation of 

strategy q, and let TxTX
T

qq /)(
1 , 


   denote the consistency score of that strategy, in a cycle 

of duration T. The score ranges from zero (no action taken is consistent with strategy q) to one 

(correct implementation of q).7 To account for the possibility that subjects may occasionally 

depart from the chosen plan of action, we presume a probability p of an incorrect transition exists 

that is (i) identical across subjects, (ii) constant across periods and cycles, and (iii) independent 

                                                 
7 For example let q be “grim trigger” and suppose a subject observes D only in period 1 of a four-period cycle. The 
sequence CDDD generates the score Xq=4/4=1. With random transitions, however, the sequence CDCC would 
generate Xq=3/4 because only the action in period 3 is inconsistent with grim trigger. An incorrect transition occurs 
in period 2 (from state D to C, whereas D should be an absorbing state), but the action in period 4 is consistent with 
being (incorrectly) in state C. 
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of the strategy considered. Under these conditions, the number n of a subject’s actions that are 

inconsistent with a strategy q in a cycle of duration T is distributed according to a binomial with 

parameters p and T-1. The expected number of inconsistent actions increases with T and 

decreases with p so that if p and T are sufficiently small the expected number of inconsistent 

action is lower than one. Hence, the average length of a cycle is a crucial design parameter. 

Fixing p, we say that strategy q fits an observation or, equivalently, that one individual is 

classified according to strategy q, if the following three conditions are satisfied. First, q correctly 

predicts the initial action, 11, qx . Second, q must have the largest consistency score among all 

strategies considered, )()( ' TXTX qq  for all q’≠q. Finally, if n actions are inconsistent with q, 

then the probability of such a realization must be within chance, given p and T. As a statistical 

test, strategy q does not fit the observation if the observation lays in the 10% right tail of the 

distribution of errors, i.e., the strategy does not fit the observation if the probability of observing 

n or more inconsistent actions is smaller than 10%. To fix ideas, suppose p=0.05. According to 

our criterion, not even one inconsistent action is admissible in cycles lasting less than four 

periods. In a cycle lasting 20 periods, instead, we expect one incorrect transition and admit at 

most two incorrect transitions; this means that, for example, a “grim trigger” player who has 

started punishing has the chance to move back to a cooperative state and to retrace his steps back 

to full defection, and yet to be classified as “grim trigger,” according to this third condition. If 

one or more of the above conditions is not met, then the observation is “unclassified.” 

Definition: The total fit F(q) of a strategy q is the fraction of observations that q fits. The total fit 

F(Q) of a set of strategies Q is the fraction of observations that can be explained by at least one 

strategy qQ. 



 

 17

Both measures of total fit, of a single strategy and of a set, are useful. The total fit of a 

strategy q provides an upper bound for the fraction of subjects that employ strategy q.8 It is an 

upper bound, as subjects can be classified by more than one strategy because either they did not 

experience a sufficient variety of actions, or they played a short cycle. For instance, “grim 

trigger” and “tit-for-tat” identically fit the observation CD in a two-period cycle where the initial 

opponent plays D, and also the observation of a constant sequence C when the opponents always 

play C. As a consequence, the sum of total fit of all strategies in set Q, qQ F(q), can exceed 

one, which it sometimes does in the analysis. The problem of overlapping strategies is 

particularly relevant when a subject observes the same action (e.g., C) in every meeting. In this 

case, we cannot infer what the subject would have done if D was observed, hence strategy 

identification is less meaningful. For this reason, the strategy-fitting procedure has been run 

separately for subjects who observed heterogeneous actions (Table 3). 

VI. Results 

There are seven main results. Result 1 concerns the strategy played by the average subject. 

Results 2-7 are about individuals, i.e., strategies employed by single subjects in each cycle. 

 

Result 1. Consider the behavior of the average subject. In period 1 she exhibited a high 

cooperation rate. If in the cycle she observed a defection, then she persistently lowered her 

cooperation rate. 

This finding is broadly consistent with the theories in Kandori (1992) and Ellison (1994) 

regarding the existence of a rich equilibrium set, including full cooperation, under private 

                                                 
8 This measure is context-independent, i.e., it is invariant to the number and type of strategies considered. 
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monitoring. In also confirms the empirical evidence presented in Camera and Casari (2009) and 

enhances the validity of those earlier results, by using a larger and more diverse subject pool. 

Choices in the first period of each economy help us determine whether some equilibrium 

(among the many possible) had a particularly strong drawing power. Average cooperation level 

in period 1 was 67.2%, and in all periods it was 53.8%. Hence, we can rule out that subjects 

attempted to coordinate on defection (see Table 4 for cooperation rates disaggregated by cycle 

and for period 1 in each cycle). What behavior can explain such patterns of cooperation? Due to 

private monitoring, cooperation cannot be supported through T-period trigger strategies (e.g., tit-

for-tat). In contrast, grim trigger can theoretically sustain an equilibrium with 100% cooperation. 

To investigate whether the data are consistent with such strategies, we ran a probit regression 

that explains the individual choice to cooperate (1) or not (0) using two groups of regressors. We 

introduce dummy variables that control for fixed effect (cycles, periods within the cycle, 

individuals), as well as for the duration of the previous cycle. To trace the response of the 

representative subject in the periods following an observed defection we include a “grim trigger” 

regressor that has value 1 in all periods following an observed defection (0 otherwise). We also 

include five “lag” regressors that have value 1 only in one period following an observed 

defection (0 otherwise). For example, the “lag n” regressor takes value 1 only in period n=1,…,5 

after the defection (0 otherwise). If the representative subject switched from a cooperative to a 

punishment mode after seeing a defection, then the estimated coefficient of at least one of the six 

strategy regressors should be negative. For example, if subjects punished for just two periods 

after a defection, then the sum of the estimated coefficients of grim trigger and “lag n” regressors 

should be negative for the first two periods after a defection (0 afterwards).  

The key result from this analysis is: the defection of an opponent triggered a persistent 
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decrease in cooperation with very little reversion to a cooperative mode. Figure 2 provides 

supporting evidence; it illustrates the marginal effect of experiencing a defection on the 

frequency of cooperation in the following periods.9 The marginal effect curves are L-shaped, i.e., 

after an initial drop, the curves look generally flat, and no recovery to pre-defection cooperation 

levels after five periods can be detected. Instead, if the representative subject tended to revert to 

cooperation, then curves should be U-shaped.10  

[Figure 2 approximately here] 

The above analysis suggests that the representative subject acted as if playing a grim trigger 

strategy. Cooperation was the focal point of period 1 play for the representative subject. When 

first confronted with a defection in the match, the representative subject responded with an 

immediate, downward and persistent shift in the frequency of cooperation.  

To expand on this initial assessment we carried out a disaggregated statistical analysis of 

subjects’ strategies, proceeding as follows. First, we empirically identify strategies used by 

subjects and determine the fraction of observations that can be explained by those strategies. 

Second, we empirically characterize the strategies most commonly used. Third, we analyze the 

dynamics of individual behavior to understand whether they learn to coordinate on certain 

outcomes and cooperative strategies.  

As discussed in the previous Section, the unit of observation is the sequence of all choices of 

a subject in a cycle, i.e., the individual. Since there are 100 subjects and five cycles, there are 500 

individuals. As an initial step, we wish to determine (i) whether the 32 simple strategies 

considered classify a high or small fraction of individuals and (ii) which strategies are most 

                                                 
9 The representation for “any more than five” period lags is based on the marginal effect of the grim trigger 
regressor only. The representation for period lags 1 though 5 is based on the sum of the marginal effects of the grim 
trigger regressor and the “lag n” regressors with the appropriate lag. 
10 Additional details on supporting evidence, including regression results, are in the supplementary appendix. 
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successful in doing so. A central result is that, given the identification technique proposed in the 

previous Section, a high fraction of individuals can be classified. 

 

Result 2. Consider the behavior of single individuals. When allowing for limited randomness in 

behaviour, thirty-two simple strategies classify 81% of individuals. 

The empirical findings are reported starting with Figure 3, illustrating the fraction of classified 

individuals as we vary the probability p of incorrect transition (i.e., the experimentation rate) 

from 0 to 0.40. Varying the probability p serves as a robustness check. Figure 3 shows the 

marginal gain in total fit as one changes the probability of incorrect transition. Fully 

deterministic automata (p=0) classify more than half of the individuals. The total fit is 53.0% of 

individuals. Notice from Table 3 that no single group of strategies can classify more than 26.8% 

of individuals (“systematically cooperate”). If we increase the probability of incorrect transitions 

to p=0.05, then the total fit of the entire strategy set improves substantially, reaching 81.0%. The 

fit then slowly tapers out. For instance, with p=0.15 more than 90% of individuals are classified. 

Therefore, in the analysis that follows, we will report results for p=0.05, unless otherwise stated, 

and will include  detailed results in Tables 3-4. 

[Figure 3 approximately here] 

  The best-fitting strategy is one of those in the “systematically cooperate” class and it classifies 

37.6% of individuals.11 When taking just two strategies into account, the total fit is 59.8%. When 

taking into account differences in cycle duration, these figures are in line with the results 

reported in other studies. In an indefinitely repeated trust game, Engle-Warnick and Slonim 

(2006) achieve a total fit of 89.6% when they employ 32 strategies. When taking just two 

                                                 
11 The strategy coding is 11100. It is also the best-fitting strategy with p=0.15 with a fit of 40.6% of observations. 
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strategies into account they fit 66.8%. However, the average length of a cycle in Engle-Warnick 

and Slonim (2006) was 5.1 periods, considerably shorter than in our experiment, which matters 

for comparison purposes because statistically a strategy has more difficulty in fitting behavior 

emerging from longer cycles. Longer cycles allow a better identification of strategies, so as cycle 

duration increases a larger strategy set is needed to fit a given fraction of observations. To see 

why, consider that a set of just two strategies such as “grim trigger” and “always defect” fits 

100% of observations of one-period cycles. This explains why in our experiment unclassified 

individuals played longer cycles (25.8 vs. 13.6 periods). The key issue is thus to determine under 

what dimensions unclassified and classified individuals differ.  

[Table 3 approximately here] 

 

Result 3. Classified individuals exhibited less volatile play and higher average payoffs than 

unclassified individuals. 

Support for Result 3 is in Table 3 and Figure 4. Volatility of play is defined as the frequency 

of switch between cooperation and defection choices. The average switch frequencies for 

classified individuals are significantly lower than for unclassified individuals: 9.3% vs. 34.3% 

(p-value of 0.005 in both cases; N1=96, N2=406).12 Figure 4 plots each subject’s switch 

frequency and their opponents’ switch frequency. The circles’ size reflects the number of 

individuals associated to a specific switch frequency. Differences in switch frequencies of 

classified and unclassified individuals are not a simple effect of meeting different types of 

                                                 
12 In this section statistics are computed aggregating observations by subject and cycle, unless otherwise noted. Thus 
we always have 500 observations in total. Statistical comparisons are done by means of a regression where the 
dependent variable is alternatively (i) average frequency of switch, (ii) average profit, and (iii) mean decision time 
per observation. The independent variable is a dummy taking value 1 if the observation is classified by any of the 32 
strategies considered (it takes value zero otherwise). The regression includes fixed effects at the subject level, and 
errors are computed clustering at the session level. 



 

 22

opponents. In addition, Table 3 reports that mean profits are significantly greater for classified 

than unclassified individuals (18.7 vs. 15.2; p-value is 0.014; N1=96, N2=406). This suggests that 

the two-state automata considered include the best-performing strategies.  

[Figure 4 approximately here] 

The Z-tree software recorded the number of seconds a subject employed to make each 

choice. The decision time is the number of seconds elapsed between the appearance of the input 

screen and the confirmation of the choice. Decision time is an additional descriptive variable for 

subjects’ strategies for which there is a growing interest in experimental economics as well as 

psychology (e.g., Chabris at al. 2008, or see Kosinski, 2006 for psychology).  In particular, the 

literature has suggested that decision time is related to the difficulty of the task, learning, and 

impulsive or deliberate nature of the decision being made (Rubinstein, 2007). The median 

decision time for choosing between C and D is more than 35% longer for unclassified than 

classified subjects (Table 3: 4.26 vs. 3.09 seconds). However, this difference is not significant. 

One could think of two alternative interpretations of Result 3. On the one hand, unclassified 

individuals may be more sophisticated than classified individuals, and so they adopt strategies 

that are more complex than the ones that can be identified by two-state automata. This greater 

complexity requires higher cognitive effort, thus longer decision time, and include more frequent 

action switches due to richer contingencies. On the other hand, unclassified individuals may 

simply be undecided on what behavior to adopt, and so experiment more within their strategy. 

The difference in profits for classified and unclassified subjects emerging from Table 3 suggests 

that experimentation is a likely explanation.  

Having described a central difference between classified and unclassified individuals, we 

now turn to examining what strategies characterize the behavior of classified individuals. We are 
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especially interested in the grim trigger strategy, as it has a prominent role in the way folk 

theorems define the equilibrium set and the efficiency frontier. Such a strategy supports 

cooperation by prescribing the harshest possible penalty through decentralized, contagious 

punishment. Hence, it may appeal to subjects interested in sustaining cooperation in four-person 

economies where individual reputation cannot be developed.  

 

Result 4. The grim trigger strategy classifies at most one individual out of four, even when 

allowing for limited randomness in behavior. 

At most 26.8% of individuals’ behavior is consistent with adoption of the grim trigger 

strategy. Support for Result 4 comes from Table 3. There is a discrepancy between the behavior 

of the representative subject (Result 1) and the behavior at the individual level (Result 4).13 The 

experimental behavior recorded is compatible with the use of a grim trigger strategy at the level 

of the representative subject (Figure 1) but not when we consider individual behavior, because 

only a minority of disaggregated observations is compatible with the use of a grim trigger 

strategy. To reconcile this apparent discrepancy, we note that a strong aggregate response to an 

observed defection may result from use of strategies that prescribe punishment forms other than 

grim trigger. From Table 3, one can see that 33.6% of individuals employ conditional 

punishment strategies that are unlike grim trigger. Adoption of such strategies can generate the 

observed aggregate pattern of response to a defection. 

 

Result 5. There was heterogeneity in individual behavior and no single strategy can classify the 

majority of individuals. 

                                                 
13 see Blanco et al., 2007 for a related result. 
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Table 3 displays a summary of results from the empirical identification of strategies. The 

data suggest that subjects acted as if following heterogeneous strategies. The four largest clusters 

of classified subjects acted as if having adopted a strategy from one of four main classes of 

strategies, which we denoted “systematically cooperate,” “systematically defect,” “forgiving,” 

and “grim trigger”. The most common behavior was consistent with “systematically cooperate,” 

though it leaves unexplained about half or more of the subjects. Interestingly, subjects adopting 

unconditional strategies greatly outnumbered those using conditional ones. Moreover, twice as 

many subjects selected a strategy with cooperation as the initial action, as opposed to an initial 

defection. In sum, the data suggest the existence of heterogeneity in the strategies followed by 

subjects and a “preference” for strategies that, roughly speaking, are more cooperative. 

   As a robustness check, Table 3 reports the strategy-fitting procedure run on three disjoint 

subsamples: observations in which opponents (i) cooperated as well as defected, (ii) always 

cooperated, (iii) always defected. Not surprisingly, subjects’ behavior was more predictable in a 

stationary environment. The fraction of classified individuals grows from 78% (317 out of 406) 

in subsample (i) to 94% (88 out of  94) in subsamples (ii) and (iii). Subsample (i) is clearly the 

most useful for the purpose of identifying strategies, and Result 5 is robust when we only 

consider subsample (i). Among classified individuals, the grim trigger strategy was only the third 

most common strategy (22.7%). Instead, behavior consistent with “systematically cooperate” had 

the highest total fit and classified 45.8% of individuals. Conversely, “systematically defect” 

classified 33.4% of the individuals.  

To sum up, the strategy fitting analysis uncovered significant heterogeneity in subjects’ 

behavior, suggesting the existence of behavioral types. Only a minority of subjects acted as if 

using grim trigger (see also Offerman et al., 2001), while a significant fraction of participants 
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exhibited unconditional behavior, i.e., played an action that was fixed and independent of the 

opponents’ actions. This suggests the existence of heterogeneous types among our subjects, 

which is in line with findings in the experimental literature on finitely repeated games (Houser et 

al., 2004), indefinitely repeated games (Engle-Warnick et al., 2004), and individual choice 

experiments (El-Gamal and Grether, 1995). 

Up to this point we have analyzed data aggregated across cycles. Further information can be 

gathered by extending the analysis to study dynamic patterns of choices. 

 

Result 6. Individual behaviour changed with experience: 81% of participants changed strategy 

from cycle to cycle. Yet experience did not lead to the general adoption of any specific strategy. 

Recall that each participant in the experiment generates five observations on strategies, i.e., five 

individuals, one per cycle. If a given strategy q fits all five observations generated by a 

participant, then we say that strategy q classifies that participant. When we follow each 

participant across cycles, the data yields a very strong result. Only 19 out of 100 participants can 

be classified according to the same strategy in all cycles. Of these, 11 and 7 can be classified as 

playing “systematically cooperate” and “systematically defect,” while only 1 subject adopted a 

steady behavior consistent with grim trigger. This suggests that most participants experimented 

with various strategies across cycles perhaps in an effort to search for a strategy that is a “best 

response” to play experienced in earlier cycles. In principle,  the possibility to experiment with 

strategies across cycles could improve the chances to reach full cooperation in later cycles. 

However the data show this was not the case, despite the fact that the economies had only four 

participants. Local interactions and anonymity proved to be frictions sufficient to put full 

cooperation out of reach.  
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The presence of a learning pattern is confirmed by the analyses of decision times. Decision 

times display two major patterns (see Table 4). The mean decision time is much longer in cycle 1 

than other cycles, which suggest learning takes place (9.50 seconds in cycle 1 vs. 2.2 seconds in 

cycle 5). Also, within each cycle the mean decision time is much longer in period 1 than other 

periods (13.53 vs. 3.18 seconds), which suggests that the initial decision in a cycle is the most 

difficult to make. Both patterns emerge when subjects choose either C or D in period 1, which 

suggests that subjects choose a strategy in the first period of a cycle, thus they need to spend 

more time thinking. A longer decision time in period 1 of later cycles may reflect 

experimentation with strategies across cycles.  

[Table 4 approximately here] 

What can explain the persistent heterogeneity in strategy adoption found in the data? Unlike 

in two-person economies, in four-person economies a small group of subjects can profitably 

coordinate on cooperation. To fix ideas, given the parameterization chosen, a subject can earn 

more than the minmax payoff even if two persons in the economy always defect. The key 

requirement is that the remaining subject must cooperate sufficiently often. If two participants 

always defect, then a subject who always cooperates earns more than the minmax payoff as long 

as the third participant cooperates at least 75% of the times. This suggests that a stable subset of 

systematic cooperators could emerge even if there are systematic defectors. The empirical 

relevance of these behavioral considerations is well illustrated in the result that follows. 

 

Result 7. Systematic defectors and systematic cooperators coexisted within most economies. 

To provide evidence for Result 7, we categorize each of the 125 experimental economies 

depending on the classification of individuals within each economy. Individuals classified as 
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systematic cooperators coexisted with systematic defectors in more than half of the economies.14 

In addition, we categorize the 212 individuals classified by the “systematic cooperation” class 

according to their presence within each economy. Only 41 individuals were the sole systematic 

cooperator in the economy, while 56 individuals were found in economies where everybody 

systematically cooperated. The remaining 115 individuals systematically cooperated even if not 

everybody else did the same in their economy.15 In other words, the data show that oftentimes 

subjects unconditionally cooperated even in economies where defectors were present, which 

supports the view that subgroups successfully coordinated on cooperation. As earlier noted, 

disciplining a lone, anonymous defector by punishing future random opponents impairs the 

possibility of coordinating on cooperation with the others. This provides a behavioral 

justification for why grim trigger is not the strategy of choice in our experimental economies. 

Indeed, Results 7 shows that persistent opportunistic behavior goes often unpunished. 

    Clearly, there may be other reasons for the observed behavior, such as other regarding 

preferences. Other-regarding preferences may support or hinder the use of “systematically 

cooperate” strategies depending on what motivates subjects. On the one hand, altruistic motives 

and positive reciprocity may prevent subjects from punishing after observing a defection because 

punishment destroys surplus and harms cooperators and defectors alike. On the other hand, 

positional motives reinforce the urge to punish after a defection in order to prevent others from 

getting ahead in terms of relative share of income.  

                                                 
14 More precisely, in only 3 economies we could not classify individuals as either systematic cooperators or 
systematic defectors; in 64 economies both classes of strategies were observed; in 39 economies there were 
systematic cooperators but no systematic defectors; and in 19 economies the reverse was true. The average length of 
cycles in each of these four categories of economies was, respectively, 32.7, 11.8, 18.2, and 22.4 periods. 
15 More specific evidence comes from the following data. Subjects who followed “systematically cooperate” faced 
environments characterized by different degrees of cooperation: 48 subjects faced 100% cooperation; 61 faced a 
cooperation rate between 67% and 99%; 64 subjects faced a cooperation rate between 33% and 66%, and 39 faced 
less than 33% cooperation. This means that the expected payoff for a subject who followed “systematically 
cooperate” is at least 15.3 points, which is higher than the minmax payoff of 10. 
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VII. Final Remarks  

This study offers novel insights about subjects’ behavior in decentralized trading 

environments where mutual gains from cooperation coexist with incentives to behave 

opportunistically. We designed experimental economies where four persons interacted locally 

and anonymously. Subjects faced an indefinite sequence of prisoner’s dilemmas played in pairs 

but were not in a stable partnership as they were randomly rematched after every encounter. 

Because the interaction was anonymous, individual reputation was impossible to build and 

coordination was harder to achieve than in two-person economies, which have been the focus of 

previous experiments with indefinite interaction. 

We empirically study equilibrium and strategy selection in supergames. The empirical 

analysis accounts for equilibrium strategies, such as grim trigger and unconditional defection, as 

well as non-equilibrium strategies, such as tit-for-tat and unconditional cooperation. The 

experiment facilitates the empirical identification of individual strategies thanks to substantially 

longer sequences of play than previous work, a design based on four-person economies, and a 

diverse subject pool (college students, MBA students, and white-collar workers).  

Our conclusions about strategy selection crucially depend on whether the empirical analysis 

is conducted aggregating data from all subjects or at the individual level, disaggregating data 

subject by subject. At the aggregate level, results are compatible with the use of the grim trigger 

strategy. There is a strong initial attempt to coordinate on cooperation and defections triggered a 

permanent downward shift in cooperation levels. This finding is coherent with folk theorems. 

However, at the individual level, the conclusion is different: grim trigger is not the prevalent 

norm of behavior. In our experiment, subjects avoided the permanent, economy-wide 

punishment prescribed by grim trigger schemes.  
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Why were these schemes uncommon among strangers? Grim trigger is a theoretically 

appealing way to decentralize punishment because it prescribes permanent economy-wide 

defection, which is the harshest possible threat. However, the data show that there was 

substantial heterogeneity in strategy adoption, which persisted with experience. Subjects tried to 

reach a cooperative outcome but did so without being able to coordinate their strategy choices, 

independently searching for suitable strategies. In such an environment, adopting grim trigger 

does not make full cooperation more likely. In fact, if a subgroup of subjects wants to coordinate 

on cooperation, then playing grim trigger may jeopardize such coordination attempts and simply 

drag the economy towards full defection. This may explain why grim trigger was uncommon in 

the data and why systematic defection did not crowd out systematic cooperation. 

These considerations point to a weak predictive power of theories based on homogeneous 

agents who adopt strategies of uncompromising, contagious punishment. They also suggest that 

empirical findings based on two-person experimental economies cannot be easily generalized to 

larger economies. In particular, the widespread adoption of grim trigger documented in two-

person economies did not emerge in our four-person economies where reputation-based 

strategies were unavailable. In turn, this suggests care must be taken in drawing immediate 

conclusions from applications based on folk theorems. For example, theories that trace the 

efficiency frontier by presuming everyone follows a norm of unforgiving, universal punishment, 

have low descriptive power vis-à-vis our experiment. The possibility to resort to norms of 

decentralized, contagious punishment did not stave-off opportunistic behavior in our various 

subject populations. On the contrary, most subjects were willing to forgive a defection, to 

different degrees. Some reacted to a defection with a temporary punishment, while others 

systematically cooperated even in the presence of relentless defectors. 
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These findings suggest further experimental and theoretical work lies ahead. On the one 

hand, it is necessary to empirically investigate whether the discontinuity in behavior observed 

when going from two-person to larger economies, is due to the anonymity of interaction, the lack 

of stable partnership, the size of the economy, or something else. On the other hand, a theoretical 

challenge remains, which is to increase the descriptive power of folk theorems. 
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Tables and Figures 
 
 

 (A) Notation in the theoretical analysis  (B) Parameterization of the experiment 

Table 1: The stage game 
 
 

Strategies starting with 
C=cooperate 

  Strategies starting with 
D=defect 

 

Strategy Strategy Set N  Strategy Strategy Set N 
11111 168 00000 111 
11110 178 01000 109 
11101 166 00100 94 
11100 

Systematically cooperate 

188 01100 

Systematically defect 

98 
11000 Grim trigger 134 00001 26 
11010 113 00010 11 
11011 103 00011 5 
11001 

Forgiving 
107 01001 25 

10111 10 01010 13 
10110 13 01011 7 
10101 13 00101 21 
10100 21 00110 9 
10011 2 00111 3 
10010 9 01101 22 
10001 7 01110 11 
10000 

Opportunistic 

24 

 

01111 

Opportunistic 

6 

Table 2: Strategies and strategy sets 
 

Notes: Each of the 32 strategies is coded as a five-element vector. Each element corresponds to a state, i.e., an action 
to be taken, with C =1 and D=0. The first element is the initial state. The remaining four elements identify the state 
reached following current play (equivalently, the action to be implemented in the next round). Denote c and d the 
actions of the opponent. The second element in the vector identifies the state reached if (C,c) is played. The 
remaining elements identify the states reached given play (C,d), (D,c) and (D,d), respectively. For instance the 
automaton 11010 represents “tit-for-tat.” It starts with C, prescribes play D in two instances, if (C,d) or (D,d) are the 
outcomes (third and fifth element in the sequence), and prescribes play C if (C,c) or (D,c) are the outcomes. The first 
four automata in each column are called “systematically cooperate” and “systematically defect” because they 
prescribe the automaton should remain always in the initial state (cooperate or defect) unless a random shock 
generates a transition to an incorrect state. For instance, with 11110 the agent starts in state C and remains in C; state 
D can be reached only by mistake, in which case the player remains in D only if her opponent plays d (last element 
of the vector). Clearly the automaton 11111 is unconditional cooperation (always cooperate), i.e., does not allow for 
mistakes or experimentation. The same holds for unconditional defection, 00000 (always defect). 

Player 1/ 
Player 2 

Cooperate 
(Y) 

Defect 
(Z) 

 Player 1/ 
Player 2 

Cooperate 
(Y) 

Defect 
(Z) 

Cooperate 
(Y) 

y,y  l,h  
 Cooperate 

(Y) 
25, 25 5, 30 

Defect 
(Z) 

h,l z,z  
 Defect 

(Z) 
30, 5 10, 10 
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 p=0.05  p=0 

 N median response time average profit  N average profit 

All Observations 500 3.42 18.06  500 18.06 

 C in period 1 336 3.51 17.68  336 17.68 

 D in period 1 164 2.93 18.85  164 18.85 

 Classified 405 3.09 18.74  265 19.82 

  C in period 1 272 3.38 18.28  173 19.45 

   -systematically cooperate 212 3 18.6  134 19.92 

   -forgiving 130 4.33 20.52  90 22.44 

   -grim trigger 134 3.45 20.79  92 22.18 

   -opportunistic 44 4.35 14.4  28 15.2 

  D in period 1 133 2.56 19.67  92 20.5 

   -systematically defect 120 2.49 19.51  86 20.33 

   -opportunistic 48 5.09 21.87  28 24.16 

 Unclassified 95 4.26 15.18  235 16.08 

  C in period 1 64 4.32 15.11  163 15.8 

  D in period 1 31 4.2 15.33  72 16.74 

Opponents play both C & D 406 3.5 17.12  406 17.12 

 Classified 317 3.41 17.65  182 18.13 

  C in period 1 201 3.84 16.9  105 17.26 

   -systematically cooperate 145 3.41 16.69  70 16.71 

   -forgiving 68 8 17.16  28 18.53 

   -grim trigger 72 4.85 17.86  30 18.02 

   -opportunistic 32 3.45 16.63  19 18.26 

  D in period 1 116 2.54 18.95  77 19.31 

   -systematically defect 106 2.46 18.89  74 19.31 

   -opportunistic 31 5.54 20.39  13 21.35 

 Unclassified 89 4.06 15.24  224 16.31 

  C in period 1 62 4.21 15.07  158 15.94 

  D in period 1 27 3.44 15.63  66 17.17 

Opponents always play C 75 2.2 25.83  75 25.83 

 Classified 73 2.14 25.79  73 25.79 

  C in period 1 60 2 25.06  60 25.06 

   -systematically cooperate 59 2 25  59 25 

  D in period 1 13 2.86 29.16  13 29.16 

   -systematically defect 10 5.01 30  10 30 

 Unclassified 2 4.94 27.23  2 27.23 

  C in period 1 1 4.55 26.13  1 26.13 

  D in period 1 1 5.33 28.33  1 28.33 

Opponents always play D 19 6.84 7.52  19 7.52 

 Classified 15 6.84 7.44  10 7.03 

  C in period 1 11 7.6 6.63  8 6.29 

   -systematically cooperate 8 8.05 5.96  5 5 

  D in period 1 4 2.37 9.64  2 10 

   -systematically defect 4 2.37 9.64  2 10 

 Unclassified 4 6.56 7.83  9 8.06 

  C in period 1 1 8 6.67  4 7.33 

  D in period 1 3 5.43 8.22  5 8.65 
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Table 3: Analysis of individual strategies 

Notes: The unit of observation is the sequence of all choices of a subject in a cycle, i.e., the subject’s behavior. 
When no confusion arises we refer to such a sequence as one observation. There are 500 observations. 

An observation is classified according to strategy set Q, if at least one strategy qQ fits, i.e.: (i) the initial action is 
correctly predicted by q; (ii) q has the largest consistency score (see explanation in text) among all strategies in Q; 
and (iii) when we allow for random transitions, the probability of observing n or more inconsistent actions is smaller 
than 10% given the experimentation parameter p=0.05. Otherwise, the observation is “Unclassified.” Clearly, if we 
do not allow for random transitions, i.e. p=0, then item (iii) is modified as follows: the probability of observing any 
inconsistent action must be zero. 

 

 

 

 

 

 Cycle  

 1 2 3 4 5 Total 

All Observations      500 

Cooperation in all periods (in %) 53.9 54.3 48.3 57.6 54.6 53.8 

Cooperation in period 1 (in %) 74.0 64.0 65.0 68.0 65.0 67.2 

Coordination on cooperation (in %) 33.3 31.0 30.6 40.3 34.5 33.9 

Average profit per period (in points) 18.09 18.15 17.24 18.64 18.19 18.06 

Median decision time (in seconds) 9.50 3.96 2.37 2.00 2.20 3.42 

Switch frequency (in %) 33.2 25.3 25.6 23.9 32.8 28.2 

Classified observations (in %) 76.0 83.0 69.0 89.0 88.0 81.0 

      of which: classified by grim trigger 23.0 18.0 25.0 31.0 37.0 26.8 

Subsample: opponents play both C and D      406 

Classified observations (in %) 75.3 81.9 61.7 87.3 85.3 78.1 

      of which: classified by grim trigger 18.8 14.9 13.6 18.3 24.0 17.7 

 

Table 4: Summary statistics by cycle 
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          a - Automaton   b - Automaton with random transitions 

 
 
Grim Trigger 

 
 

 
Tit-for-tat 
 
 

 
Figure 1: Strategy representation using automata (C=cooperate, D=Defect) 

 

 
Figure 2: Aggregate response to an observed defection 
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Figure 3: Fraction of classified observations 
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Figure 4: Volatility of play 

 

Notes: 500 observations in total (405 classified, and 95 unclassified). Volatility of play at the individual level is 
defined as the frequency of switch between cooperation and defection choices. By definition, switch frequency is 
equal to zero for cycles lasting only one period. 
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         Appendix  
 

Appendix A 
 

Table A1 reports the results from a probit regression that explains the individual choice to 

cooperate (1) or not (0) using two groups of regressors. First, we introduce several dummy 

variables that control for fixed effect (cycles, periods within the cycle, individuals), as well as for 

the duration of the previous cycle. Second, we include a set of regressors used to trace the 

response of the representative subject in the periods following an observed defection. For 

simplicity, we limit our focus to the five periods following an observed defection. This 

specification is more general than tracing behavior in periods 1-5 only, and it allows us to shed 

light on the type of strategy employed by the representative subject. Of course, there are several 

ways to choose regressors in order to trace strategies. Our specification has the advantage to 

detect whether subjects followed theoretically well-known strategies, such as grim trigger or tit-

for-tat (Robert Axelrod, 1984). Indeed, we include a “grim trigger” regressor, which has a value 

of 1 in all periods following an observed defection and 0 otherwise. We also include five “lag n” 

regressors, which have a value of 1 only in one period following an observed defection and 0 

otherwise. For example, the “lag 1” regressor takes value 1 exclusively in the period after the 

defection (0 otherwise). The “lag 2” regressor takes value 1 exclusively in the second period 

following a defection (0 otherwise). And so on.  

If the representative subject switched from a cooperative to a punishment mode after seeing a 

defection, then the estimated coefficient of at least one of the six strategy regressors should be 

negative. For example, if subjects punished for just two periods following a defection, then the 

sum of the estimated coefficients of the grim trigger regressor and the ”lag n” regressors should 

be negative for the first and second period following a defection, and zero afterwards.  

Figure 1 in the text illustrates the marginal effect on the frequency of cooperation in the 

periods that followed an observed defection.
16

 The focus on the five-period lags is for 

convenience in showing relevant patterns. The representation for “any more than five” period 

lags is based on the marginal effect of the grim trigger regressor only.  The representation for 

period lags 1 though 5 is based on the sum of the marginal effects of the grim trigger regressor 

and the ”lag n” regressor with the appropriate lag. The L-shaped pattern of response to an 

observed defection suggests a persistent downward shift in cooperation levels immediately after 

a defection. The grim trigger coefficient estimate is significantly different than zero at a 1 

percent level.
17

 While there is evidence that the representative subject employed a reactive 

strategy, not all observed actions fit this type of strategy. 

                                                 
16

 Figure 1 is based on Table A1 using the coefficient estimates coding for reactive strategies. Zero-period lag is 

exogenously set at 0 percent. Marginal effects for the tit-for-tat regressors are computed for grim trigger regressor 

set at 1 (i.e. defection) 
17

 Table A1 reports that the actual length of the previous cycle influenced the propensity of participants to cooperate 

in period 1—the longer the previous cycle, the higher the cooperation level in the first period of the current cycle. 
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Table A1: Probit regression on individual choice to cooperate – marginal effects(*) 

Dependent variable:    

1= cooperation, 0=defection All Periods Period 1 

reactive strategies:   

grim trigger -0.448***  

 (0.051)  

lag 1 0.068***  

 (0.016)  

 lag 2 0.039  

 (0.028)  

 lag 3 0.042  

 (0.026)  

 lag 4 0.020  

 (0.028)  

 lag 5 -0.002  

 (0.032)  

cycle dummies:   

Cycle     2 0.104** -0.073* 

 (0.043) (0.039) 

Cycle     3 0.044** -0.064** 

 (0.018) (0.032) 

Cycle     4 0.108*** -0.101* 

 (0.042) (0.058) 

Cycle     5 0.038 -0.080* 

 (0.046) (0.048) 

duration of previous cycle 0.000 0.005** 

 (0.001) (0.002) 

Observations 7440 500 

 
 

 

                                                 
(*) Marginal effects are computed at the mean value of regressors. Robust standard errors for the marginal effects are 

in parentheses computed with a cluster on each session; * significant at 10%; ** significant at 5%; *** significant at 

1%. For a continuous variable the marginal effect measures the change in the likelihood to cooperate for an 

infinitesimal change of the independent variable. For a dummy variable the marginal effect measures the change in 

the likelihood to cooperate for a discrete change of the dummy variable. First periods of each cycle are excluded 

(except in the last column). Individual fixed effects are included in columns “NP” and “PP”, and period fixed effects 

are included in all but the last column. These fixed effects are not reported in the table (individual dummies; period 

dummies: 3, 4, 5, 6-10, 11-20, 21-30, >30). Duration of previous cycle was set to 20 for cycle 1. 




