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Abstract

In this paper, we develop a convexification tool that enables construction of convex hulls for
orthogonal disjunctive sets using convex extensions and disjunctive programming techniques.
A distinguishing feature of our technique is that, unlike most applications of disjunctive pro-
gramming, it does not require the introduction of new variables in the relaxation. We develop
and apply a toolbox of results that help in checking the technical assumptions under which the
convexification tool can be employed. We demonstrate its applicability in integer programming
by deriving the intersection cut for mixed-integer polyhedral sets and the convex hull of certain
mixed/pure-integer bilinear sets. We then develop a key result that extends the applicability
of the convexification tool to relaxing nonconvex inequalities, which are not naturally disjunc-
tive, by providing sufficient conditions for establishing the convex extension property over the
non-negative orthant. Then, we illustrate the convexification tool by developing convex hulls
for certain polynomial covering sets with non-negative variables. We specialize the results to
bilinear covering sets and use them to derive a tight relaxation of the bilinear covering sets over
a hypercube. We use the orthogonally disjunctive characterization to show that the derived
relaxation is at least as tight as the standard factorable relaxation for the same inequality, and
derive necessary and sufficient conditions under which it is strictly tighter. Finally, we present
a preliminary computational study on a set of randomly generated bilinear covering sets that
indicates that the derived relaxation is substantially tighter than the factorable relaxation.

1 Introduction and Motivation

Finding globally optimal solutions to nonconvex problems is a challenging problem that has received
much attention in the last few decades; see Neumaier [19] for a survey of the existing solution meth-
ods. Nonlinear branch-and-bound is one such method that has been implemented successfully in vari-
ous global optimization software; see Adjiman et al. [1], Sahinidis and Tawarmalani [24], LINDO Sys-
tems Inc. [17], and Belotti et al. [8]. The branch-and-bound method typically bounds the nonconvex
optimization problem by solving its convex relaxations over successively refined partitions (see Falk
and Soland [13] and Horst and Tuy [15]). For factorable problems–problems involving functions that
can be written as recursive sums and products of univariate functions–McCormick [18] proposed a
composition theorem that allows automatic construction of convex relaxations provided that tight
concave and/or convex envelopes are known for the intrinsic nonlinear terms. McCormick’s relax-
ation is an instance of a commonly used technique for deriving convex relaxations for nonconvex
problems that relaxes inequalities of the form f(x) ≥ r by f̄(x) ≥ r, where f̄(x) is a concave over-
estimator of the function f(x). There is a significant amount of literature that develops techniques
for deriving tight overestimators for various classes of functions; see Tawarmalani and Sahinidis [28]
and Bliek et al. [9] for a more detailed treatment. However, the current literature rarely considers
the right-hand-side of the inequality. More precisely, the above technique relaxes the hypograph of
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f(x) instead of relaxing the appropriate upper-level set. As a result, the derived relaxations can be
weak. For an illustration of the difference, consider the set S defined as:

S =
{

(x, y, z) ∈ R3
+

∣

∣ xy + z ≥ r
}

,

where r > 0. It can be easily seen that S is not convex since both
(√
r,
√
r, 0
)

and (0, 0, r) belong to S
while their convex combination with a weight of 1

2 on each point does not. Therefore, if the constraint
defining S was to appear as one of the constraints in a problem, local optimization techniques would
not be guaranteed to find a globally optimal solution for the problem. However, because this set
belongs to the general family of factorable programs, it can be relaxed using McCormick’s scheme.
More generally, if traditional techniques were used to derive a convex relaxation of S, a concave
overestimator f̄ of the function f(x, y, z) = xy+z would first be obtained. Observe that the concave
envelope of this function over the non-negative orthant is infinite as long as x and y are both positive.
The resulting convex relaxation of S is

{

(x, y, z) ∈ R3
+

∣

∣ x, y > 0
}

∪
{

(x, y, z) ∈ R3
+ | z ≥ r, xy = 0

}

.
If in addition, the concave overestimator is required to be upper-semicontinuous, as is typically the
case, or even if the relaxation is required to be a closed set, then the relaxation would be R3

+. In
other words, standard relaxation schemes will essentially drop the defining constraint.

In this paper, we propose a scheme that produces tighter convex approximations by considering
the right-hand-side of the constraint. In particular, for the set S presented above, our scheme
produces the following convex relaxation

RS =

{

(x, y, z) ∈ R3
+

∣

∣

∣

∣

√

xy

r
+
z

r
≥ 1

}

,

which is a much tighter approximation than R3
+. Considering this simple example, we can make

three interesting observations. First, the relaxation, RS, is nonlinear. This is in contrast to cur-
rent implementations of nonlinear branch-and-bound that typically construct linear relaxations for
multivariate terms (see Tawarmalani and Sahinidis [31]). Second, the form of the nonlinear cut is
surprising as it applies different functions to the different terms of the initial inequality. For S, the
first term is modified using a square-root after being divided by r, while the second is simply divided
by r. Third, RS is not only a convex relaxation of S, but it is in fact (as will be shown later) the
convex hull of S. These observations generalize to many polynomial covering sets. Surprisingly, the
convex hull for these sets can be expressed in a simple form without introducing new variables while
developing the concave envelope of the corresponding polynomial can be much harder.

The convex hull representation for polynomial covering sets, even though interesting in itself,
arises from a much more general theory of orthogonal disjunctions that we develop in this paper. To
provide an example, consider the set S again. We will show that the convex hull of S is determined
by the points of S that either belong to the half-plane (x, y, 0), where (x, y) ∈ R2

+ or to the half-
line (0, 0, z), where z ∈ R+. In other words, the set S satisfies the convex extension property (see
Tawarmalani and Sahinidis [29]) in which the important subsets belong to orthogonal subspaces.
Because such a convex extension property holds, it is natural to expect that one could build a
higher dimensional description of the convex hull of S using disjunctive programming arguments; see
Rockafellar [22] and Balas [5]. Disjunctive programming has been used to develop tight relaxations
and cutting planes in integer, nonlinear, and robust optimization; see [4, 26, 27, 10, 30, 7, 3,
25]. Unlike this paper, the literature on disjunctive programming formulations, however, is mostly
focused on naturally disjunctive sets. Cutting planes based on disjunctive formulations, are typically
linear and derived by solving separation problems over extended formulations; see Cornuéjols and
Lemaréchal [11]. One interesting observation in this paper is that, as long as the disjunctive terms
are orthogonal and a few technical conditions are satisfied, there is no need to introduce additional
variables. Furthermore, the convex hull of S can be easily expressed in closed-form using the
representations of the convex hull of S in each of the two orthogonal subspaces, namely

√

xy
r

≥ 1 and
z
r
≥ 1. We establish a much more general set of conditions under which the argument evoked above

is correct, allowing the use of both right-hand-side and left-hand-side information in the derivation
of convex relaxations for nonlinear programming. Our results rely on the ability to prove that a
convex extension property holds over orthogonal disjunctions and the ability to derive closed form
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expressions of convex hulls (possibly in a higher dimensional space) over each of the subspaces. We
also describe large families of problems for which our construction applies and yields stronger convex
approximations than those currently used in the nonlinear branch-and-bound solvers.

Branch-and-bound codes typically require bounds on variables for constructing relaxations. Even
though this requirement cannot be relaxed in general, the set S is an instance where tight relaxations
can be constructed in the absence of upper bounds on the variables. As branch-and-bound proceeds,
the partitions are typically refined, and the algorithm imposes upper and lower bounds on the
variables consistent with the relevant partition. Therefore, subsequent to branching, one may wish
to relax a subset of S such as follows:

S′ =
{

(x, y, z) ∈ [lx, ux] × [ly, uy] × [lz, uz]
∣

∣ xy + z ≥ r
}

.

We show that by convexifying the orthogonal disjunctions we can construct relaxations for bilinear
covering sets that are at least as tight as McCormick’s relaxation. The relaxations are strictly tighter
when the bounds on the variables are loose or the variable bounds form a hypercube whose lower
corner is almost feasible. For relaxations used in the branch-and-bound algorithm, the second feature
is very desirable since the algorithm often constructs small boxes around near-optimal solutions
before deriving a bound that is sufficiently strong to fathom the search.

In Section 2, we describe a tool to obtain the convex hull of orthogonal disjunctive sets. The result
can be evoked under certain technical conditions. We provide tools to verify these assumptions. We
also provide counterexamples to show the need for some of the assumptions. The intersection/split
cut for mixed integer linear sets is shown to be a special case of our general convexification tool.
We illustrate the application of the tool in nonlinear integer programming by convexifying a bilinear
pure/mixed-integer set. Nonconvex inequalities in continuous variables are not naturally disjunctive.
For such inequalities, we establish sufficient conditions under which the convex extension property
holds over the non-negative orthant. For problems with bounded variables, the convex extension
property might not hold even when it holds with unbounded variables. However, our procedure can
typically be adapted to yield strong cuts even in the presence of bounds. The idea is to tighten
the nonlinear inequality outside of the bounds in such a way that the convex extension property
continues to hold and then to apply our main convexification result. In Section 3, we obtain convex
hull formulations of certain polynomial covering sets. These convex hull representations have many
applications in factorable nonlinear programming. In addition, they serve as an example of the
general theoretical framework of Section 2. In particular, we prove concavity of the ratio of certain
monomials over the non-negative orthant, verify that the convex extension property holds for the
polynomial covering sets, and apply our convexification tool over orthogonal disjunctions. We then
refine our results in the context of bilinear covering sets to build new relaxations. In this context,
we incorporate bound information, using the ideas of Section 2, by considering a linear extension of
the defining bilinear function outside the hypercube formed by the variable bounds. We show that
our relaxation is at least as tight as the factorable relaxation and provide precise conditions under
which it is strictly tighter. In Section 4, we present the results of a preliminary computational study
on randomly generated instances of the bilinear covering set. Our computations demonstrate that
the quality of the relaxation derived in Section 3 for the bilinear covering set is significantly better
than the standard factorable relaxation. We summarize the contributions of this work in Section 5
and conclude with remarks and directions for future research.

2 Convexification of Orthogonal Disjunctive Sets

In this section, we first introduce and prove a general result that exposes the closed-form convex
hull inequality description of the disjunctive union of a finite number of sets defined over subspaces
that are orthogonal to each other. This result also applies to non-disjunctive sets provided that their
convex hulls are entirely defined by their restrictions over a finite number of orthogonal subspaces.
Next, we illustrate the utility of this result in finding convex hull descriptions. Simultaneously,
we discuss the need for certain seemingly technical assumptions in the statement of the result. In
particular, we discuss each one of the four assumptions of the theorem and describe, with examples,
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situations where they are satisfied. For some of the assumptions, we establish sufficient conditions
that are simple to verify. We also show later that the cuts that yield the convex hull, under
the specified technical conditions, continue to produce valid inequalities even when some of the
conditions are not satisfied. Throughout, we demonstrate the generality and applicability of our
convexification result by deriving new convex hull descriptions of various continuous, mixed, and
pure integer bilinear covering sets, and providing an alternate derivation of the classic intersection
cut derived in the integer programming literature. Applications of this result to polynomial covering
sets will be discussed in Section 3.

In the following, given a set S, we represent its convex hull by conv(S), its closure by cl(S),
and its projection on the space of z variables by projz S. For a closed convex set, S, 0+(S) denotes

the set of its recession directions. When we display equations, we sometimes write min

{

f(z)
g(z)

}

to

denote min{f(z), g(z)}.

Theorem 2.1. Let S ⊆ R
P

i di and for all i ∈ N = {1, . . . , n}, let Si ⊆ S. Let the points z of S be
written as z = (z1, . . . , zi, . . . , zn) ∈ S, where zi ∈ Rdi . Assume that:
(A1) if (z1, . . . , zi, . . . , zn) ∈ Si, then zj = 0 for ∀j 6= i,
(A2) for any z ∈ S, there exists χi ∈ conv(Si), i ∈ I ⊆ N , such that z ∈ conv

(
⋃

i∈I χi

)

,

(A3) conv(Si) ⊆ projz Ai ⊆ cl
(

conv(Si)
)

, where, for each i ∈ {1, . . . , n},

Ai =

{

(

0, zi, ui, 0
)

∣

∣

∣

∣

t
ji

i (zi, ui) ≥ 1, ∀ji ∈ Ji,

vki

i (zi, ui) ≥ −1, ∀ki ∈ Ki,

wli
i (zi, ui) ≥ 0, ∀li ∈ Li

}

.

(1)

Assume that tji

i , vki

i , and wli
i are positively-homogenous functions, i.e., for λ > 0,

λt
ji

i

(

(zi, ui)

λ

)

= t
ji

i (zi, ui), λv
ki

i

(

(zi, ui)

λ

)

= vki

i (zi, ui), λw
li
i

(

(zi, ui)

λ

)

= wli
i (zi, ui).

(A4) projz Ci is a subset of the recession cone of cl conv (
⋃n

i=1 Si), i.e., for all i,

proj
z
Ci ⊆ 0+

(

cl conv

(

n
⋃

i=1

Si

))

where

Ci =
{(

0, zi, ui, 0
) ∣

∣ t
ji

i (zi, ui) ≥ 0, ∀ji ∈ Ji,

vki

i (zi, ui) ≥ 0, ∀ki ∈ Ki,

wli
i (zi, ui) ≥ 0, ∀li ∈ Li

}

.

Let

X =

{

(z, u)

∣

∣

∣

∣

∑

i∈N

t
ji

i (zi, ui) ≥ 1, ∀ji ∈ Ji,

∑

i∈I

vki

i (zi, ui) ≥ −1, ∀I ⊆ N, ∀ki ∈ Ki,

t
ji

i (zi, ui) + vki

i (zi, ui) ≥ 0, ∀i, ∀ji ∈ Ji, ∀ki ∈ Ki,

t
ji

i (zi, ui) ≥ 0, ∀i, ∀ji ∈ Ji,

wli
i (zi, ui) ≥ 0, ∀i, ∀li ∈ Li

}

.

(2)

Then, conv(S) ⊆ projz X ⊆ cl conv(S). If in addition, ∀i ∈ N , projz Ai is closed and projz Ci =
0+
(

cl conv(Si)
)

, then projz X = cl conv(S).
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Before proving Theorem 2.1, we briefly comment on its assumptions, its practical importance,
and its applicability. In Assumption (A2), we impose that any point in S can be expressed as a
convex combination of points in some of the Sis. This implies that only the subsets Sis are needed
when computing the convex hull of S. In Assumption (A1), we require that these subsets are
orthogonal to each other and aligned along the principal axes. In Assumption (A3), we require that
an inequality description of the convex hull of each one of the sets Si be known. Note that this
inequality description might make use of an extended formulation (using the additional variables ui).
The assumption that the right-hand-sides of all the inequalities are either 1, 0, or −1 is without loss
of generality as inequalities with nonzero right-hand-sides can be rescaled to satisfy this assumption.
Note also that Theorem 2.1 requires that all inequalities be defined using positively-homogeneous
functions. We will comment further on this assumption after the proof of the theorem and describe
a technique for satisfying this assumption in Section 3. We will also show later that this assumption
is typically not needed to prove the validity of the cuts derived in Theorem 2.1. In Assumption
(A4), we impose, in essence, that the recession directions of each one of the sets Ai are also the
recession directions for the closure convex hull of the union of the Sis. Under these four assumptions,
we show that an inequality description of the convex hull of S can be obtained by combining in a
systematic way the inequalities arising in the convex hull descriptions of the Sis. Note however that,
for reasons that will be described later, this inequality description might describe a superset of the
desired convex hull. However, the superset will never be larger than the closure convex hull of S,
which is sufficient for all practical purposes.

Proof. Claim 1: We claim that conv(S) = conv (
⋃n

i=1 Si). We first show that conv(S) contains
conv (

⋃n
i=1 Si). Clearly, for all i, Si ⊆ S. Therefore, S ⊇ ⋃n

i=1 Si and, so, conv(S) ⊇ conv (
⋃n

i=1 Si).
Now, we show that (A2) implies that conv(S) ⊆ conv (

⋃n
i=1 Si). Let z ∈ S. There exists I ⊆ N

and χi ∈ conv(Si) such that z ∈ conv
(
⋃

i∈I χi

)

⊆ conv (
⋃n

i=1 Si). Claim 1 is thus proved and,
therefore, we can use disjunctive programming techniques to compute the convex hull of S. Using
these techniques, we now show that it is possible to construct, in a closed-form, a set X that contains
conv (

⋃n
i=1 Si) and is itself contained in cl

(

conv (
⋃n

i=1 Si)
)

.
For T ⊆ N , we define

RT (λT ) =

{

(zT , uT )

∣

∣

∣

∣

∑

i∈T

t
ji

i (zi, ui) ≥ λT ∀ji ∈ Ji

∑

i∈I

vki

i (zi, ui) ≥ −λT ∀I ⊆ T, ∀ki ∈ Ki

t
ji

i (zi, ui) + vki

i (zi, ui) ≥ 0 ∀i, ∀ji ∈ Ji, ∀ki ∈ Ki

t
ji

i (zi, ui) ≥ 0 ∀i, ∀ji ∈ Ji

wli
i (zi, ui) ≥ 0 ∀i, ∀li ∈ Li

}

.

In the remainder of this proof, whenever T is a singleton, say {i}, we will denote it as i itself. Also,
we define

Q =

{

(λ, z, u)

∣

∣

∣

∣

λi ≥ 0 ∀i ∈ N

(zi, ui) ∈ Ri(λi) ∀i ∈ N
n
∑

i=1

λi = λ1,...,n = 1

}

.

We next prove that X = projz,uQ and conv(S) ⊆ projz Q ⊆ cl conv(S). Clearly, together these
results imply that conv(S) ⊆ projz X ⊆ cl conv(S). First, we prove that X = projz,uQ. Given two
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disjoint subsets A and B of N , we consider

W =

{

(λA, λB , λA∪B, zA, uA, zB, uB)

∣

∣

∣

∣

λA ≥ 0

(zA, uA) ∈ RA(λA)
λB ≥ 0
(zB, uB) ∈ RB(λB)

λA + λB = λA∪B

}

,

and

P =

{

(λA∪B , zA∪B, uA∪B)

∣

∣

∣

∣

λA∪B ≥ 0

(zA∪B, uA∪B) ∈ RA∪B(λA∪B)

}

.

A straightforward sequential application of the following claim shows that when λ1, . . . , λn are
projected out from Q we obtain RN (1) = X .

Claim 2: If zA∪B = (zA, zB) and uA∪B = (uA, uB), then P is the set obtained when λA and λB

are projected out from W . Note that since A and B are disjoint and zA∪B ∈ R|Pi∈A di+
P

i∈B di| =

R|Pi∈A di| × R|Pi∈B di|, the definitions of zA∪B and, similarly, uA∪B are dimensionally consistent.
Claim 2 is verified by first substituting λB = λA∪B − λA and then projecting λA out using Fourier-
Motzkin elimination; see Theorem 1.4 in [33]. We substitute λB = λA∪B − λA in W to obtain:

λA ≥ 0
(zA, uA) ∈ RA(λA)
λA∪B − λA ≥ 0
(zB, uB) ∈ RB(λA∪B − λA).

On the one hand, note that the inequalities

t
ji

i (zi, ui) + vki

i (zi, ui) ≥ 0, (3)

t
ji

i (zi, ui) ≥ 0, (4)

wli
i (zi, ui) ≥ 0 (5)

for all i ∈ A ∪ B, ji ∈ Ji, ki ∈ Ki, and li ∈ Li remain untouched during projection since they are
independent of λA. On the other hand, the inequalities containing λA can be rewritten as:

min















∑

i∈A

t
ji

i (zi, ui)

λA∪B + min
B′⊆B

∑

i∈B′

vki

i (zi, ui)















≥ λA ≥ max















λA∪B −
∑

i∈B

t
ji

i (zi, ui)

− min
A′⊆A

∑

i∈A′

vki

i (zi, ui)















so that Fourier-Motzkin elimination is simple to perform. Observe that the constraints λA∪B −λA ≥
0 and λA ≥ 0 are represented in the above system respectively when A′ = ∅ and B′ = ∅. Projecting
λA out of the system, we obtain:

∑

i∈A∪B

t
ji

i (zi, ui) ≥ λA∪B (6)

∑

i∈A

t
ji

i (zi, ui) +
∑

i∈A′

vki

i (zi, ui) ≥ 0 ∀A′ ⊆ A, ji ∈ Ji, ki ∈ Ki (redundant) (7)

∑

i∈B

t
ji

i (zi, ui) +
∑

i∈B′

vki

i (zi, ui) ≥ 0 ∀B′ ⊆ B, ji ∈ Ji, ki ∈ Ki (redundant) (8)

∑

i∈A′∪B′

vki

i (zi, ui) ≥ −λA∪B ∀B′ ⊆ B,A′ ⊆ A. (9)
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Inequalities (3) for i ∈ A′ and (4) for i ∈ A\A′ imply (7), showing that (7) is redundant. Similarly,
Inequality (8) can be shown to be redundant. Observe that λA∪B ≥ 0 can be shown to be represented
in (9) by selecting A′ = B′ = ∅. Therefore, the set obtained by projecting λA and λB out of W
is given by (3), (4), (5), (6), and (9), which is exactly the definition of P . We have thus proved
Claim 2. By applying this result sequentially, we obtain that X = projz,uQ.

We now prove that conv(S) ⊆ projz Q ⊆ cl
(

conv(S)
)

. We first show that if z ∈ conv (
⋃n

i=1 Si),
it can be extended to a point that belongs to Q by suitably defining (λ, u). If z ∈ conv (

⋃n
i=1 Si),

then, by (A1), there exist λi and z′i such that

z = (z1, . . . , zi, . . . , zn) =

n
∑

i=1

λi(0, z
′
i, 0),

where, for each i, λi ≥ 0, (0, z′i, 0) ∈ conv(Si), and the multipliers sum up to one, i.e.,
∑n

i=1 λi = 1.
We reindex Si so that the sets containing the points associated with non-zero multipliers are indexed
from 1 to t. Then, (z, u) =

∑t
i=1 λi(0, z

′
i, u

′
i, 0), where (0, z′i, u

′
i, 0) ∈ Ai, λi > 0 for i = 1, . . . , t, and

∑t
i=1 λi = 1. Such a representation exists since z is expressible as a convex combination of points

in conv(Si) which can be extended to belong to Ai, the representation of a superset of conv(Si),
possibly in a higher dimensional space. Observe that λiz

′
i = zi and λiu

′
i = ui. Observe further that

Ri(1) is the same as Ai, except that it is defined in a lower-dimensional space. Since (z′i, u
′
i) ∈ Ri(1)

for each i ∈ {1, . . . , t}, it is clear that

t
ji

i (z′i, u
′
i) ≥ 1 ∀ji ∈ Ji

vki

i (z′i, u
′
i) ≥ −1 ∀ki ∈ Ki

t
ji

i (z′i, u
′
i) + vki

i (z′i, u
′
i) ≥ 0 ∀ji ∈ Ji, ∀ki ∈ Ki

t
ji

i (z′i, u
′
i) ≥ 0 ∀ji ∈ Ji

wli
i (z′i, u

′
i) ≥ 0 ∀li ∈ Li.

After substituting (z′i, u
′
i) =

(

zi

λi
, ui

λi

)

for each i ∈ {1, . . . , t} and multiplying both sides of the

inequalities by the positive value λi, we obtain:

λit
ji

i

(

zi

λi

,
ui

λi

)

≥ λi ∀ji ∈ Ji

λiv
ki

i

(

zi

λi

,
ui

λi

)

≥ −λi ∀ki ∈ Ki

λit
ji

i

(

zi

λi

,
ui

λi

)

+ λiv
ki

i

(

zi

λi

,
ui

λi

)

≥ 0 ∀ji ∈ Ji, ∀ki ∈ Ki

λit
ji

i

(

zi

λi

,
ui

λi

)

≥ 0 ∀ji ∈ Ji

λiw
li
i

(

zi

λi

,
ui

λi

)

≥ 0 ∀li ∈ Li.

Since tji

i , vki

i and wli
i are positively-homogenous by (A3), and λi > 0, the above system of inequalities

can be rewritten as:

t
ji

i (zi, ui) ≥ λi ∀ji ∈ Ji

vki

i (zi, ui) ≥ −λi ∀ki ∈ Ki

t
ji

i (zi, ui) + vki

i (zi, ui) ≥ 0 ∀ji ∈ Ji, ∀ki ∈ Ki

t
ji

i (zi, ui) ≥ 0 ∀ji ∈ Ji

wli
i (zi, ui) ≥ 0 ∀li ∈ Li,

which implies that (zi, ui) ∈ Ri(λi). Therefore, it follows that, for each i ∈ {1, . . . , t}, (λi, zi, ui)
is such that λi > 0 and (zi, ui) ∈ Ri(λi). Additionally, we set (zi, ui) = 0 for t < i ≤ n. Since
t
ji

i (0, 0) = λt
ji

i

(

0
λ
, 0

λ

)

for λ > 0, it follows that tji

i (0, 0) = 0. Similarly, for all i, ji ∈ Ji, ki ∈ Ki,
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and li ∈ Li, t
ji

i (0, 0) = wli
i (0, 0) = vki

i (0, 0) = 0. It follows that (0, 0) ∈ Ri(0). In other words,
for each i ∈ N , (λi, zi, ui) is such that λi ≥ 0 and (zi, ui) ∈ Ri(λi). Therefore, (λ, z, u) ∈ Q.
Now, we show that if (λ, z, u) ∈ Q then z ∈ cl conv (

⋃n
i=1 Si). Clearly, if (λ, z, u) ∈ Q and

λi > 0, then by positive homogeneity of tji

i , vki

i , and wli
i , it follows that (zi,ui)

λi
∈ Ri(1). As

before, then
(

0, zi

λi
, ui

λi
, 0
)

∈ Ai. Assume without loss of generality, by reindexing Si if neces-

sary, that λi > 0 for i = 1, . . . , t and λi = 0 for i = t + 1, . . . , n. Then, it follows easily that
(z1, u1, . . . , zt, ut, 0, 0) ∈ conv

(
⋃n

i=1 Ai

)

since it can be expressed as a convex combination of points

in
⋃t

i=1Ai. Since projz conv
(
⋃n

i=1 Ai

)

⊆ conv
(
⋃n

i=1 projz Ai

)

and, by (A3), projz Ai ⊆ cl conv(Si),

it follows that (z1, . . . , zt, 0) ∈ conv
(
⋃n

i=1 cl(conv(Si)
)

⊆ cl conv (
⋃n

i=1 Si). Now, since λt+1 = 0,

then by (A4), (0, zt+1, 0) ∈ 0+
(

cl conv (
⋃n

i=1 Si)
)

. Therefore, (z1, . . . , zt, zt+1, 0) ∈ cl conv (
⋃n

i=1 Si).
By induction, z ∈ cl conv (

⋃n
i=1 Si).

We now prove the last part of the theorem. For this, we assume that, for every i, projz Ai

is closed and projz Ci = 0+
(

cl conv(Si)
)

. Since the sets Si are orthogonal, there do not ex-
ist vectors ψi = (0, zi, 0) ∈ projz Ci, not all zero, such that

∑n
i=1 ψi = 0. Define Ti(λi) =

λi cl conv(Si) for λi > 0 and Ti(0) = 0+(cl conv(Si)). Then, by Theorem 9.8 in [22], it follows
that

⋃n
i=1 {z |∑n

i=1 λi = 1, zi ∈ Ti(λi)}, denoted hereafter as T , equals cl conv(S). If z̄ ∈ T , then
there exists a λ such that z̄i ∈ Ti(λi). If λi > 0, then z̄i

λi
∈ cl conv(Si), and therefore, there exists ui

such that (z̄i,ui)
λi

∈ Ai. On the other hand, if λi = 0, there exists ui such that (z̄i, ui) ∈ Ci. Since
Ai and Ci (restricted to the space of zi and ui variables) are Ri(1) and Ri(0) respectively, it follows
that (λ, z̄, u) ∈ Q and so z̄ ∈ projz X and cl conv(S) ⊆ projz X . However, we already showed that
projz X ⊆ cl conv(S) and, therefore, projz X is equal to cl conv(S).

We now discuss the result and the assumptions of Theorem 2.1 in more detail. Considering first
the result of this theorem, one might initially think that the stronger result that projz X = conv(S)
holds. We show with examples that projz X can be different from conv(S) and from cl conv(S). In
that sense, the result of Theorem 2.1 is as tight as possible. We consider first an example where
conv(S) ( projz X .

Example 2.2. Consider the set S ⊆ R2
+, defined as S = S1 ∪S2, where S1 =

{

(z1, 0)
∣

∣ 1 ≤ z1 ≤ 2
}

and S2 =
{

(0, z2)
∣

∣ z2 ≥ 1
}

. It can be easily verified that conv(S) =
{

(z1, z2)
∣

∣ z1 + z2 ≥ 1, z1 ≥
0, z1 < 2, z2 ≥ 0

}

∪
{

(2, 0)
}

as is shown in Figure 1. Observe that conv(S) is not closed. We now

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

z2

z1

conv(S)conv(S)

Figure 1: Illustration of Theorem 2.1 and that conv(S) ( projz X

apply the convexification tool of Theorem 2.1 to S and derive a set X that contains conv(S) but is
no larger than cl conv(S). First, we verify that the set S satisfies the assumptions of Theorem 2.1.
Clearly, (A1) and (A2) hold by the definition of S. Next, it is easy to verify that conv(S1) =
{(

z1, 0
) ∣

∣ z1 ≥ 1,− 1
2z1 ≥ −1

}

and conv(S2) =
{(

0, z2
) ∣

∣ z2 ≥ 1
}

. Since z1, − 1
2z1, and z2 are lin-

ear, and, therefore, positively-homogeneous, (A3) clearly holds. Finally, since C1 =
{

(0, 0)
}

⊆
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0+
(

cl conv(S)
)

and C2 =
{

(0, z2)
∣

∣ z2 ≥ 0
}

⊆ 0+
(

cl conv(S2)
)

⊆ 0+
(

cl conv(S)
)

, then (A4) also

holds. Applying Theorem 2.1, we obtain that X =
{(

z1, z2
) ∣

∣ z1 + z2 ≥ 1, z1 ≤ 2, z1 ≥ 0, z2 ≥ 0
}

. In
fact, since, for each i, Ci = 0+ (cl conv(Si)) and conv(Si) is closed, it follows from Theorem 2.1
and is apparent for this example that X = cl conv(S). This example illustrates that X may contain
conv(S) as a strict subset.

We now consider an example where projz X ( cl conv(S).

Example 2.3. Consider the set S =
⋃n

i=1 Si, where Si = projz
{

(0, zi, ui, 0) ∈ R2n
+

∣

∣

√
ziui ≥ 1

}

=
{

(0, zi, 0)
∣

∣ zi > 0
}

. Clearly, (A1) and (A2) hold by the definition of S. Since
√
ziui is positively-

homogeneous, (A3) is also satisfied. Observe that projz Ci = projz
{

(0, zi, ui, 0) ∈ R2n
+

∣

∣

√
ziui ≥ 0

}

=
{

(0, zi, 0)
∣

∣ zi ≥ 0
}

⊆ 0+
(

cl conv(S)
)

. Therefore, (A4) holds. Applying Theorem 2.1, we obtain that

X =
{

(z, u) ∈ R2n
+

∣

∣

∑n
i=1

√
ziui ≥ 1

}

. If, for any i, zi > 0 then there exists u such that (z, u) ∈ X.

Further, for all u, it is easy to see that (0, u) 6∈ X. Therefore, projz X =
{

z ∈ Rn
+

∣

∣

∑n
i=1 zi > 0

}

.
This example illustrates that if projz Ai is not closed then projz X may not be closed either and that,
in some cases, projz X ( cl conv(S).

In the above example, we exploit the fact that projz Ais are not closed to show that projz X
may not be closed either. Instead, if projz Ais were closed for all i then, as shown in Theorem 2.1,
projz X would typically be closed as well.

We now turn our attention to Assumption (A1) in Theorem 2.1. Assumption (A1) requires that
the sets Si be oriented along orthogonal principal subspaces. A weaker assumption however suffices
to prove the theorem. Consider Li, for i ∈ {1, . . . , n}, to be linear subspaces of R

Pn
i=1

di , where Li

has dimension di. Further, assume that a vector zi ∈ Li cannot be expressed as a linear combination
of vectors in {L1, . . . , Li−1, Li+1, . . . , Ln}. In this case, it is possible to construct a matrix B whose

columns form a basis for R
Pn

i=1
di where the columns, that are indexed from 1+

∑j−1
i=1 di to

∑j
i=1 di,

form a basis for Lj . Then, define new variables s such that s = B−1z. If z ∈ Sj ⊆ Lj, it follows that

sk 6= 0 only if 1 +
∑j−1

i=1 di ≤ k ≤∑j
i=1 di. Therefore, the theorem now applies to the transformed

space of s variables. This observation leads to the following simple derivation of the intersection cut
in integer programming.

Example 2.4. Consider a polyhedral cone P = {x | Ax ≤ b}, where A ∈ Rn×n is an invertible
matrix. Let X be the set of points that satisfy the disjunction πTx ≤ π1

0 ∨πTx ≥ π2
0 , where π1

0 < π2
0 .

We are interested in deriving the convex hull of P ∩X. Observe that this setting can be used to derive
all intersection/split cuts (see Balas [6]). Introducing the slack variables µ and defining γ = πTA−1,
γ1
0 = γb− π2

0 , and γ2
0 = γb− π1

0, we reduce the above problem into one involving convexification of
M = {µ | µ ≥ 0, γµ ≤ γ1

0 ∨ γµ ≥ γ2
0}. We assume without loss of generality that, for each i, γi 6= 0.

The reformulation of the problem in the space of the slack variables, after suitable translation, is an
example of the orthogonalization discussed above. Here, µ corresponds to −s and x corresponds to z.
The matrix B equals A−1 and its columns are the extreme rays of P . Since µ ≥ 0 is the recession cone
for M, whenever it contains a feasible point, if µ = 0 is feasible to M, then conv(M) = {µ | µ ≥ 0}.
Define pi =

γ1
0

γi
and qi =

γ2
0

γi
. If µ = 0 is not feasible to M, then γ1

0 < 0 and γ2
0 > 0. It follows

that, for each i, exactly one of pi or qi is greater than 0. Since µi ≥ 0 is a recession direction for
conv(M) and the extreme points of M have at most one non-zero, it follows that:

conv(M) =

n
⋃

i=1

{

(0, . . . , 0, µi, 0, . . . , 0)
∣

∣ µi ≥ max{pi, qi}
}

.

Now, applying Theorem 2.1, it follows that:

conv(M) =

{

µ

∣

∣

∣

∣

n
∑

i=1

µi

max{pi, qi}
≥ 1, µ ≥ 0

}

.

Substituting back µ, pi, and qi in the above, we obtain:

conv(M) =











x

∣

∣

∣

∣

∣

n
∑

i=1

(b−Ax)i

max
{

πT A
−1
·i b−π2

0

πT A
−1
·i

,
πT A

−1
·i b−π1

0

πT A
−1
·i

} ≥ 1, Ax ≤ b











.
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We next discuss Assumption (A3). This assumption requires that the convex hulls of the sets Si

be known, possibly in a higher dimensional space, and that the functions tji

i , for all ji ∈ Ji, v
ki

i , for all

ki ∈ Ki, and wli
i , for all li ∈ Li, used in the description of the convex hulls be positively-homogenous.

In the ensuing example, we show that a simple transformation might suffice to transform the natural
inequality description of conv(Si) into one that uses positively-homogenous functions. We also
illustrate that it is necessary to make the assumption that the functions are positively-homogenous.

Example 2.5. Let S =
⋃n

i=1 Si, where Si =
{

(0, xi, yi, 0) ∈ R2n
+

∣

∣ xiyi ≥ r
}

and r > 0. Clearly,
(A1) and (A2) hold by the definition of S. Since Si is already closed and convex, cl conv(Si) = Si,
i.e., cl conv(Si) =

{

(0, xi, yi, 0) ∈ R2n
+

∣

∣

1
r
xiyi ≥ 1

}

. The above representation of cl conv(Si) does
not directly satisfy (A3) since 1

r
xiyi is not a positively-homogenous function of (xi, yi). However,

cl conv(Si) may be rewritten as cl conv(Si) =
{

(0, xi, yi, 0) ∈ R2n
+

∣

∣

∣

√

1
r
xiyi ≥ 1

}

, an expression that

uses the function,
√

1
r
xiyi, which is positively-homogenous in (xi, yi). With this representation,

(A3) is satisfied. Since Ci =
{

(0, xi, yi, 0) ∈ R2n
+

∣

∣

√
xiyi ≥ 0

}

= 0+(cl conv(Si)), (A4) is satis-

fied. Therefore, Theorem 2.1 implies that X = cl conv(S) =
{

(x, y) ∈ R2n
+

∣

∣

∑n
i=1

√
xiyi ≥ √

r
}

.
Observe finally that the transformation to positively-homogenous functions is necessary and not
an artifact of the proof technique. In fact, if we use the original definition of cl conv(Si), when
applying Theorem 2.1, and disregard the lack of positive-homogeneity, the resulting set would be
X ′ =

{

(x, y) ∈ R2n
+

∣

∣

∑n
i=1 xiyi ≥ r

}

. The set X ′ is nonconvex and does not even contain conv(S).
To see this, let r = 1 and n = 2. Note that (x1, y1, x2, y2) = (0.5, 0.5, 0.5, 0.5) is expressible as a
convex combination of the two points in S, namely, (1, 1, 0, 0) ∈ S1 and (0, 0, 1, 1) ∈ S2. There-
fore (0.5, 0.5, 0.5, 0.5) belongs to conv(S). However, it does not satisfy the defining inequality of X ′

whereas it does satisfy the defining inequality of X.

If λit
ji

i

(

zi

λi
, ui

λi

)

≤ t
ji

i (zi, ui) for all λ ∈ (0, 1], then X still outer-approximates cl conv(S). Intu-

itively, while performing Fourier-Motzkin elimination, λit
ji

i

(

zi

λi
, ui

λi

)

≤ t
ji

i (zi, ui) ensures that X is

contained in the closure convex hull of the disjunctive union of Si, whereas λit
ji

i

(

zi

λi
, ui

λi

)

≥ t
ji

i (zi, ui)

ensures that X is contained in cl conv (
⋃n

i=1 Si). Similar statements can also be made about

vki

i (zi, ui) and wli
i (zi, ui). The latter of these conditions will be explored further in Proposition 2.15

to derive sufficient conditions that help verify a slightly relaxed version of (A2).
We now turn our attention to Assumption (A4). This assumption might appear quite technical

and might also seem difficult to verify in practice. However, this is not the case. We show next
that by simply requiring that the functions tji

i , vki

i , and wli
i are concave, in addition to being

positively-homogenous, Assumption (A4) is automatically satisfied. Concavity of tji

i , vki

i , and wli
i is

not an important restriction since the convexity of a positively-homogenous function’s upper-level
set implies concavity over the region of interest.

Proposition 2.6. If, for all i, ji ∈ Ji, ki ∈ Ki, and li ∈ Li, the functions tji

i , vki

i , and wli
i , as

defined in Theorem 2.1, are concave in addition to being positively-homogeneous, and the sets Si

are not empty, then projz Ci ⊆ 0+
(

cl conv (
⋃n

i=1 Si)
)

, i.e., Assumption (A4) is satisfied. Moreover,
if the upper-level set of a positively-homogenous function is convex, then the function is concave,
wherever it is positive. More precisely, if W =

{

(z, u) | t(z, u) ≥ 1
}

is convex and t(z, u) is
positively-homogenous, then D = {(z, u) | t(z, u) > 0} is convex and t(z, u) is concave over D. If,
in addition, cl(D) is locally simplicial or more specially, polyhedral, and t(z, u) is continuous then
t(z, u) is concave over cl(D).

Proof. Let (0, zi, 0) ∈ Si. By Assumption (A3), there exists ui such that (0, zi, ui, 0) ∈ Ai. Consider
(0, z′i, u

′
i, 0) ∈ Ci and α > 0. Then, by positive homogeneity and concavity of tji

i , it follows that

t
ji

i (zi + αz′i, ui + αu′i) ≥ t
ji

i (zi, ui) + t
ji

i (αz′i, αu
′
i) = t

ji

i (zi, ui) + αt
ji

i (z′i, u
′
i) ≥ t

ji

i (zi, ui) ≥ 1.

The first inequality holds because of Theorem 4.7 in [22], the first equality because tji

i s are positively-
homogenous, the second inequality because (0, z′i, u

′
i, 0) ∈ Ci and α > 0, and the last inequality
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because (0, zi, ui, 0) ∈ Ai. Similarly, vki

i (zi + αz′i, ui + αu′i) ≥ −1 and wli
i (zi + αz′i, ui + αu′i) ≥

0. Therefore, (zi + αz′i, ui + αu′i) ∈ Ai and so, for all α > 0, (0, zi + αz′i, 0) ∈ cl conv(Si) ⊆
cl conv (

⋃n
i=1 Si). Since (0, zi, 0) ∈ cl conv (

⋃n
i=1 Si), it follows by Theorem 8.3 in [22] that (0, z′i, 0) ∈

0+
(

cl conv (
⋃n

i=1 Si)
)

.

If W is convex, then WK =
{

(λ, x) | λ > 0, x = λ(z, u), t(z, u) ≥ 1
}

is the smallest convex cone

containing
{

(1, x) | x ∈ W
}

. Exploiting the positive homogeneity of t, we may rewrite WK as:

WK = {(λ, x) | λ > 0, t(x) ≥ λ} .

Now, D is the projection of WK in the space of x and is therefore convex. Further, the hypograph
of t(z, u) over D is {(r, x) | r ≤ t(x), x ∈ D} = {(r, x) | r ≤ λ ≤ t(x), λ > 0}, which is convex if WK

is convex. The last statement of the proposition follows from Theorems 10.3 and 20.5 in [22].

Even when some of the technical assumptions of Theorem 2.1 are not satisfied, it is typically the
case thatX yields an outer-approximation of conv(S). To see this, observe that Proposition 2.6 shows
that the functions tji

i , vki

i , and wli
i are concave, if they are positively-homogenous, as is assumed

in Theorem 2.1, and their upper-level sets are convex. However, if concavity of these functions is
known, then the outer-approximation of conv(S) by projz X can be shown under relatively mild
assumptions.

Proposition 2.7. Let S ⊆ R
P

i di and, for all i ∈ N = {1, . . . , n}, let Si ⊆ S. Let the points
z of S be written as z = (z1, . . . , zi, . . . , zn) ∈ S, where zi ∈ Rdi . Assume that Assumption (A1)
of Theorem 2.1 holds. Further, assume that projz Ai, where Ai is as defined in (1), yields an
outer-approximation of conv(Si) and that, for all i ∈ N , ji ∈ {1, . . . , Ji}, ki ∈ {1, . . . ,Ki}, and
li ∈ {1, . . . , Li}, tji

i (0, 0), vki

i (0, 0), and wli
i (0, 0) are non-negative. Then, projz(X), where X is as

defined in (2), outer-approximates
⋃n

i=1 Si. If, in addition, Assumption (A2) of Theorem 2.1 holds

and X is convex (for example, if the functions tji

i , vki

i , and wli
i are concave), then projz X ⊇ conv(S).

Proof. If Assumption (A1) is satisfied, then the sets Si, for i ∈ N , are orthogonal. It can be easily
verified that, if tji

i (0, 0), vki

i (0, 0), and wli
i (0, 0) are non-negative, then every constraint defining X is

valid for all Si, where i ∈ N . Therefore, projz X ⊇ ⋃n
i=1 Si. If Assumption (A2) is satisfied as well,

then Claim 1 in the proof of Theorem 2.1 holds. Therefore, conv(S) = conv (
⋃n

i=1 Si). Further, if
X is convex, so is projz X . Since projz X ⊇ ⋃n

i=1 Si, it follows that projz X ⊇ conv (
⋃n

i=1 Si) =
conv(S).

When the constituent functions tji

i , vki

i , and wli
i are concave, the result of Proposition 2.7 could

also be derived using disjunctive programming. We verify Proposition 2.7 using this approach, since
it more clearly reveals the source of the difference between the outer-approximation of Proposition 2.7
and the convex hull identified in Theorem 2.1. For example, one can assert that

∑

i∈N t
ji

i (zi, ui) ≥ 1,
by simply noticing that if λi > 0 for i ∈ {1, . . . , t} then:

1 =

t
∑

i=1

λi

≤
t
∑

i=1

λit
ji

i

(

zi, ui

λi

)

+
n
∑

i=t+1

t
ji

i (zi, ui)

≤
t
∑

i=1

λi



t
ji

i

(

zi, ui

λi

)

+
∑

i′∈N, i′ 6=i

t
ji′

i′

(

0, 0

λi

)



+

n
∑

i=t+1

t
ji

i (zi, ui) ≤
n
∑

i=1

t
ji

i (zi, ui),

(10)

where the first inequality follows by summing the inequalities λi ≤ λit
ji

i

(

zi,ui

λi

)

for i ∈ {1, . . . , t}
and t

ji

i (zi, ui) ≥ 0 for i ∈ {t + 1, . . . , n}, the second inequality follows since t
ji′

i′ (0, 0) ≥ 0, and the

third inequality from the concavity of
∑t

i=1 t
ji

i (zi, ui). Similarly,
∑

i∈T v
ji

i (zi, ui) ≥ −1, by realizing,
in addition, that −∑i∈T λi ≥ −1.

Proposition 2.7 provides a simple proof of the validity of the constraints defining X for conv(S).
In fact, if the primary purpose of deriving X is to develop a convex outer-approximation, then
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Proposition 2.7 can often replace Theorem 2.1. Therefore, many of the results derived in Sec-
tion 3, can be proven, often with a weaker assertion that the derived set provides a convex outer-
approximation rather than the convex hull, by using Proposition 2.7 in place of Theorem 2.1. How-
ever, there are cases, see Theorem 3.3 for example, when Proposition 2.7 provides a valid convex
outer-approximation, whereas it is not apparent how to apply Theorem 2.1 to derive the convex-hull
representation in the space of the original problem variables. Nevertheless, the insights gained from
Theorem 2.1 are very useful. For example, we illustrate next that the search for a representation
of conv(Si) using positively-homogenous functions can substantially improve the relaxation. This
insight will play an important role for the relaxations we derive in Section 3.

Example 2.8. Consider S =
⋃n

i=1 Si, where, for each i ∈ {1, . . . , n}, let

Si =
{

(0, . . . , 0, zi, 0, . . . , 0) ∈ Rn
+

∣

∣

√
zi ≥ 1

}

.

Proposition 2.7 shows that

X ′ =

{

(z1, . . . , zn) ∈ Rn
+

∣

∣

∣

∣

∣

n
∑

i=1

√
zi ≥ 1

}

is a convex outer-approximation of conv(S). Note that the square-root function used in expressing
Si is concave, but not positively-homogenous. Instead, if Sis are represented equivalently as

Si =
{

(0, . . . , 0, zi, 0, . . . , 0) ∈ Rn
+

∣

∣ zi ≥ 1
}

,

then Theorem 2.1 yields the convex hull of S, which is

X =

{

(z1, . . . , zn) ∈ Rn
+

∣

∣

∣

∣

∣

n
∑

i=1

zi ≥ 1

}

.

Clearly, by construction, X = conv(S) ⊆ X ′. In this particular example, the inclusion of X in X ′

can also be verified using the subadditivity of the square-root function for non-negative variables. This
example illustrates that it often helps to find representations of convex hulls of Si using positively-
homogenous functions, even when equivalent representations exist using concave functions.

Finally, we focus on the convex extension property which is the basis of Assumption (A2). We
first formally define the notion of a convex extension for orthogonal disjunctive sets. This definition
is adapted from Tawarmalani and Sahinidis [29].

Definition 2.9. Let Si ⊆ S for i ∈ N = {1, . . . , n}. We say that S has the convex extension
property for orthogonal disjunctive sets Si if (A1) and a slightly relaxed form of (A2) hold. More
specifically, S has the convex extension property if every point z in S can be expressed as a convex
combination of points χi in cl conv(Si) and/or a conic combination of rays ψi in 0+

(

cl conv(Si)
)

,
i.e., for i ∈ I ⊆ N , there exist λi ≥ 0 and µi ≥ 0, that satisfy

∑

i∈I λi = 1, such that

z =
∑

i∈I

λiχi +
∑

i∈I

µiψi. (11)

The convex extension property in Definition 2.9 is more general than Assumption (A2) in Theo-
rem 2.1, in that it allows the use of non-negative multiples of recession directions in the expression
of z. Since χi + µi

λi
ψi ∈ cl conv(Si), it may seem that the recession directions in (11) are not nec-

essary. However, this is not true since λi may be zero even when µi is not. This technicality is
often important in practical applications. Nevertheless, it can be observed that even if (A2) is
replaced with (11), Theorem 2.1 holds with slight modifications, as discussed below. Instead of
conv(S) = conv (

⋃n
i=1 Si), as was proved in Claim 1, we can only establish that (11) implies

cl conv(S) = cl conv

(

n
⋃

i=1

Si

)

. (12)
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In fact, (12) is equivalent to (11). On the one hand, since, for each i ∈ {1, . . . , n}, Si ⊆ S it follows
that cl conv (

⋃n
i=1 Si) ⊆ cl conv(S). On the other hand, since Sis are orthogonal, by Theorem 9.8 in

[22],

cl conv

(

n
⋃

i=1

Si

)

=
⋃

{

λ1 cl conv(S1) + · · ·λn cl conv(Sn)

∣

∣

∣

∣

∣

λi ≥ 0+,

n
∑

i=1

λi = 1

}

, (13)

where the notation λi ≥ 0+ means that λi cl conv(Si) is taken to be 0+ (cl conv(Si)) rather than {0}
when λi = 0. Observe that (11) is another way to represent the set on the right-hand-side of (13)
since if λi > 0 then χi + µi

λi
ψi ∈ cl conv(Si). Otherwise, ψi ∈ 0+ (cl conv(Si)). Now, if we assume

(11), or equivalently, (12), the proof of Theorem 2.1 shows that cl projz X = cl conv (
⋃n

i=1 Si), and,
therefore, by (12), cl projz X = cl conv(S). In this case, the last statement of Theorem 2.1 can
often be used to establish closedness of projz X . Note that projz Ai is closed whenever conv(Si) is
closed. Therefore, in most practical situations, it suffices to establish (11) instead of Assumption
(A2) in Theorem 2.1. Similarly, if Assumption (A2) is replaced with (11) in Proposition 2.7, it can
be easily established that cl conv(S) ⊆ cl projz X . This is because cl conv(S) = cl conv (

⋃n
i=1 Si) ⊆

cl conv (projz X) = cl projz X , where the first equality follows from the equivalence of (11) and (12),
the first containment since

⋃n
i=1 Si ⊆ projz X , and the last equality since projz X is convex.

We next present a nontrivial set for which it can be proved from first principles that the convex
extension property holds for orthogonal disjunctive sets. This set appears in a nonconvex formulation
of the trim-loss problem proposed by Harjunkoski et al. [14]. The model is designed to determine
the best way to cut a finite number of large rolls of a raw-material into smaller products using a
certain number of cutting patterns. Let I be the index set of products and the J be the index set
of the cutting patterns that are to be chosen. The demand for a product i is known a priori and is
denoted by ni,order. For each (i, j) ∈ I × J , let nij ∈ Z+ be the decision variable that specifies the
number of products to type i produced in the cutting pattern j and, for each j ∈ J , let mj ∈ Z+

be the number of times the cutting pattern j is used. The following bilinear constraints model that
the demand for each product is met:

J
∑

j=1

mjnij ≥ ni,order, for i = 1, . . . , I, (14)

In Proposition 2.10, we show that the bilinear integer sets defined by the constraint (14) satisfy the
convex extension property for disjunctive orthogonal sets. We use this result along with Theorem 2.1
to obtain the convex hull of integer bilinear covering sets in Proposition 2.11.

Proposition 2.10. Consider a bilinear integer knapsack set

BI =
{

(x1, y1, x2, y2) ∈ Z2
+ × Z2

+

∣

∣ x1y1 + x2y2 ≥ r
}

.

where r > 0. Then, BI has the convex extension property (11) with respect to the orthogonal
disjunctive sets

BI
1 =

{

(x1, y1, 0, 0) ∈ Z2
+ × Z2

+

∣

∣ x1y1 ≥ r
}

,

BI
2 =

{

(0, 0, x2, y2) ∈ Z2
+ × Z2

+

∣

∣ x2y2 ≥ r
}

.

Proof. Let (x1, y1, x2, y2) ∈ BI . We show that there exist (i) certain subsets I and I ′ of {1, 2}, (ii)
for each i ∈ I, a finite ji, (iii) for each i ∈ I ′, a finite j′i, (iv) for each i ∈ I and j ∈ {1, . . . , ji}, a
point χi,j ∈ BI

i , and (v) for each i ∈ I ′ and j ∈ {1, . . . , j′i}, a ray ψi,j of BI
i , such that

(x1, y1, x2, y2) =
∑

i∈I

ji
∑

j=1

λi,jχi,j +
∑

i∈I′

j′i
∑

j=1

µi,jψi,j , (15)

where the multipliers are such that (a)
∑

i∈I

∑ji

j=1 λi,j = 1, (b) for each i ∈ I and j ∈ {1, . . . , ji},
λi,j ≥ 0, and (c) for each i ∈ I ′ and j ∈ {1, . . . , j′i}, µi,j ≥ 0.

13



We assume without loss of generality that x1 ≤ y1 ≤ y2 and x2 ≤ y2 since the variables x1, y1,
x2, and y2 can be renamed such that the largest variable is called y2 and the largest variable in the
other pair is called y1. Note first that if x1 = 0, it suffices to choose I = {2}, I ′ = {1}, j2 = 1,
j′1 = 1 with χ2,1 = (0, 0, x2, y2) and ψ1,1 = (0, 1, 0, 0) to show that (11) holds. Therefore, we assume
in the remainder of this proof that x1 ≥ 1 and, consequently, x1y1 ≥ 1. We consider two cases.

Case 1: x2 ≥ x1y1. In this case, we choose I = {1, 2}, I ′ = {2}, and j1 = j2 = j′2 = 1. Consider
the points χ1,1 = ((y2 + 1)x1, (y2 + 1) y1, 0, 0) and χ2,1 = (0, 0, x2, y2 + 1), and the ray ψ2,1 =
(0, 0, 1, 0). Clearly, χ1,1 ∈ BI

1 , since (y2+1)2x1y1 ≥ x1y1+y2
2x1y1 ≥ x1y1+y2

2 ≥ x1y1+x2y2 ≥
r. Similarly, χ2,1 ∈ BI

2 , since x2 (y2 + 1) ≥ x2y2 + x2 ≥ x2y2 + x1y1 ≥ r. It is easily verified
that

(x1, y1, x2, y2) =
1

y2 + 1
χ1,1 +

y2

y2 + 1
χ2,1 +

x2

y2 + 1
ψ2,1

which shows that (15) is feasible.

Case 2: x2 ≤ x1y1 − 1. In this case, we choose I = {1, 2}, I ′ = {1, 2}, j2 = 1, and j1 = j′1 = j′2 = 2
with χ1,1 = (x1 +α, y1, 0, 0), χ1,2 = (x1, y1 +β, 0, 0), χ2,1 = (0, 0, x2, y2 + δ), ψ1,1 = (1, 0, 0, 0),

ψ1,2 = (0, 1, 0, 0), ψ2,1 = (0, 0, 1, 0), and ψ2,2 = (0, 0, 0, 1), where α =
⌈

x2y2

y1

⌉

, β =
⌈

x2y2

x1

⌉

, and

δ =
⌈

x1y1

x2

⌉

. It follows from the way α, β, and δ are defined that χ1,1 and χ1,2 belong to B1
I

whereas χ2,1 belongs to B2
I . We need to prove that (15) has a feasible solution. Eliminating

µi,j and using λ2,1 = 1 − λ1,1 − λ1,2 to eliminate λ2,1, (15) reduces to the following system:

λ1,1(x1 + α) + λ1,2(x1) ≤ x1

λ1,1(y1) + λ1,2(y1 + β) ≤ y1
(1 − λ1,1 − λ1,2)x2 ≤ x2 (redundant)

(1 − λ1,1 − λ1,2) (y2 + δ) ≤ y2
λ1,1 + λ1,2 ≤ 1

λ1,1 ≥ 0
λ1,2 ≥ 0.

(16)

Projecting out λ1,1 using Fourier-Motzkin elimination, we obtain

max

{

0,
αδ − x1y2

α (y2 + δ)

}

≤ λ1,2 ≤ min

{

1,
y1

y1 + β
,

y1y2

β (y2 + δ)

}

.

Since βδ =
⌈

x2y2

x1

⌉ ⌈

x1y1

x2

⌉

≥ x2y2

x1

x1y1

x2
= y1y2, it follows that:

y1y2

β(y2 + δ)
=

1

β
y1

(

1 + δ
y2

) ≤ 1
β
y1

+ 1
=

y1

y1 + β
= min

{

1,
y1

y1 + β

}

.

Moreover, since αδ =
⌈

x2y2

y1

⌉ ⌈

x1y1

x2

⌉

≥ y2x1, it follows that 0 ≤ αδ−x1y2

α(y2+δ) and (16) is feasible if

αβδ ≤ αy1y2 + βx1y2. We consider two cases:

Case 2.1: x2 = 1. In this case, α =
⌈

y2

y1

⌉

, β =
⌈

y2

x1

⌉

, and δ = x1y1. There exist fα, fβ ∈ [0, 1)

such that α = y2

y1
+ fα and β = y2

x1
+ fβ . We observe that

αβδ =

(

y2

y1
+ fα

)(

y2

x1
+ fβ

)

x1y1

= y1y2

(

y2

y1
+ fα

)

+ x1y2

(

y1

y2
fαfβ + fβ

)

≤ y1y2

(

y2

y1
+ fα

)

+ x1y2

(

y2

x1
+ fβ

)

= αy1y2 + βx1y2

where the inequality holds because x1 ≤ y1 ≤ y2 implies that x1y1fαfβ ≤ x1y1 ≤ y2
2 .
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Case 2.2: x2 ≥ 2. For (u, v) ∈ Z2
+, we define l̄(u, v) = u− l where l is the only integer in the

interval {0, . . . , v−1} that is such that u = qv+ l for some q ∈ Z+, i.e., l is the remainder

when u is divided by v. Using this notation, it is easy to verify that α = x2y2+l̄(x2y2,y1)
y1

,

β = x2y2+l̄(x2y2,x1)
x1

, and δ = x1y1+l̄(x1y1,x2)
x2

. Now observe that:

δ

y2
=
x1y1 + l̄ (x1y1, x2)

x2y2
≤ x1y1 + x2 − 1

x2y2

=
x1y1

x2y2

(

1 +
x2 − 1

x1y1

)

≤ x1y1

x2y2

(

1 +
x2 − 1

x2 + 1

)

=
1

x2y2

(

x1y1

1 + 1
x2

+
x1y1

1 + 1
x2

)

≤ 1

x2y2

(

x1y1

1 + y1−1
x2y2

+
x1y1

1 + x1−1
x2y2

)

≤ x1y1

x2y2 + l̄ (x2y2, y1)
+

x1y1

x2y2 + l̄ (x2y2, x1)
=
x1

α
+
y1

β
,

where the first inequality holds because l̄ (x1y1, x2) ≤ x2−1, the second inequality because
x2 ≤ x1y1 − 1, the third inequality holds since y1 ≤ y2 implies y1−1

y2
≤ 1 and x1 ≤ y2

implies that x1−1
y2

≤ 1, and the fourth inequality holds since y1 − 1 ≥ l̄ (x2y2, y1) and

x1 − 1 ≥ l̄ (x2y2, x1). Therefore, αβδ ≤ αy1y2 + βx1y2.

In summary, for (x1, y1, x2, y2) ∈ BI , (15) is feasible, and, therefore, (11) holds for BI .

We now apply the result of Proposition 2.10 in conjunction with Theorem 2.1 to obtain the
following result that describes the convex hull of (14).

Proposition 2.11. Let

BI =

{

(x, y) ∈ Zn
+ × Zn

+

∣

∣

∣

∣

∣

n
∑

i=1

xiyi ≥ r

}

, (17)

where r > 0 and, for each i ∈ {1, . . . , n}, define:

BI
i =

{

(x, y) ∈ BI
∣

∣ (xj , yj) = (0, 0), ∀j 6= i
}

.

Let the convex hull of BI
i be represented by:

conv(BI
i ) =

{

(0, 0, xi, yi, 0, 0) ∈ Rn
+ × Rn

+

∣

∣ lj(xi, yi) ≥ 1, ∀j ∈ J
}

,

where lj(xi, yi) = αjxi + βjyi. Then,

conv(BI) =

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

∣

n
∑

i=1

lji(xi, yi) ≥ 1, ∀ji ∈ J

}

. (18)

Proof. We prove this result by applying Theorem 2.1. Let zi = (xi, yi). Assumption (A1) holds by
the definition of BI

i . The convex extension property, (11), follows from a sequential application of
Proposition 2.10. Assumption (A3) is satisfied since conv

(

BI
i

)

is closed and the functions lj(xi, yi)

are positively-homogeneous. Further, since 0+
(

cl conv
(

BI
i

))

= Rn
+ × Rn

+, it follows that

Ci =
{

(0, 0, xi, yi, 0, 0) ∈ Rn
+ × Rn

+

∣

∣ lj(xi, yi) ≥ 0, ∀j ∈ J
}

⊆ 0+
(

cl conv
(

BI
i

))

.
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Therefore, (A4) holds. Now, by Theorem 2.1 and the discussion following Definition 2.9, it follows
that

cl conv(BI) = X =

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

∣

n
∑

i=1

lji(xi, yi) ≥ 1, ∀ji ∈ J

}

,

where the closure operation is not needed on X since it is a closed set, being an intersection of closed
half-spaces. In fact, X is polyhedral, since there are only finitely many half-spaces in its expression.
Now, consider the closed sets BI′

i =
{

(x, y) ∈ Z2n
+

∣

∣ xiyi ≥ r
}

. Observe that BI
i ⊆ BI′

i ⊆ BI . Now,

by Corollary 9.8.1 in [22], conv
(

⋃n
i=1 B

I′
)

is closed. Since

conv
(

BI
)

⊆ cl conv(BI) ⊆ cl conv

(

n
⋃

i=1

BI′

i

)

= conv

(

n
⋃

i=1

BI′

i

)

⊆ conv
(

BI
)

,

where the second containment holds since BI
i ⊆ BI′

i and because the discussion following Defini-

tion 2.9 argues that cl conv(BI) = cl conv
(

⋃n
i=1 B

I′

i

)

, the first equality since conv
(

⋃n
i=1 B

I′

i

)

is

closed, and the third containment since BI′

i ⊆ BI . Therefore, the equality holds throughout, and
the result follows.

Observe that, even though conv(BI) is closed, conv
(
⋃n

i=1 B
I
i

)

is not closed. Proposition 2.11
shows that conv(BI) has exponentially many facets. In particular, if BI

i has |J | facets, there are
|J |n inequalities in the description of conv(BI). We note, however, that separation is not difficult
to perform as the coefficients of each pair of variables can be determined independently. Since there
is an obvious pseudo-polynomial algorithm to compute the facets of conv(BI

i ), it is clearly possible
to separate the facets of conv(BI) in pseudo-polynomial time.

Example 2.12. Consider the set

BI =
{

(x, y) ∈ Z2
+ × Z2

+

∣

∣ x1y1 + x2y2 ≥ 10
}

. (19)

It is easily verified that for both i ∈ {1, 2}

conv
(

BI
i

)

=
{

(0, xi, yi, 0) ∈ R4
+

∣

∣ yi ≥ 1, 10xi + 2yi ≥ 30, xi + yi ≥ 7, 2xi + 10yi ≥ 30, xi ≥ 1
}

.

It follows from Proposition 2.11 that the convex hull of BI has 25 inequalities and is represented by

conv(BI) =























(x, y) ∈ R2
+ × R2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣























y1
5
15x1 + 1

15y1
1
7x1 + 1

7y1
1
15x1 + 5

15y1
x1























+























y2
5
15x2 + 1

15y2
1
7x2 + 1

7y2
1
15x2 + 5

15y2
x2























≥ 1























, (20)

where each pair of coefficients for (x1, y1) can be matched with each pair of coefficients for (x2, y2).

Similarly, the convex hull characterization for a variety of bilinear sets can be obtained using the
result of Theorem 2.1. In particular, we study now the mixed integer variant while we study the
continuous variant in more detail in Section 3.

Proposition 2.13. Let

BM =

{

(x, y) ∈ Zn
+ × Rn

+

∣

∣

∣

∣

∣

n
∑

i=1

aixiyi ≥ r

}

, (21)

where r > 0, and, for each i ∈ {1, . . . , n}, ai > 0. Define, for each i ∈ {1, . . . , n},

BM
i =

{

(x, y) ∈ BM
∣

∣ (xj , yj) = (0, 0), ∀j 6= i
}

.
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Let the convex hull of BM
i be represented by:

conv
(

BM
i

)

=
{

(0, 0, xi, yi, 0, 0) ∈ Rn
+ × Rn

+

∣

∣ lj(xi, yi) ≥ 1, ∀j ∈ Ji

}

,

where lj(xi, yi) = αjxi + βjyi. Then,

conv
(

BM
)

=

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

∣

n
∑

i=1

lji(xi, yi) ≥ 1, ∀ji ∈ Ji

}

. (22)

Proof. Because the verification of the convex extension property is the only technical part of the
proof that is significantly different from that of BI , we only discuss the proof of this property next.
Because induction can be used, it suffices to prove the result when n = 2. Let (x1, y1, x2, y2) ∈ BM .
We show that there exist (i) subsets I and I ′ of {1, 2}, (ii) for each i ∈ I, a point χi ∈ BM

i , and (iii)
for each i ∈ I ′, a ray ψi of BM

i , such that

(x1, y1, x2, y2) =
∑

i∈I

λiχi +
∑

i∈I′

µiψi, (23)

where the multipliers satisfy the following conditions: (a)
∑

i∈I λi = 1, (b) for all i ∈ I, λi ≥ 0, and
(c) for all i ∈ I ′, µi ≥ 0.

Note first that, if x2 = 0, it suffices to choose I = {1}, I ′ = {2}, χ1 = (x1, y1, 0, 0), and
ψ2 = (0, 0, 0, 1) to show that (11) holds. Similarly, if y2 = 0, it suffices to choose I = {1}, I ′ = {2},
χ1 = (x1, y1, 0, 0), and ψ2 = (0, 0, 1, 0) to show that (11) holds. We assume without loss of generality
that x1y1 ≥ x2y2 since the pair of variables (x1, y1) and (x2, y2) can be interchanged along with their
respective coefficients a1 and a2. Therefore, in addition to the positivity of x2 and y2, we may also

assume in the remainder of this proof that x1 ≥ 1 and y1 > 0. Define χ1 =
(

x1, y1 + a2x2y2

a1x1
, 0, 0

)

,

χ2 =
(

0, 0, x2, y2 + a1x1y1

a2x2

)

, ψ1 = (x1, 0, 0, 0), and ψ2 = (0, 0, x2, 0). It can be easily verified that

(x1, y1, x2, y2) =
a1x1y1

a1x1y1 + a2x2y2
(χ1 + ψ2) +

a2x2y2

a1x1y1 + a2x2y2
(χ2 + ψ1)

which shows that the convex extension property (11) holds.

Propositions 2.11 and 2.13 illustrate both the fact that the convex extension property used in
Theorem 2.1 holds in surprising settings and that this property might not always be trivial to verify.
We next present in Theorem 2.14 and Proposition 2.15 conditions under which the convex extension
property over orthogonal disjunctive sets can be shown to hold. These conditions are satisfied by
many polynomial covering inequalities as we will discuss later in Section 3.

Theorem 2.14. Consider a function g(z1, . . . , zn) : R
P

i di

+ 7→ R, where zi ∈ Rdi

+ , and the set

G =
{

z ∈ R
P

i di

+

∣

∣ g(z1, , . . . , zn) ≥ r
}

, where r > 0. Let Gi = G∩
{

(0, . . . , 0, zi, 0, . . . , 0)
∣

∣ zi ∈ Rdi

+

}

and gi(zi) = g(0, . . . , 0, zi, 0, . . . , 0). If there exist functions hi : Rdi

+ 7→ Rki and f : R
P

i ki 7→ R such
that:
(S1) g(z) ≤ f

(

h1(z1), . . . , hn(zn)
)

, where f is a convex function,
(S2) f(y1) > f(y2) whenever y1 ≥ y2 and at least one component of y1 is larger than the correspond-
ing component of y2,
(S3) gi(zi) = f(0, . . . , 0, hi(zi), 0, . . . , 0),
(S4) For all i, hi(0) = 0 and, for λ ∈ (0, 1], λhi

(

zi

λ

)

≥ hi(zi), and

(S5) For all i, hi(zi) ≤ 0 implies that (0, zi, 0) ∈ 0+
(

cl convGi

)

,

are satisfied over R
Pn

i=1 di

+ then the convex extension property, (11), holds for the set G. Assume
that, for each i ∈ {1, . . . , n}, conv(Gi) is closed. Define G′

i = conv(Gi)+
∑

i′ 6=i 0+(convGi′ ). If, for
all i, G′

i ⊆ conv(G), then conv(G) is closed.
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Proof. Let z ∈ G and y(z) =
(

h1(z1), . . . , hn(zn)
)

. In the following, we sometimes denote hi(zi) as
yi(z) to emphasize that it is the ith component of y(z). Let T = {i | hi(zi) ≤ 0}. Then, by (S5),
for each i ∈ T , (0, zi, 0) ∈ 0+

(

cl convGi

)

. If z −∑i∈T (0, zi, 0) ∈ cl conv
(
⋃n

i=1Gi

)

, then so does z.

We now show that z′ = z −∑i∈T (0, zi, 0) ∈ cl conv
(
⋃n

i=1Gi

)

. Let δ be a subgradient of f at y(z′).

Then, (S2) implies that δ > 0. Otherwise, suppose that δi ≤ 0. Let ei denote the ith unit vector
and choose ǫ > 0. Observe that f(y(z′) − ǫei) ≥ f(y(z′)) − ǫ〈δ, ei〉 = f

(

y(z′)
)

− ǫδi ≥ f
(

y(z′)
)

, a
contradiction to (S2). Clearly, for each i 6∈ T , hi(z

′
i) = hi(zi). By construction, for each i ∈ T ,

z′i = 0 and, therefore, hi(z
′
i) = 0 ≥ hi(zi). In other words, y(z′) = max{y(z), 0}. Observe that (S1)

and (S2) together imply that f(y(z′)) ≥ f(y(z)) ≥ g(z) ≥ r.
First, consider the case where 〈δ, y(z′)〉 = 0. Then, y(z′) = 0. Consider any i and a z̄i ∈ Rdi

+ .
On the one hand, assume that hi(z̄i) > 0. Then, g(0, z̄i, 0) = gi(z̄i) = f(0, hi(z̄i), 0) > f(0) =
f(y(z′)) ≥ r, where the first equality follows from the definition of gi, the second from (S3), and
the first inequality from (S2) and hi(z̄i) > 0. Therefore, (0, z̄i, 0) ∈ G ⊆ cl conv(G). On the
other hand, assume that hi(z̄i) ≤ 0. Then, by (S5), we know that (0, z̄i, 0) ∈ 0+

(

cl convGi

)

. Since

gi(0) = f(0) = f(y(z′)) ≥ r, it follows that 0 ∈ Gi. Combining 0 ∈ Gi and (0, z̄i, 0) ∈ 0+
(

cl convGi

)

,
we can conclude that (0, z̄i, 0) ∈ cl conv(Gi) ⊆ cl conv(G). In other words, regardless of the sign
of hi(zi), it follows that (0, z̄i, 0) ∈ cl conv(G). Since z̄i was arbitrarily chosen in Rdi

+ , it follows

that R
P

i di

+ ⊆ cl conv (
⋃n

i=1Gi) ⊆ cl conv(G) ⊆ R
P

i di

+ . Since equality holds throughout, (12), or
equivalently (11) holds for G.

Now, consider the case when 〈δ, y(z′)〉 > 0. Define λi = δiyi(z
′)

〈δ,y(z′)〉 . Since δi and yi(z
′) are non-

negative, it follows that λi ≥ 0 and
∑n

i=1 λi = 1. Define I =
{

i | λi > 0} and observe that |I| ≥ 1.
The following chain of implication holds

i 6∈ I ⇒ yi(z
′) = 0 ⇒ i ∈ T ⇒ z′i = 0,

where the first implication follows since δi > 0; the second because, for each i 6∈ T , yi(z
′) > 0;

and the third by the construction of z′. Therefore, z′ =
∑

i∈I z
′′
i , where z′′i =

(

0, . . . , 0, z′i, 0, . . . , 0
)

.

For each i ∈ I, let χi =
z′′

i

λi
. Observe that z′ =

∑

i∈I λiχi, i.e., z′ can be expressed as a convex
combination of χi for i ∈ I. The following shows that, for all i ∈ I, χi ∈ Gi:

g(χi) = gi

(

z′i
λi

)

= f
(

y(χi)
)

≥ f

(

1

λi

y(z′′i )

)

≥ f
(

y(z′)
)

+ δi
〈δ, y(z′)〉
δiyi(z′)

yi(z
′′) −

n
∑

j=1

δjyj(z
′)

= f
(

y(z′)
)

+ δi
〈δ, y(z′)〉
δiyi(z′)

yi(z
′) −

n
∑

j=1

δjyj(z
′) = f

(

y(z′)
)

≥ r.

The first equality follows from the definition of gi, the second equality from (S3), the first inequality

follows since f is non-decreasing by (S2) and hi

( z′
i

λi

)

≥ 1
λi
hi(z

′
i), the second inequality because

δ is a subgradient of f at y(z′), and the third equality because yi(z
′′) = hi(z

′
i) = yi(z

′). Since
z = z′ +

∑

i∈T (0, zi, 0), where, for each i ∈ T , (0, zi, 0) ∈ 0+ (cl conv(Gi)) it follows that (11) holds
for G.

We now prove the last statement of the theorem. Consider an arbitrary i ∈ N . Clearly, G′
i,

as defined in the statement of the theorem, is convex. We argue that it is closed as well. By
Corollary 9.1.1 in [22], G′

i is closed if there do not exist (0, zi, 0) ∈ conv(Gi) and, for i′ ∈ N\{i},
(0, zi′ , 0) ∈ 0+ (convGi′), not all zero, such that

∑n
i=1(0, zi, 0) = 0. But, the orthogonal vectors

(0, zi, 0) sum to zero if and only if each of the vectors is zero. Therefore, G′
i is closed. Again

by Corollary 9.1.1 in [22], 0+(G′
i) =

∑n
i=1 0+ (convGi). Since the recession directions of G′

i are
independent of i, it follows by Corollary 9.8.1 in [22] that conv (

⋃n
i=1Gi) is closed. Now,

conv(G) ⊆ cl conv(G) = cl conv

(

n
⋃

i=1

Gi

)

⊆ cl conv

(

n
⋃

i=1

G′
i

)

= conv

(

n
⋃

i=1

G′
i

)

⊆ conv(G),

where the first equality follows from the equivalence of (11) and (12), the second containment follows
since Gi ⊆ G′

i, the second equality follows since conv (
⋃n

i=1G
′
i) is closed and the third containment

follows since G′
i ⊆ conv(G).
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A special case of Theorem 2.14 deserves special attention since it finds many applications. In this
case, f(·) is the summation operator and hi(zi) = gi(zi), g(z) is subadditive, gi(zi) satisfies (S4),
and gi(zi) eventually increases to infinity along every direction in the non-negative orthant. Observe
that Assumption (S2) is satisfied trivially in this case. Further, Assumption (S1) reduces to g(z) ≤
∑n

i=1 gi(zi), which is satisfied by all subadditive functions since z =
∑n

i=1(0, . . . , 0, zi, 0, . . . , 0)
and gi(zi) = g(0, . . . , 0, zi, 0, . . . , 0). Many of the applications we discuss in Section 3 will invoke
Theorem 2.14 in such a setup.

The main challenge in applying Theorem 2.14 in practical situations is verifying Assumption
(S4). However, when hi(zi) is derived from other functions using operations such as summations,
minimizations, or maximizations, then (S4) can often be established easily by studying the same
properties for the functions used in the derivation of hi(zi). To see this, first note that the assumption
is satisfied trivially by any linear function. If h(z) = w (p1(z), . . . , pK(z)), for all k ∈ {1, . . . ,K},
pk(z) satisfies (S4), w satisfies (S4), w is isotonic, i.e., w(y1) ≥ w(y2) if y1 ≥ y2, and w(0, . . . , 0) = 0,
then h(z) satisfies (S4) as well. Clearly, h(0) = w(p1(0), . . . , pk(0)) = w(0, . . . , 0) = 0 and:

λh
( z

λ

)

= λw
(

p1

( z

λ

)

, . . . , pk

( z

λ

))

≥ λw

(

1

λ
p1(z), . . . ,

1

λ
pk(z)

)

≥ w (p1(z), . . . , pk(z)) = h(z),

where the first inequality follows since w is isotonic and pk(z) obeys (S4); and the second inequality
because w obeys (S4). If w satisfies (S4) only over the non-negative orthant, then pk(z) must be

non-negative as well. In particular,
∑K

k=1 pk(z) satisfies the assumption as long as, for all k, pk(z)
satisfies the assumption. Now, consider h(z) = opy p(y, z), where op is an operator such as min or
max that satisfies opy f1(y) ≥ opy f2(y) if, for all y, f1(y) ≥ f2(y) and λ opy f(y) ≥ opy λf(y) for

λ ∈ (0, 1]. In addition, assume that λp
(

y, z
λ

)

≥ p(y, z) for λ ∈ (0, 1]. Then,

λh
( z

λ

)

= λ op
y
p
(

y,
z

λ

)

≥ λ op
y

1

λ
p(y, z) ≥ op

y
p(y, z) = h(z),

for λ ∈ (0, 1]. In particular, if h(z) = min
(

p1(z), . . . , pK(z)
)

and, for all λ ∈ (0, 1], pk(z) ≤ λpk

(

z
λ

)

then h(z) ≤ λh
(

z
λ

)

.
Theorem 2.14 establishes the convex extension property over the non-negative orthant. As will

be discussed later, we are often interested in the covering set G discussed in Theorem 2.14, but with
the added restriction that the variables belong to a compact convex set. In that case, Theorem 2.14
can clearly be used to construct a relaxation. However, it also points to a construction that can
make this relaxation stronger as the compact convex set becomes smaller. Intuitively, it suffices to
underestimate the original function outside of the region of interest by extending it linearly in such
a way that the modified function still satisfies (S4). We next describe this procedure more precisely
by showing that if z ∈ C, where C is a nonempty closed convex subset of Rd

+, and p(z) is a function
that satisfies Assumption (S4), then it is possible to underestimate p(z) and still satisfy (S4). For
this, we partition Rd

+ as follows. Given z ∈ Rd
+, we define Λ(z) = {λ | λz ∈ C} and define λinf(z)

and λsup(z) as the infimum and supremum over λ in Λ(z) respectively. Define L = {z ∈ Rd
+\C |

λinf(z) < 1}, S = {z ∈ Rd
+\C | λsup(z) > 1}, and N = {zi ∈ Rd

+\0 | ∀λ ≥ 0, λz 6∈ C}. Note that
Rd

+ = L∪ S ∪N ∪C\{0} ∪ {0}. If z ∈ N , it does not belong to C, L, or S. Otherwise, there exists
λ such that λz ∈ C. Therefore, Λ(z) 6= ∅. If z ∈ C, it does not belong to L or S. Otherwise, if
z ∈ L, i.e., λinf(z) < 1, then λsup(z) < 1 (since the set C is convex and z 6∈ C) and, therefore, z 6∈ S.
Mutual exclusivity of L and S can be easily verified. Now define:

h(z) =



















0 if z = 0,
p(z) if z ∈ C\{0},

1

λsup(z)
p (λsup(z)z) if z ∈ L,

−∞ otherwise.

(24)

We show that h(z) satisfies Assumption (S4). By definition, h(0) = 0. We need to verify that
λh( z

λ
) ≥ h(z) for all λ ∈ (0, 1]. If z ∈ N ∪ S, the verification is straightforward. Consider z ∈ L.
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Then, for an arbitrary λ ∈ (0, 1],

h
( z

λ

)

=
1

λsup

(

z
λ

)p
(

λsup

( z

λ

) z

λ

)

=
1

λλsup(z)
p(λsup(z)z) =

1

λ
h(z) (25)

since it follows from the definition of λsup(·) that λsup( z
λ
) = λλsup(z). If z ∈ C, then for an arbitrary

λ ∈
[

1
λsup(z) , 1

]

h
( z

λ

)

= p
( z

λ

)

≥ 1

λ
p(z) =

1

λ
h(z) (26)

since in this case z
λ
∈ C. If λ ∈

[

0, 1
λsup(z)

)

then z
λ
∈ L. The argument proceeds in two steps by

showing that

h
( z

λ

)

=
1

λλsup(z)
h(λsup(z)z) ≥ λh(z),

where the first equality follows from (25) since λλsup(z) ≤ 1 and the first inequality follows from
(26).

Clearly, one could define h(z) as any function that satisfies Assumption (S4) over N . That is
however not the case over S. If p(z) is continuous or C is closed, then h(λinf(z)z) = p(λinf(z)z),
which must be at least as large as λinf(z)h(z). Therefore,

h(z) ≤ 1

λinf(z)
p(λinf(z)z). (27)

It turns out that we could define h(z) to be any function that satisfies Assumption (S4) over S
as long as it satisfies (27). This can be verified as follows. If z ∈

(

1
λinf (z) , 1

]

then the condition

is satisfied by the definition of the function. At λ = 1
λinf (z) , the assumption is satisfied because

of (27). If λ ∈
(

1
λsup(z) ,

1
λinf (z)

)

then the result follows from λ = λλinf(z)
1

λinf (z) , using (26) for

λλinf(z) and using (27) for 1
λinf (z) . Finally, if λ ∈

(

0, 1
λinf (z)

]

, the result follows by expressing

λ = λλsup(z) λinf (z)
λsup(z)

1
λinf (z) and using (25) for λλsup(z), (26) for λinf (z)

λsup(z) and (27) for 1
λinf (z) . Similarly,

it is reasonable, to define h(z) over L as any function that satisfies the assumption and is at least
as large as 1

λsup(z)p (λsup(z)z).

Theorem 2.1 also points to an interesting set of sufficient conditions that can be used to verify
the convex extension property. The primary difference from the conditions in Theorem 2.14 is that
Proposition 2.15 does not impose a structure on the original set, S. Instead, it constructs a set X
whose projection in the z-space is contained within cl conv (

⋃n
i=1 Si), using a construction similar to

Theorem 2.1, and then leaves it to the user to verify that X outerapproximates S. This technique
may be useful when S is defined by more than one inequality. Also, note that the special case of
Theorem 2.14, where f(·) is a summation operator, hi(zi) = gi(zi), g(z) is subadditive, and gi(zi)
tends to infinity along every direction in the non-negative orthant, can also be seen to have the
convex extension property using Proposition 2.15.

Proposition 2.15. For a set S and its subsets Si ⊆ S for i ∈ N = {1, . . . , n}, let zi ∈ Rdi and
z = (z1, . . . , zi, . . . , zn) ∈ S ⊆ R

P

i di . Assume that (A1) and (A4) are satisfied as in Theorem 2.1
and the sets Ai and X are as defined in (1) and (2) respectively. If, in addition, the following
assumptions are satisfied:
(N1) Si ⊆ projz Ai ⊆ cl

(

conv(Si)
)

,

(N2) tji

i , vki

i , and wli
i are such that for all 0 < λ ≤ 1,

λt
ji

i

(

(zi, ui)

λ

)

≥ t
ji

i (zi, ui), λv
ki

i

(

(zi, ui)

λ

)

≥ vki

i (zi, ui), λw
li
i

(

(zi, ui)

λ

)

≥ wli
i (zi, ui),

(N3) S ⊆ cl projz X.
Then, (11) holds for S.
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Proof. Here, Fourier-Motzkin elimination shows, as it did in the proof of Theorem 2.1, that X =
projz,uQ. We will now show that projz X = projz Q ⊆ cl conv (

⋃n
i=1 Si). The proof is again similar

to that for Theorem 2.1 except that the positive homogeneity is replaced by the weaker inequalities
assumed in (N2). Even then, if (λ, z, u) ∈ Q and 0 < λi ≤ 1, it follows that zi,ui

λi
∈ Ri(1) since the

inequalities are satisfied in the same manner as:

t
ji

i (zi, ui) ≥ λi and λit
ji

i

(

zi, ui

λi

)

≥ t
ji

i (zi, ui) ⇒ λit
ji

i

(

zi, ui

λi

)

≥ t
ji

i (zi, ui) ≥ λi ⇒ t
ji

i

(

zi, ui

λi

)

≥ 1.

Clearly, cl conv (
⋃n

i=1 Si) ⊆ cl conv(S) and we have assumed that S ⊆ projz X . Observe that
cl conv(S) ⊆ cl conv(projz X) ⊆ cl conv (

⋃n
i=1 Si) ⊆ cl conv(S) and, therefore, equality holds through-

out.

Observe that Assumptions (N1) and (N2) are less restrictive than (A3) in Theorem 2.1 since
projz Ai may be a nonconvex subset of conv(Si) and the positive homogeneity is relaxed. Here, it is
not necessary to use tji

i (zi, ui), v
ki

i (zi, ui) and wli
i (zi, ui) as the underestimators in Assumption (N2).

Rather, any function of (zi, ui) that underestimates λit
ji

i

(

zi,ui

λi

)

, λiv
ki

i

(

zi,ui

λi

)

, and λiw
li
i

(

zi,ui

λi

)

for all λi ∈ (0, 1] suffices. As long as the set Ci defined using these functions inner-approximates the
recession cone of cl conv(S), a suitable set X can be derived by projecting out the λ variables and
Assumption (N3) can be posed in terms of this set. Instead of exploring this extension further, we
will retain in the remainder of this paper that tji

i (zi, ui), v
ki

i (zi, ui), and wli
i (zi, ui) are themselves

the underestimating functions since it keeps the notation simpler while still conveys the main ideas.

3 Nonlinear Valid Inequalities for Polynomial Covering Sets

In this section, we apply the results of Section 2 to develop valid inequalities and convex hull rep-
resentations for a variety of polynomial covering sets. Then, we consider the bilinear covering sets
in greater detail. In particular, we find a convex relaxation of the bilinear covering set when the
variables are restricted to be in a hypercube that is at least as tight as the standard factorable
relaxation, and is, in fact, strictly tighter in many instances. The results in this section give appli-
cations of the theoretical framework built in Section 2 and provide many techniques to build better
relaxations for nonlinear programs.

We will show that the conditions of Theorem 2.14 are satisfied for large classes of polynomial
covers. In fact, we will allow the powers of the variables to be any real numbers larger than or
equal to one. Then, we will apply Theorem 2.1 to construct the convex hull representation for the
polynomial covering set over the non-negative orthant. To construct the inequality description of
the convex hull, we will need convex hull descriptions of the orthogonally disjunctive sets, which will
be defined by a single inequality. This inequality is an upper-level set of a function that generalizes
the geometric mean. We show that the function in consideration is concave and, therefore, its
upper-level set is convex. The concavity of this function does not seem to have been studied in the
literature. We first provide a proof of this result, for it may have other applications.

Theorem 3.1. Consider f(x) =
Qn

i=1
x

ai
i

(r+
P

n
i=1

bixi)a , where a ≥ 0, r > 0,
∑n

i=1 ai ≤ 1, and for each i ∈
{1, . . . , n}, ai and bi are non-negative. Let I = N ∩{i | bi > 0} and assume that a ≤ min{ai | i ∈ I}.
Then, f(x) is concave over Rn

+.

Proof. We may assume that |I| > 0, otherwise the result follows directly from Cauchy-Schwarz
inequality (see discussion following Theorem 4.5 in [22]). We may further restrict ourselves to the
case where, for all i ∈ I, ai equals a. Otherwise, consider

g(x, y) =
∏

i∈N\I

xai

i

n
∏

i∈I

yai−a
i

∏

i∈I x
a
i

(r +
∑

i∈I bixi)a
.

Observe that g(x, y) satisfies our assumption, and if g(x, y) is concave, then so is f(x) since

f(x) = g(x, x). Therefore, we may assume that f(x) =
Qn

i=1
xa

i

(r+
P

i∈I bixi)a

∏

i∈N\I x
ai

i . We can also
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assume that I = N and a = 1
|I| = 1

n
. Otherwise, partition the variables into xI and xN\I . Then,

consider the function g(xI) =
Q

i∈I x

1
|I|
i

(r+
P

i∈I bixi)
1
|I|

. Let h(y, xN\I) = y|I|a
∏

i∈N\I x
ai

i . Then, f(x) equals

h(g(xI), xN\I). If g(xI), a function that satisfies our assumptions, is concave, then f(x) is concave
since h is jointly concave and isotonic (does not decrease when the argument increases) in (y, xN\I).
The verification, although standard, is included here for completeness (see for example Theorem 5.1
in [22] for a similar argument in one dimension). Given xa and xb belonging to Rn

+ and an arbitrary
λ ∈ [0, 1]:

f(λxa + (1 − λ)xb) = h
(

g(λxa
I + (1 − λ)xb

I), λx
a
N\I + (1 − λ)xb

N\I

)

≥ h
(

λg(xa
I ) + (1 − λ)g(xb

I ), λxa
N\I + (1 − λ)xb

N\I

)

= h
(

λ(g(xa
I ), xa

N\I) + (1 − λ)(g(xb
I), x

b
N\I)

)

≥ λh
(

g(xa
I ), xa

N\I

)

+ (1 − λ)h
(

g(xb
I), x

b
N\I

)

= λf(xa) + (1 − λ)f(xb),

where the first inequality follows since h is non-decreasing in y and g(xI) is concave; and the
second inequality since h(y, xN\I) is concave. Therefore, we only need to prove that, for all n ∈ N ,

g(n, x) =
(

Qn
i=1 xi

r+
P

n
i=1

bixi

)
1
n

is concave in x over Rn
+, assuming that r > 0 and bi ≥ 0. We do this

by induction on n. For the basis of induction, we observe that g(1, x) = x
r+b1x

is concave since
∂2g(1,x)

∂x2 = −2b1r
(r+b1x)3 ≤ 0. Also, note that the right scalar multiplication yg

(

1, x
y

)

is concave in (x, y)

as long as y > 0 (see discussion on page 35 of Rockafellar [22]). In particular, it follows by setting
r = 1 that u(b, x, y) := xy

bx+y
is concave in (x, y) as long as b ≥ 0, x ≥ 0, and y > 0. This function

will be used in the inductive step. For the inductive step, we assume that g(n, x) is concave over Rn
+

when r > 0 and bi ≥ 0, and prove that g(n+ 1, x) is concave over Rn+1
+ under the same conditions.

Observe that:

g(n+ 1, x) =

(

∏n+1
i=1 xi

r +
∑n+1

i=1 bixi

)
1

n+1

=





∏n
i=1 x

1
n

i
(

r +
∑n

i=1 bixi

)
1
n





n
n+1 ((

r +
∑n

i=1 bixi

)

xn+1

r +
∑n+1

i=1 bixi

)
1

n+1

= g(n, x)
n

n+1u

(

bn+1, xn+1, r +

n
∑

i=1

bixi

)
1

n+1

.

Now, u
(

bn+1, xn+1, r +
∑n

i=1 bixi

)

is concave in (xn+1, r +
∑n

i=1 bixi

)

since r > 0, bn+1 ≥ 0, and
xn+1 ≥ 0. Further, g(n, x) is concave by our induction hypothesis. Since r +

∑n
i=1 bixi > 0 and

xn+1 ≥ 0, g(n + 1, x) can be expressed as a composition of a concave function that is isotone, i.e.,

x
n

n+1 y
1
n , with concave functions, i.e., u(·) and g(n, x). In other words, g(n + 1, x) is concave over

Rn
+ and the result is proven.

The concavity of the geometric mean is typically proven in one of two ways. The first proof
technique exploits the convexity of x2 or, equivalently, Cauchy-Schwarz inequality to show that the
Hessian of the geometric mean is negative semidefinite. The second proof technique uses the AM-
GM inequality and the concavity of the log(·) function to establish Jensen’s inequality. However,
the above proofs do not generalize to show the concavity of the function in Theorem 3.1 because
the denominator destroys the multiplicative nature of the geometric mean. We mentioned in the
introduction that the traditional approach of relaxing the left-hand-side of the polynomial covering
set by a concave overestimator is often difficult to carry out. The reason is that it is not clear
how to express the hypograph of a polynomial using a convex inequality. Consider for example the

inequality p(x) =
∏n

i=1 x
ai
a

i −∑n
i=1 bixi ≥ r. Observe that, using Theorem 3.1, there is a simple way

to write this inequality as a convex inequality. However, convexity is not preserved if r is allowed to
vary in this inequality. In fact, the function in Theorem 3.1 is strictly convex as a function of r for
a given x. Therefore, relaxing the hypograph of p(x) to a convex set is not straightforward, whereas
the upper-level set of p(x) is easily expressed as a single convex inequality.
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Incidentally, the convexity of the function in Theorem 3.1 as a function of r also shows that
if one replaces the linear term in the denominator with another variable, the function is rendered
nonconvex. Standard factorable relaxation schemes carry out such a transformation whenever they
encounter a function of this type and, as a result, may yield weak relaxations. Therefore, the func-
tion in Theorem 3.1 should be added to list of primitive concave functions if nonlinear relaxations
are being built using factorable programming techniques. It was shown in [31] that if the concav-
ity of a function follows from the composition rules then, to achieve the same relaxation quality,
overestimating the concave function directly may require exponentially more linear overestimators
compared to overestimating the functions involved in the composition. However, it is clear that
the concavity proved in Theorem 3.1 does not directly follow from composition rules. Rather, the
inductive proof of Theorem 3.1 provides a recipe for introducing intermediate variables in a manner
that the concavity of the function will follow using composition rules. Such a recipe, if followed
during the construction of polyhedral outer-approximation, will yield a tighter overestimator with
fewer inequalities than overestimating the function directly.

The function
Qn

i=1
x

ai
i

(r+
P

n
i=1 bixi)a , however, unlike the geometric mean, is not positively-homogenous.

In Theorem 2.1, positive homogeneity of the function plays a critical role in finding the convex hull
of the disjunctive set, as was discussed in Example 2.5. Unfortunately, this means that it will not in
general be possible to write the convex hull inequality without introducing new variables. However,
when the bis are zero, we can rewrite the upper-level sets of the above function using a positively-
homogenous function, and, therefore, express the convex hull inequality in the space of the original
variables. Otherwise, we can still use the right-scalar multiplication to recover positive homogeneity
by introducing an additional variable for each of the disjunctive sets. We demonstrate this technique
in the next corollary. Later, we discuss techniques that allow to recover positive-homogeneity without
introducing additional variables.

Corollary 3.2. Consider

f(x) =











∏n
i=0 x

ai

i

(
∑n

i=0 bixi)
a ∃j, such that bjxj 6= 0,

0 otherwise;

where a ≥ 0,
∑n

i=0 ai = 1 + a, and, for each i ∈ {0, . . . , n}, ai and bi are non-negative. Further,
assume that there exists j ∈ {0, . . . , n} such that bj > 0. Define I = N ∩ {i | bi > 0} and assume
that a ≤ min{ai | i ∈ I}. Then, f(x) is concave and positively-homogenous over Rn+1

+ .

Proof. Assume without loss of generality that b0 > 0, i.e., 0 ∈ I. By substituting a0 = 1+a−∑n
i=1 ai,

the conditions in the statement of the Corollary on a0, . . . , an can be restated in terms of a1, . . . , an

as: a ≥ 0,
∑n

i=1 ai ≤ 1, and ai ≥ a for all i ∈ I, while ai ≥ 0 for i 6∈ I. Then, it follows by

considering the right-scalar multiplication of
Qn

i=1 x
ai
i

(b0+
P

n
i=1

bixi)
a (see discussion before Theorem 5.5 in

[22]) that f(x) is concave and positively-homogenous over Rn+1
+ .

Theorem 3.1 and its Corollary 3.2 allow us to build valid inequalities for polynomial covering sets.
As mentioned before, the main idea is that as long as the function grows superlinearly, the convex
extension property can be inferred from Theorem 2.14 and then Theorem 2.1 provides a recipe for
constructing the convex hull from its restriction to the orthogonal subspaces spanned by certain
subsets of the original variables. A representation of the convex hull in the orthogonal subspaces
is easily obtained using Corollary 3.2. The following theorem formalizes this construction yielding
valid inequalities for the polynomial covering sets.

Theorem 3.3. Consider the set S =
{

z ∈ R
Pn

i=1 di

+

∣

∣

∣ s(z) ≥ r + 〈b, z〉
}

, where b ≥ 0 and r > 0. Let

zi = (zi1, . . . , zidi
) and s(z) =

∑n
i=1 si(zi), where si(zi) =

∑Ki

k=1 cik
∏di

j=1 z
aijk

ij . Assume that the

coefficients are non-negative, i.e., cik > 0. Further, assume that for all (i, k),
∑di

j=1 aijk > 1. Let

mi = maxk

{

∑di

j=1 aijk

∣

∣ k = 1, . . . ,Ki

}

. Then, the convex extension property (11) holds for S. If,
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in addition, bij > 0 implies that, for all k, aijk > 1, then the following convex inequality is valid for
conv(S):

n
∑

i=1

Ki
∑

k=1

c
1

mi

ik

∏di

j=1 z

aijk
mi

ij

(r +
∑di

j=1 bijzij)
1

mi

≥ 1. (28)

Define, by introducing variables, zi0 for i ∈ {1, . . . , n}:

ϑk(z0i, zi) =















z
1+ 1

mi
−

Pdi
j=1

aijk
mi

i0

c
1

mi

ik

∏di

j=1 z

aijk
mi

ij

(rzi0 +
∑di

j=1 bijzij)
1

mi

if zi0 > 0

0 otherwise.

Then, the following provides a convex outer-approximation of the polynomial covering set that is at
least as tight as (28):

conv(S) ⊆
{

z ∈ R
Pn

i=1
di

+

∣

∣

∣

∣

n
∑

i=1

Ki
∑

k=1

ϑk

(

z0i, zi

)

≥ 1,
∑

i∈I

zi0 = 1, ∀i zi0 ≥ 0

}

. (29)

In addition, if bi = 0, then it is not necessary to introduce zi0. In particular, if b itself is zero, i.e.,
for all i, bi equals zero, then the (closure) convex hull of S is given as follows:

conv(S) = cl conv(S) =







z ∈ R
Pn

i=1
di

+

∣

∣

∣

∣

n
∑

i=1

(

ci1
∏di

j=1 z
aij1

ij

r

)
1

Pdi
j=1

aij1

≥ 1







. (30)

Proof. Let g(z) = s(z)−〈b, z〉 and gi(zi) = si(zi)−〈bi, zi〉. We first use Theorem 2.14 to verify that
the convex extension property holds. Let hi(zi) = gi(zi) and let f be the summation operator. Then,
by construction, Assumption (S1), (S2), and (S3) are satisfied. Further, by definition, hi(0) = 0 and
for λ ∈ (0, 1],

λhi

(zi

λ

)

=
1

λ
PKi

k=1
aijk−1

Ki
∑

k=1

cik

di
∏

j=1

z
aijk

ij − λ
〈

bi,
zi

λ

〉

≥
Ki
∑

k=1

cik

di
∏

j=1

z
aijk

ij − 〈bi, zi〉 = hi(zi).

The first inequality follows since λ ∈ (0, 1],
∑Ki

k=1 aijk > 1, zij ≥ 0, and cik ≥ 0. Therefore,

Assumption (S4) is satisfied. Since mi > 1, it follows that, for any z′i ∈ Rdi

+ , there exists a sufficiently
large λ′ such that, whenever λ > λ′, si(λz

′
i) − 〈bi, λz′i〉 ≥ r. Therefore, z′i is a recession direction of

0+(cl convSi) and it follows by Theorem 2.14 that the convex extension property holds for S. Since

mi > 1, it follows that (·) 1
mi is subadditive, and, therefore,

conv(Si) ⊆ O′
i :=











(0, zi, 0)

∣

∣

∣

∣

Ki
∑

k=1

c
1

mi

ik

∏di

j=1 z

aijk
mi

ij

(r +
∑di

j=1 bijzij)
1

mi

≥ 1











. (31)

If bij > 0 implies that, for all (j, k), aijk is larger than one then, by Theorem 3.1, it follows that
O′

i is a convex set. This outer-approximation of conv(Si) is not expressed in terms of positively-
homogenous functions. However, it follows from Proposition 2.7 that (28) is still a valid inequality
for the polynomial covering set. On the other hand, the inequality can be homogenized as follows:

conv(Si) ⊆ Oi =

{

(0, zi, 0)

∣

∣

∣

∣

Ki
∑

k=1

ϑk(zi0, zi) ≥ 1, zi0 = 1

}

.

Now, instead of computing conv (
⋃n

i=1 Si), we compute its outer-approximation, conv (
⋃n

i=1Oi).
By Corollary 3.2, the left-hand-side in the defining inequality of Oi is concave. Further, for λ
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sufficiently large, zi = (λ, . . . , λ) ∈ Oi. Therefore, by Proposition 2.6, it follows that Assumption
(A4) is satisfied. Then, it follows that conv(Si) is outer-approximated by the set on the right-hand-
side of (29). It follows by Theorem 3.1 and an argument similar to (10) that (29) is at least as tight

as (28). The inclusion is tight in (29) when, for k 6= 1, cik = 0 because the subadditivity of (·) 1
mi

is not exploited and, therefore, conv(Si) = Oi. If, for k 6= 1, cik = 0 and, in addition, bi = 0, then
the defining inequality of (31) is itself positively-homogenous and, consequently, zi0 does not need
to be introduced. If b = 0, the set X in Theorem 2.1 corresponds to the right-hand-side of (30).
Since the left-hand-side of the defining inequality of the set (30) is continuous, the set is closed. The
closedness of the set also follows from Theorem 2.1, Ci = Rdi

+ = 0+(cl convSi) and that Ais are

closed. Let S′
i =

{

z ∈ R
Pn

i=1
di

+

∣

∣

∣ si(zi) ≥ r
}

. Note that if b = 0 then S′
i is closed convex subset of

S. Then, by the last statement of Theorem 2.14, conv(S) is closed.

The valid inequalities for the polynomial covering sets that are derived in Theorem 3.3 are
surprisingly simple to construct. They are also widely applicable in factorable programming. In
particular, consider the process of relaxing an inequality using recursive decomposition; see [18] and
[23]. Assume that in an intermediate step, we encounter a polynomial inequality where the dominant
terms have positive coefficients. Then, Theorem 3.3 can typically be used to relax the inequality
by underestimating the remaining terms using linear underestimators following the current practice.
Another, not so apparent, use of these inequalities is in objective function cuts. If the optimization
involves maximizing a polynomial function and an upper-bound is found during the course of the
algorithm then one may wish to restrict the search to better solutions. Theorem 3.3 provides a
convex outer-approximation for such a restriction. The following example highlights the important
procedural steps in constructing relaxations using Theorem 3.3.

Example 3.4. Consider the following set: S =
{

(x, y, u, v, z) ∈ R5
+ | xy + u2v + z ≥ r

}

for a given
r > 0. The defining inequality satisfies the most stringent assumptions of Theorem 3.3. In particu-
lar, note that the left-hand-side is a sum of monomials, each with positive coefficients, i.e., for all
k 6= 1, cik = 0. Further, there are no linear terms on the right-hand-side, i.e., for all i, bi = 0.
Therefore, conv(S) is given by (30). In particular, one starts with the convex hull descriptions of
xy ≥ r, u2v ≥ r, and z ≥ r over the non-negative orthant, which are defined by the inequalities
(

xy
r

)
1
2 ≥ 1,

(

u2v
r

)
1
3 ≥ 1, and z

r
≥ 1 respectively. Observe that the functions used in the convex-hull

representations are scalar multiples of the geometric mean, and are, therefore, positively-homogenous
and concave. The closure convex hull of S is then defined by the upper-level set of the summation
of these functions as follows:

conv(S) =

{

(x, y, u, v, z) ∈ R5
+

∣

∣

∣

∣

(xy

r

)
1
2

+

(

u2v

r

)
1
3

+
z

r
≥ 1

}

.

It was discussed in Proposition 2.7 that positive-homogeneity of the constituent functions is
not required to prove the validity of X . However, as in Example 2.8, if one can find a descrip-
tion of conv(Si) that uses positively-homogenous functions then one can apply Theorem 2.1 to
identify the convex hull of the orthogonal disjunctions, thus deriving a superior relaxation. The
proof of Corollary 3.2 demonstrates a general technique for constructing such a homogenization
using the right-scalar multiplication. However, this process suffers from the drawback that it intro-
duces new variables in the relaxation. Instead, it may be possible to find a separating hyperplane
without increasing the problem dimension and, thereby, circumvent the need to introduce new
variables. Consider, for simplicity, the case of Theorem 2.1, where Ai is not an extended formu-
lation, i.e., it does not need the additional ui variables. The case with the ui variables can be
handled similarly. Now, consider a point z′ that does not belong to cl conv(S). If it is possible

to find, for all i, a j′i ∈ argminj

{

t
j
i (z

′
i)
∣

∣

∣
j = 1, . . . , Ji

}

, a k′i ∈ argmink

{

vk
i (z′i)

∣

∣ k = 1, . . . ,Ki

}

and an l′i ∈ argminl

{

wl
i(z

′
i)
∣

∣ l = 1, . . . , Li

}

then using the closed-form expression of X in (2), one
can identify an inequality that separates z′ from X . For example, if an inequality of the form
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∑

i∈N t
ji

i (zi) ≥ 1 violates z′i, i.e.,
∑

i∈N t
ji

i (z′i) < 1, then
∑

i∈N t
j′i
i (z′i) < 1 as well, since, by the

definition of j′i, t
j′i
i (z′i) ≤ t

ji

i (z′i) for all i.
We now discuss another technique that can be used to find representations of the convex hull of

each Si that uses positively-homogenous functions but does not require additional variables. The
main idea is that one can homogenize the inequality using an extra variable and then maximize the
resulting function over the introduced variable to derive a positively-homogenous function describing
the set. We illustrate this idea by deriving a positively-homogenous function that describes the
following bilinear covering set:

Q =
{

(x, y) ∈ R2
+ | axy + bx+ cy ≥ r

}

,

where a, b, and c are assumed to be non-negative. We assume without loss of generality that r > 0.
Otherwise, Q = R2

+. We may also assume without loss of generality that c ≥ b and, consequently,
assume that at least one of a and c is strictly positive. Then, for any feasible (x, y), it follows that

ax+ c > 0. Therefore, Q =
{

(x, y) ∈ R2
+ | y ≥ r−bx

ax+c

}

. First, we verify that the inequality is convex.

Let f(x) = r−bx
ax+c

. Since

∂2f

∂x2
=

2a(bc+ ar)

(ax+ c)3

is nonnegative if x ≥ 0, Q is expressed as the intersection of the epigraph of a convex function with
the non-negative orthant. Therefore, Q is convex. Also, note that the defining inequality of Q is not
positively-homogenous. We show how the above inequality can be homogenized without introducing
any new variables in the formulation. To carry out this transformation, first homogenize the defining
inequality, axy+ bx+ cy ≥ r, using an additional variable h, that is restricted to be positive. This is
accomplished by rewriting the defining inequality of Q as axy

h
+ bx+ cy ≥ rh. Since h is positive, we

can multiply throughout by h, and express the above inequality as: axy + bxh+ cyh ≥ rh2. This is
a positively-homogenous inequality which defines Q as long as h is positive. Therefore, Q can now
be described by the inequalities:

axy + bxh+ cyh ≥ rh2 and h ≥ 1.

In order for (x, y, h) to satisfy the first inequality above, h must be such that:

bx+ cy −
√

(bx+ cy)2 + 4arxy

2r
≤ h ≤ bx+ cy +

√

(bx+ cy)2 + 4arxy

2r
.

It can be easily verified that the functions bounding h are positively-homogenous. In fact, when the
bounding functions on h are derived from a positively-homogenous constraint, they must, in general,
be positively-homogenous. This can be inferred because for each (x, y, h) that satisfies a positively-
homogenous constraint and an arbitrary λ > 0, it must be that (λx, λy, λh) satisfies the constraint
as well. The lower bounding function is nonpositive. Therefore, the set Q can be rewritten as:

η(x, y) =
1

2

(

bx+ cy +
√

(bx+ cy)2 + 4arxy
)

≥ r. (32)

We have thus expressed Q as the upper-level set of a positively-homogenous function without in-
troducing any new variables. In fact, since Proposition 2.6 asserts that a positively-homogenous
function whose upper-level set is convex, is concave, it follows from the convexity of Q that η(x, y)
must be concave over the non-negative quadrant. In other words, we have established the following
result.

Proposition 3.5. Let Q =
{

(x, y) ∈ R2
+ | axy + bx+ cy ≥ r

}

, where a, b, c are non-negative, and
r is strictly positive. Then, Q has a convex description (upper level set of a concave function) that
uses positively-homogenous functions. In particular, Q =

{

(x, y) ∈ R2
+ | η(x, y) ≥ r

}

, where η(x, y)
is as defined in (32).
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We now consider a more general bilinear covering set that reduces to Q when restricted to any
one of n orthogonal subspaces. As long as the convex extension property holds, since Proposition 3.5
provides the inequality description for the convex hull in each of the orthogonal subspaces, we can
use Theorem 2.1 to find the convex hull description of the bilinear covering set over the non-negative
orthant. We formalize this argument in the following proposition.

Proposition 3.6. Consider a bilinear covering set:

BR =

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

n
∑

i=1

(aixiyi + bixi + ciyi) ≥ r

}

.

where, for each i ∈ {1, . . . , n}, ai, bi and ci are non-negative and r is strictly positive. Let

ηi(xi, yi) =
1

2

(

bixi + ciyi +
√

(bixi + ciyi)2 + 4airxiyi

)

.

Then,

conv
(

BR
)

= X =

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

n
∑

i=1

ηi(xi, yi) ≥ r

}

. (33)

Proof. We may assume without loss of generality that, for each i, at least one of ai, bi, or ci is
positive. First, we use Theorem 2.14 to show that the convex extension property (11) holds for BR.
Let zi = (xi, yi), gi(xi, yi) = hi(xi, yi) = aixiyi + bixi + ciyi, g(z) =

∑n
i=1 gi(zi), and define f to be

the summation operator. Then, by definition, (S1), (S2), and (S3) are satisfied. Clearly, hi(0) = 0
and for 0 < λ ≤ 1,

λhi

(zi

λ

)

=
aixiyi

λ
+ bixi + ciyi ≥ hi(zi).

Therefore, Assumption (S4) is satisfied as well. Observe that, if (x′i, y
′
i) ≥ 0, then hi(xi+x

′
i, yi+y

′
i) ≥

hi(xi, yi). Therefore, if z′i = (x′i, y
′
i) ≥ 0 then (0, z′i, 0) ∈ 0+

(

cl convGi

)

and, consequently, Assump-
tion (S5) is satisfied. Therefore, the convex extension property holds for S. By Proposition 3.5, it fol-
lows that the convex hull of BR

i = {(0, xi, yi, 0) | aixiyi + bixi + ciyi ≥ r} is defined by ηi(xi, yi) ≥ r.
Observe that ηi(xi, yi) is a positively-homogenous function. Therefore, Assumption (A3) is satisfied.
Finally, ηi(xi, yi) is concave by Proposition 2.6 and since for sufficiently large zi, hi(xi, yi) ≥ r, it
follows by Proposition 2.6 that Assumption (A4) is satisfied as well. Then, by Theorem 2.1 and the
discussion following Definition 2.9, the set X in (33) is cl conv(BR). Let

BR′

i =
{

(x, y) ∈ Rn
+ × Rn

+

∣

∣ aixiyi + bixi + ciyi ≥ r
}

.

Then, BR′

i ⊆ BR, and, therefore, by Theorem 2.14, conv
(

BR
)

is closed.

Consider the special case of Proposition 3.6 where bi = ci = 0. In this case, the convex hull
inequality takes the following simple form:

∑n
i=1

√
aixiyi ≥ √

r. This representation can also be
derived using Theorem 3.3. We include here a direct short proof of this result. First, the validity of
the inequality can be verified using the following argument:

n
∑

i=1

√
aixiyi ≥

√

√

√

√

n
∑

i=1

aixiyi ≥
√
r,

where the first inequality follows by the subadditivity of square-root over non-negative real numbers.
Second, by Example 2.5, the above inequality defines the closure convex hull of the disjunctive union
of {(xi, yi) | aixiyi ≥ r} over the non-negative orthant and, therefore, it must also be the closure
convex hull of

∑n
i=1 aixiyi ≥ r over the same set. Note that in the argument, we did not employ

Theorem 2.14. Instead, we replaced it with a proof that the convex hull of the disjunctive union
of orthogonal restrictions of the set includes the original set. This illustrates a different technique,
similar to the proof technique of Proposition 2.15, that may sometimes be useful in establishing the
convex extension property.
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However, the above technique for establishing validity fails for another special case of Propo-
sition 3.6, where the defining inequality is ax1y1 + bx2 ≥ r with a > 0, b > 0 and r > 0. A
simpler variant of this set was mentioned in the introduction of the paper. Its convex hull over the
non-negative orthant is defined by

√

ax1y1

r
+
bx2

r
≥ 1. (34)

Once again, this convex hull representation could also be derived as a consequence of Theorem 3.3.
Note that the right-hand-side r participates differently with different subsets of variables in this
convex hull inequality. One could use subadditivity of the square-root function to instead derive the
following valid inequality

√

ax1y1

r
+

√

bx2

r
≥ 1. (35)

However, as expected, (35) is not as tight as (34). This can be seen by considering a point (x1, y1, x2)

that is feasible to (34). If bx2

r
≥ 1, it follows that

√

bx2

r
≥ 1. Otherwise bx2

r
< 1, in which case

√

ax1y1

r
+

√

bx2

r
>

√

ax1y1

r
+
bx2

r
≥ 1.

Therefore, (x1, y1, x2) is feasible to (35) as well. In this case, the subadditivity of the square-
root function is not sufficient to prove the convex extension property, and, thus, cannot replace
Theorem 2.14. Without realizing the convex extension property a priori, even the form of the
inequality (34) is not obvious. The key to deriving this convex hull is thus to realize that the convex
hull is formed by restricting attention to orthogonal subspaces. The first subspace spans the (x1, y1)
variables and the second subspace spans x2. Then, Theorem 2.1 quickly reveals the structure of the

convex hull. Note that for this example,
√

bx2

r
≥ 1 as well as bx2

r
≥ 1 define the convex hull of the

set restricted to (0, 0, x2). However, as the insight from Theorem 2.1 suggests, it is preferable to
choose the latter representation since it uses a positively-homogenous function.

Most of our discussion to this point has focused on developing convex hulls of inequalities over
the non-negative orthant. The main purpose of developing convex relaxations is that linear functions
can typically be optimized over them quickly. As a result, relaxations are used to derive quickly
computable bounds on the optimal objective value of a global optimization problem. However, when
using such relaxations in a branch-and-bound algorithm, the relaxations are iteratively constructed
over smaller partitions of the search space, which are obtained by branching on the variables. And
so, the nodes of the branch-and-bound tree are typically associated with variable bounds which can
be exploited to derive tighter relaxations. In our discussion that follows Theorem 2.14, we alluded
to the fact that if the variables are restricted to belong to a compact convex set, the relaxations
derived using orthogonal disjunctions may be tightened by altering the defining inequality outside
the region of interest. We apply this technique in the context of the bilinear covering set to derive
its relaxation over a hypercube.

Theorem 3.7. Let B =
∏n

i=1[li, ui] ×
∏n

i=1[Li, Ui], where, for each i, li and Li are non-negative.
Consider the following bilinear covering set:

BR
B =

{

(x, y) ∈ B
∣

∣

∣

∣

∣

n
∑

i=1

(aixiyi + bixi + ciyi) ≥ r

}

,

where r > 0 and, for each i, ai, bi, and ci are non-negative. Let b′i = bi + aiLi, c
′
i = aili + ci, and

r′ = r −∑n
i=1(ailiLi + bili + ciLi). If r′ ≤ 0 then conv(BR) = B. Otherwise, define

τi(xi, yi) =
1

2

(

b′i(xi − li) + c′i(yi − Li) +
√

(b′i(xi − li) + c′i(yi − Li))2 + 4air′(xi − li)(yi − Li)

)

.
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Then,

conv
(

BR
B

)

⊆































(x, y) ∈ B

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

min































τi(xi, yi)

(ai(Ui − Li) + b′i)(xi − li) + c′i(yi − Li)

b′i(xi − li) + (ai(ui − li) + c′i)(yi − Li)































≥ r′































. (36)

Proof. First note that (x, y) = (l1, . . . , ln, L1, . . . , Ln) is feasible if and only if r′ ≤ 0. If it is feasible
then, clearly, B = BR

B = conv(BR
B ). Therefore, we may now assume that setting x and y to their

lower bounds does not yield a feasible solution. We assume without loss of generality that, for all
i, li and Li are zero. Otherwise, we rewrite the defining inequality of BR

B using the transformed
variables x′i = xi − li and y′i = xi − Li. This inequality then becomes:

n
∑

i=1

(

aix
′
iy

′
i + (bi + aiLi)x

′
i + (aili + ci)y

′
i

)

≥ r −
n
∑

i=1

(ailiLi + bili + ciLi).

Since, setting the variables to the lower bound does not yield a feasible solution, it follows that:

r′ = r −
n
∑

i=1

(ailiLi + bili + ciLi) > 0.

Similarly, one can define b′i = bi + aiLi, c
′
i = aili + ci, and transform the above inequality to:

n
∑

i=1

(

aix
′
iy

′
i + b′ix

′
i + c′iy

′
i

)

≥ r′,

which is in the same form as the defining inequality of BR
B . Defining u′i = ui − li and U ′

i = Ui − Li,
we note that (x′i, y

′
i) ∈

∏n
i=1[0, u

′
i] ×

∏n
i=1[0, U

′
i ], which is a hypercube of the assumed type.

Now, we only need to verify the result for B =
∏n

i=1[0, ui]×
∏n

i=1[0, Ui]. The general result follows
by appropriately substituting x′i, y

′
i, b

′
i, c

′
i, u

′
i, U

′
i and r′ for xi, yi, bi, ci, ui, Ui, and r respectively.

Even though the natural way to apply Theorem 2.14 is to define hi(zi) = aixiyi + bixi + ciyi, it
may be observed that such an application does not yield the desired result. However, the discussion
following Theorem 2.14 provides an improvement that we will exploit. If the variables are bounded,
we may modify the inequality outside the bounds without changing the set. The discussion following
Theorem 2.14 shows a way that this change can be made without compromising Assumption (S4),
which is required for the application of Theorem 2.14. Following this discussion, we underestimate
pi(xi, yi) = aixiyi + bixi + ciyi as in (24). Then, let gi(xi, yi) = hi(xi, yi) = min(aixiyi + bixi +
ciyi, (aiUi + bi)xi + ciyi, bixi(aiui + ci)yi). We rewrite BR

B as:

BR
B =

{

(x, y) ∈ B
∣

∣

∣

∣

∣

n
∑

i=1

gi (xi, yi) ≥ r

}

. (37)

Now, we ignore the bounds and construct the closure convex hull of
∑n

i=1 gi (xi, yi) ≥ r over R2n
+ .

Assumptions (S1), (S2), and (S3) follow by assuming f to be the summation operator. Since
gi(xi, yi) ≥ 0, it follows that R2

+ is the recession cone of {(xi, yi) | gi(xi, yi) ≥ r}. Therefore, As-
sumption (S5) holds. By construction, hi(xi, yi) satisfies Assumption (S4). However, in this context,
it is easier to verify that hi(xi, yi) satisfies Assumption (S4) by observing that hi(xi, yi) is expressed
as a minimum of three functions, each of which satisfies the assumption. Therefore, the convex
extension property, (11), holds for

BR
B′ =

{

(x, y) ∈ R2n
+

∣

∣

∣

∣

∣

n
∑

i=1

gi (xi, yi) ≥ r

}

. (38)
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Assumption (A1) is clearly satisfied by BR
B′ . Since, by Proposition 3.5, τi(xi, yi) ≥ r if and only if

aixixi + bixi + ciyi ≥ r, it is easy to find a representation of BR
B′ restricted to the space of (xi, yi)

variables as an intersection of upper-level sets of positively-homogenous functions. It follows that
the inequality in the proposition is the closure convex hull of (38). Since BR

B ⊆ BR
B′ , the resulting

convex hull is a convex outer-approximation of BR
B .

The relaxation of conv
(

BR
B

)

presented in (36) has 3n constraints. However, it is not necessary
to explicitly list the exponentially many constraints to exploit this relaxation. Instead, one can
introduce variables wi, i = 1, . . . , n, and rewrite (36) as:































(x, y) ∈ B

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

min































τi(xi, yi)

(ai(Ui − Li) + b′i)(xi − li) + c′i(yi − Li)

b′i(xi − li) + (ai(ui − li) + c′i)(yi − Li)































≥ wi,

n
∑

i=1

wi ≥ r′































.

Given a point (x̄, ȳ), that is not feasible to the above relaxation, it is also easy to find a sepa-
rating inequality that violates (x̄, ȳ). In particular, the separating inequality is

∑n
i=1 ζi(xi, yi) ≥

r′ where ζi is chosen among τi (xi, yi), (ai (Ui − Li) + b′i) (xi − li) + c′i (yi − li), and b′i (xi − li) +
(ai (ui − li) + c′i) (yi − Li) as the function that has the minimum value at (x̄i, ȳi). The separating
inequality is nonlinear. Instead, a separating hyperplane can be found by replacing ζi(xi, yi) by its
linear overestimator, ζi(x̄i, ȳi) + 〈s, (xi, yi) − (x̄i, ȳi)〉, where s is the subgradient of ζi at (x̄i, ȳi).
The subgradient can be chosen to be the gradient of any of the above three functions that equals ζi
at (x̄i, ȳi).

The main trick in the proof of Theorem 3.7, other than the use of Theorems 2.1 and 2.14, is that
the defining bilinear inequality was tightened outside the feasible region. This technique for handling
bounds can also be used for polynomial covering inequalities and other inequalities that satisfy the
assumptions of Theorem 2.14. The only obstacle to its application is the ability to construct tight
convex relaxations in the orthogonal subspaces. However, the orthogonal subspaces typically contain
a few variables and, therefore, convexifying the restricted inequality is a much simpler problem than
constructing tight relaxations for the original inequality.

Even though the proposed technique for handling bounds is general in its applicability, the pri-
mary motivation we have offered for it is that this construction allows us to sidestep a theoretical
roadblock, i.e., it may not be possible to construct the relaxation by convexifying orthogonal disjunc-
tions, if Assumption (S4) of Theorem 2.14 is not satisfied, because the convex extension property
either does not hold, or, at least, is not easy to argue. Therefore, it is important to determine
whether this technique for convexifying orthogonal disjunctions, even though provably effective with
unbounded variables (as it often constructs convex hulls), will yield interesting relaxations when the
variables are restricted to belong to a compact convex set, such as a box. Since the ability to con-
struct tight relaxations over hypercubes is the key to the success of branch-and-bound algorithms, it
is crucial in the context of algorithm development that such a property holds as otherwise only the
initial few branches of the tree would see an improvement in relaxation quality after the derived cuts
have been incorporated. In fact, for establishing convergence of branch-and-bound type algorithms,
not only does one need tight relaxations, but the relaxations must converge to the original problem
as the hypercubes are contracted down to a point.

In the seminal work of McCormick [18], the author proposed a factorable relaxation technique
that produces relaxations which exhibit the above convergence property. This relaxation technique
has, therefore, occupied a prominent place in the toolbox of algorithm designers. The key ingredient
of this relaxation scheme is that bilinear envelopes (see [2]) are used to relax products of variables.
Global optimization algorithms and software typically exploit this factorable programming technique
to build relaxations for bilinear inequalities such as the one that defines BR

B . Using McCormick’s
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factorable programming technique, one would obtain the following relaxation for BR
B :

conv
(

BR
B

)

⊆















(x, y) ∈ B

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

min















(aiUi + bi)xi + (aili + ci)yi − ailiUi

(aiLi + bi)xi + (aiui + ci)yi − aiuiLi















≥ r















. (39)

Undoubtedly, McCormick’s relaxation is not always the best possible relaxation and tighter relax-
ations have been developed for a variety of problems. The technique that is most often used to
derive such tighter relaxations is one that relaxes a given inequality, f(x) ≥ r, to f̄(x) ≥ r, where
f̄(x) is a concave overestimator of f(x) over the relevant domain (typically, a hypercube) of x
that is tighter than the polyhedral concave overestimator implicit in McCormick’s relaxation; see
Tawarmalani and Sahinidis [28] for examples of this technique. Unfortunately, this technique for
improving McCormick’s relaxation is bound to fail in the context of BR

B . This is because it can be
easily argued, using the additivity of f(x, y) =

∑n
i=1

(

aixiyi + bixi + ciyi

)

over i and the concave
envelope of the bilinear term, that (39) is the relaxation of f(x, y) ≥ r, where f(x, y) has been
replaced with its concave envelope over B; see Rikun [21] for a more general result of this type. It
is also known (see Proposition 35 in Richard and Tawarmalani [20]) that for the set BK , defined
as
{

(x, y) ∈ [0, 1]2n
∣

∣

∑n
i=1 aixiyi ≤ r

}

, McCormick’s relaxation produces the convex hull of BK as-
suming that, for all i, ai ≥ 0. Observe that BK is more specialized than BR

B in the bilinear function
and variable bounds used, but differs from BR

B in that the direction of the inequality is reversed.
These results support the intuition that McCormick’s relaxations are strong for bilinear inequalities
and seem to indicate that it is improbable that a relaxation tighter than McCormick’s relaxation
can be easily found for BR

B .
However, a careful consideration of (36) reveals that this relaxation is in fact tighter than Mc-

Cormick’s relaxation. The geometric insight that drives this result is that the original inequality
was tightened outside the region of interest using a linear extension of the bilinear function that
matches the bilinear envelope. It turns out that McCormick’s relaxation can also be visualized as
arising from orthogonal disjunctions. Since Theorem 3.7 constructs the relaxation by convexifying
disjunctions that are, along each subspace, at least as tight as the one implicit in (39), the resulting
relaxation, (36), is at least as tight as (39). We first provide a direct algebraic verification of this
fact and then explore the geometry of the relaxations further.

Corollary 3.8. The relaxation (36) is tighter than McCormick’s relaxation (39).

Proof. First relax the right-hand-side of (36) as follows:















(x, y) ∈ B
∣

∣

∣

∣

∣

n
∑

i=1

min















(ai(Ui − Li) + b′i)(xi − li) + c′i(yi − Li)

b′i(xi − li) + (ai(ui − li) + ci)(yi − Li)















≥ r′















, (40)

and rewrite the defining inequality of (40) by substituting b′i = bi +aiLi and c′i = aili + ci as follows:

n
∑

i=1

(

−ailiLi − cLi − bli +

min
{

(aiUi + bi)xi + (aili + ci)yi − ailiUi, (aiLi + bi)xi + (aiui + ci)yi − aiuiLi

}

)

≥ r −
n
∑

i=1

(

ailiLi + cLi + bli
)

to see the equivalence with (39).

To explore the geometry of (36), we will now consider an example, which illustrates the source
of its improvement over (39). In fact, it can be argued that the relaxation of Proposition 3.6 does
not necessarily improve over (39) and that, in order to observe dominance, the inequality must be
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tightened outside the region of interest. The next example will also reveal the reason that the linear
extension of the inequality beyond the hypercube has the effect of resurrecting the power of the
bilinear envelopes. In addition, the example serves as a guide for how similar arguments can be
applied to other general contexts that deploy Theorems 2.1 and 2.14 for constructing relaxations.

Example 3.9. Consider the set:

BS =

{

(x, y) ∈
n
∏

i=1

[0, u] ×
n
∏

i=1

[0, u]

∣

∣

∣

∣

∣

n
∑

i=1

xiyi ≥ r

}

.

Assume that r < u2. Refer to Figure 2 for an illustration of the scenario presented. The relaxations
of Proposition 3.6 and Theorem 3.7 are orthogonally disjunctive and since the set is symmetric for
all i, the relaxations can be visualized in the space of (xi, yi) variables, while setting the remaining
variables to zero. In fact, McCormick’s relaxation can also be visualized on this plot since it can
also be viewed as orthogonally disjunctive. Let H =

∏n
i=1[0, u] ×

∏n
i=1[0, u] and define

S
p
i (xi, yi) =

{

(x, y) ∈ H
∣

∣

∣ xi ≥
r

u
, xiyi ≥ r, yi ≥

r

u
, and, ∀j 6= i, xj = yj = 0

}

Sm
i (xi, yi) =

{

(x, y) ∈ H
∣

∣

∣ xi ≥
r

u
, yi ≥

r

u
, and, ∀j 6= i, xj = yj = 0

}

So
i (xi, yi) = {(x, y) ∈ H | xiyi ≥ r, and, ∀j 6= i, xj = yj = 0} .

The relaxation of Theorem 3.7 is conv (
⋃n

i=1 S
p
i (xi, yi)) ∩H. For the example depicted in Figure 2,

S
p
i (xi, yi) corresponds to Region 1. McCormick’s relaxation is conv (

⋃n
i=1 S

m
i (xi, yi)) ∩ H. The

improvement to this relaxation can be visualized by the difference between S
p
i (xi, yi) and Sm

i (xi, yi)
which is depicted as Region 2 in Figure 2. Finally, the relaxation obtained in Proposition 3.6,
where the bounds on xi and yi are ignored in the construction, is conv (

⋃n
i=1 S

o
i (xi, yi)) ∩H. The

improvement that results from the tightening of the defining inequality outside the bounds, following
the discussion after Theorem 2.14, has the effect of removing Region 3 in Figure 2. It should be
noted that even though Region 3 is outside H, it impacts the relaxation within H when the disjunctive
convex hull is constructed.

To visualize the impact of relaxation tightening, consider minimizing
∑n

i=1(xi + yi) over BS .
Then, the optimal value for McCormick’s relaxation (a lower bound on the optimal value over BS)
is 2r

u
, whereas the bound with the relaxations of Proposition 3.6 and Theorem 3.7 equals the optimal

value over BS, i.e., 2
√
r, which by our assumption, (i.e., r < u2) is strictly less than 2r

u
. For the

example illustrated in Figure 2, the bound from McCormick’s relaxation is 5 whereas the optimal
objective value as well as the bound from the relaxations of Proposition 3.6 and Theorem 3.7 is
10.

Theorems 2.1 and 2.14 not only allow us to construct tight relaxations but also help in analyzing
their tightness. Our next result analyzes the relative tightness of (36) and (39) using the orthogonally
disjunctive characterization. In particular, it identifies the precise condition under which (36) is
tighter than McCormick’s relaxation (39). This condition generalizes the assumed condition relating
r and u, namely r < u2, in the above example. In fact, Example 3.9 also contains the key geometric
intuition for the proof of the next result.

Proposition 3.10. Assume that r and for each i, ai, bi, and ci are positive. Then, relaxation (36)
is tighter than McCormick’s relaxation (39) if and only if there exists an i ∈ {1, . . . , n} such that
ai(ui − li)(Ui −Li)+ b′i(ui − li)+ c′i(Ui −Li) > r′. In other words, (36) is tighter than McCormick’s
relaxation (39) when there is a feasible point that sets all pairs of variables, except for one at their
lower bound, and the remaining pair is not set at its upper bound.

Proof. As in the proof of Theorem 3.7, it suffices to verify the claim assuming that b′i = bi, c
′
i =

ci, r
′ = r, li = 0, and Li = 0. Consider the point (x̄, ȳ), where (x̄j , ȳj) = 0 for j 6= i, x̄i =

uir
aiuiUi+biui+ciUi

and ȳi = Uir
aiuiUi+biui+ciUi

. If r < aiuiUi + biui + ci, then (x̄, ȳ) is feasible to (39).
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Figure 2: Various relaxations of xy ≥ 25 over 0 ≤ x, y ≤ 10

Note that τi(xi, yi) < r ⇔ aixiyi+bixi+ciyi < r. Since, aix̄iȳi+bix̄i+ciȳi < (aiUi+bi)x̄i+ciȳi = r,
it follows that τi(x̄i, ȳi) < r and, therefore, (x̄i, ȳi) is infeasible to (36).

If we show that τi(xi, yi) ≥ r is redundant for each of the disjunctions, then it follows from
the proof of Corollary 3.8 and Theorem 2.1 that (36) and (39) are identical. To prove this by
contradiction, assume that aiuiUi+biui+ciUi < r, i.e., τi(ui, Ui) < r, but that there exists an (x̄i, ȳi)
such that aix̄iȳi + bix̄i + ciȳi < r and min ((aiUi + bi)x̄i + ciȳi, bix̄i + (aiui + ci)ȳi) ≥ r. Clearly, if
x̄i > ui or ȳi > Ui, we obtain a contradiction since either aix̄iȳi+bix̄i+ciȳi > (aiUi+bi)x̄i+ciȳi ≥ r

or aix̄iȳi + bix̄i + ciȳi > bix̄i + (aiui + ci)ȳi ≥ r. On the other hand, if x̄i ≤ ui and ȳi ≤ Ui, then
r ≤ (aiUi + bi)x̄i + ciȳi ≤ aiUiui + biui + ciUi < r, which is also a contradiction.

Proposition 3.10 formalizes the condition under which our relaxation improves McCormick’s
relaxation for BR

B . We next develop some insight into this condition. To place the relevance of this
condition in the right perspective, it helps to realize that the infeasibility of BR

B is simple to detect.
More precisely, BR

B is infeasible if and only if the solution obtained by setting the variables at their
upper bounds is infeasible to the defining constraint. If this is indeed the case, then we verify that
(39) will detect infeasibility. If for all i, li ≤ xi ≤ ui and Li ≤ yi ≤ Ui, then

n
∑

i=1

(aiUi + bi)xi + (aili + ci) yi − ailiUi =

n
∑

i=1

aiUixi + bixi + ciyi + aili(yi − Ui)

≤
n
∑

i=1

aiuiUi + biui + ciUi < r,

(41)

where the last inequality follows by the infeasibility of BR
B . Since the first expression in (41) is at

least as large as the left-hand-side of the defining inequality of (39), it follows that (39) is infeasible
whenever BR

B is infeasible. Corollary 3.8 then proves that (36) will detect infeasibility as well.
Proposition 3.10 states that the new relaxation is tighter when: a(ui − li)(Ui − Li) + b′i(ui −

li) + c′i(Ui −Li) > r′. Intuitively, this condition is true if the bounds on the variables are loose, i.e.,
ui ≫ li and Ui ≫ Li, or if r′ is small, i.e., the solution obtained by setting variables at their lower
bounds is almost feasible. Both of these cases are interesting in the context of branch-and-bound
algorithms. Typically, branch-and-bound algorithms require bounds on variables in order to build
relaxations. On the contrary, Theorem 3.7 provides a convex hull relaxation in the absence of upper
bound (see Proposition 3.6). Further, the convergence of branch-and-bound algorithms in global
optimization is often mired by the fact that they are ǫ-convergent. In essence, branch-and-bound
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tends to produce many small boxes, close to feasible solutions, in an effort to prove tight bounds
over these regions. The new relaxation helps address these deficiencies in current relaxations by
offering the potential of improving relaxation quality close to feasible solutions.

4 Computational Behavior of Relaxations

In Section 2, we developed a theory for constructing convex hulls over orthogonal disjunctions
and established conditions under which a relaxation for a nonconvex inequality constraint can be
constructed using this approach. This theory was used to develop relaxations for polynomial, and
in particular, bilinear cover inequalities in Section 3. Corollary 3.8 and Proposition 3.10 showed
that the resulting relaxations are at least as tight as the McCormick relaxations for BR

B , and may
be strictly tighter if the lower corner of B is close to a feasible solution or if the bounds are loose.
Example 3.9 provided a concrete example where the difference between the two relaxations was found
to be substantial. The purpose of this section is to carry out a preliminary computational study
to provide numerical evidence regarding the strength of the resulting relaxations. The results here
complement the theoretical results of the previous section in that they give an empirical measure of
the improvement in relaxation quality on a set of randomly generated problem instances, in addition
to the theoretical assertion that there is no deterioration.

We generate random instances of BR
B as follows. The number of pairs of variables, n, is varied

from 1 to 10. A uniform distribution from a to b will be denoted as U [a, b]. The coefficients for
the bilinear cover are generated as follows ai ∈ U [1, 10], bi ∈ U [0, 10], ci ∈ U [0, 10], r′ ∈ U [1, 200n],
li ∈ U [0, 10], ui ∈ li + U [1, 10], Li ∈ U [0, 10], and Ui ∈ Li + U [1, 10]. For each setting of n, 400
problems are generated. For each problem, the objective is to minimize

∑n
i=1(xi+yi). This objective

does not restrict the generality of the study since there is sufficient flexibility in the problem generator
to scale the problem variables rendering it unnecessary to choose objective function coefficients for
the problem variables. The problems are generated and solved using GAMS 22.8 [12]. The objective
is minimized over the bilinear cover using BARON 8.1 [24]. The nonlinear relaxation (36) is solved
using KNITRO 5.1 [32] and (39) is solved using CPLEX 11.1 [16]. The absolute optimality tolerance
is set as 0.0 and the relative tolerance is set to 10−5. The problems are solved on a Linux (Fedora
Werewolf) PC with an INTEL 2.13 GHz dual-core processor and 3GB RAM.

Table 1 reports our computational results with the bilinear covering set. Here, n is the number
of pairs of variables; ninf , ninforth, and ninfmc are the number of problems found to be infeasible using
the bilinear inequality, (36), and (39) respectively; north and nmc are the number of problems that
exhibit a non-zero relaxation gap with (36) and (39) respectively; and pgap is the average percentage
of gap closed for the problems for which (39) exhibits a relaxation gap. The percentage of gap
closed is defined as 1− zn−zo

zn−zm
, where zn, zo, and zm are the optimal values over BR

B , (36), and (39)
respectively. As was proved in the discussion following Proposition 3.10, ninf = ninforth = ninfmc.
Further, since (36) defines the convex hull of BR

B when restricted to one variable pair, it is expected
that, for n = 1, pgap = 100% and north = 0. However, even when n > 1, it is interesting to note that
the average gap closed by the new relaxation is substantial. Also, the number of problems with a
non-zero gap is substantially smaller for (36) as compared to that for (39), i.e., north ≪ nmc.

5 Conclusions

In this paper, we developed a convexification tool for orthogonal disjunctions that does not introduce
new variables. As an application, we provided a simple derivation of intersection cuts for mixed-
integer polyhedral sets. The convexification tool was also shown to be useful in deriving cuts for a
variety of nonconvex constraints; those that satisfy a key convex extension property. Verifying the
convex extension property can be an arduous task. To address this difficulty, we provided a general
set of conditions that are sufficient to establish the convex extension property. These conditions
were then used to verify the convex extension property and find convex hull representations and
convex relaxations for a variety of polynomial covering sets. The results were specialized and refined
for the bilinear covering set. The relaxations of the bilinear covering set were shown to be at least
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n ninf ninforth ninfmc north nmc pgap (%)
1 21 21 21 0 272 100.0
2 3 3 3 35 301 91.5
3 1 1 1 43 311 91.0
4 0 0 0 77 334 83.5
5 1 1 1 90 317 78.0
6 0 0 0 106 331 73.0
7 0 0 0 127 345 70.9
8 0 0 0 148 343 63.6
9 0 0 0 151 336 58.0

10 0 0 0 158 344 60.6

Table 1: Performance of relaxations on the bilinear covering set

as tight as the standard factorable relaxation of McCormick. The precise condition under which
the relaxation developed is strictly tighter was identified by exploiting the geometry of orthogonal
disjunctions. Finally, preliminary computational results were provided to demonstrate that the
developed relaxations close a significant gap for bilinear covering sets. Future work will concentrate
on applying these results to other classes of problems, and on incorporating the findings in relaxation
constructors within a branch-and-bound algorithm for global optimization.
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