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Abstract. This paper discusses the problem of stability of equilibrium
points in normal form games in the tremling-hand framework. An equilib-
rium point is called perffect if it is stable against at least one seqence of
trembles approaching zero. A strictly perfect equilibrium point is stable
against every such sequence.

We give a sufficient condition for a Nash equilibrium point to be strictly
perfect in terms of the primitive characteristics of the game (payoffs and
strategies), which is new and not known in the literature. In particular,
we show that continuity of the best response correspondence (which can
be stated in terms of the primitives of the game) implies strict perfectness;
we prove a number of other useful theorems regarding the structure of best
responce correspondence in normal form games.

JEL classification: C7

Keywords: Strictly perfect equilibrium, best responce correspondence, unit
simplex, face of a unit simplex.

1. Introduction

The idea of an equilibrium is central in the game theory, for it is an expression of
an “ideal”, or optimal way of playing the game. In his pioneering and revolutionary
work Nash [?] formulated an equilibrium as follows: a strategy profile is called
an equilibrium if the strategy of every player is a best response to other players’
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strategy. Alternatively, it is a strategy profile in which no player has a positive
incentive to deviate, given the strategies of other players. Thus, we can view the
Nash equilibrium as a fixed point of the best response correspondence.

Nash equilibrium is the most basic notion of an equilibrium, it expresses the idea
of “non-regretting”, i.e., none of the players is better-off deviating while other players
stick to their strategies. However, Nash equilibrium concept is a broad equilibrium
notion and appeared to be weak, for example it does not account for the possibility
of mistakes, non-credible threats etc. The reason is that the elements of a Nash
equilibrium profile are best responses to themselves, so there is a problem of mu-
tual interdependence and “endogeneity”, rather than dependence on the exogenous
determinants. rather, we are looking for the solutions that are implied by the game
form itself.

The question whether there is a way to determine which strategies are enforced by
the game lead to development of numerous equilibrium refinements. Stronger criteria
of equilibrium were needed in order to incorporate the possibility of mistakes and
make sure that rationality break-up on some of the stages of the game does not
throw the players away from the optimal path.

The non-optimality that arises via the unreached parts of the game was suc-
cessfully resolved by Selten [?] in 1975, who introduced the perfect equilibrium
concept as a refinement of subgame perfection. The perfect equilibrium point is sta-
ble against arbitrary small deviations from rationality, which is the basic intuition
behind the satisfactory refinement of subgame perfection. In order to incorporate
possibly unreahced parts of the game, Selten considered perturbed games, in which
every strategy is played with positive probability, thus eliminating the possibility of
having unreached information sets. He viewed the complete rationality as a limiting
case of incomplete rationality, and thus proposed to define the perfect equilibrium
profile as a limit point of the sequence of equilibria in perturbed games. I.e, b∗ is

perfect if for at least one sequence of perturbed games
{

Γ̂k
}

, b∗ is a limit equilibrium

point of
{

Γ̂k
}

.

Immediately the question arises whether the way incomplete rationality approaches
complete rationality influences perfectness property. That is, can b∗ be a limit equi-
librium point for one test sequence and not be such for another sequence, both
sequences approaching the game Γ. Okada [?] gives negative answer to this ques-
tion, proving that actually not every perfect equilibrium point is stable against
arbitrary perturbation of rationality. He thus introduced the idea of strictly perfect
equilibrium point, which is limit equilibrium point for every sequence of perturbed
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games. Okada shows that if an equilibrum point is unique, or totally mixed, or
strong, then it is strictly perfect. He also demonstrates that there are games with
no perfect equilibria.

We come up with another sufficient condition for strict perfectness, which is the
continuity of the best response correspondence at the equilibrium point, presented as
a Theorem 3.6 in the section Results. Continuity of the best responce correspondence
is something that is implied by the game form, so we formulate our the sufficient
condition in terms of the primitives of the game (payoffs and strategies), making it
more tractable and suitable for practical usage (see Theorem 3.13).

Also, it’s not difficult to show that one of the conditions listed by Okada (strong
equilibrium) implies continuity of the best response correspondence (see Lemma 3.7).
However, there are cases when none of the conditions (1) – (3) hold, while the best
responce correspondence is continuous (see Example in the Results section), which
guarantees strict perfectness. Hence, continuity is a non-trivial condition among the
sufficient conditions for the strict perfect equilibrium.

The paper is organized as follows. In the section Definitions and Methodology we
present our framework and give all the necessary definition of the concepts involved.
In the section Results first we provide some technical findings concerning the topo-
logical structure of the best responce correspondence for a perturbed game. That is,
we show how the best responce behaves when we are passing to a perturbed game
(restrict the strategy space) from the initial, or unrestricted, game (Lemmas 3.1,
3.2, 3.3, 3.4). An important result which is central for proving our main theorem
states that a best responce correspondence is continuous at the strategy profile a if
and only if it is constant on some neighborhood of a (Lemma 3.5).

2. Definitions and Methodology

Definition 2.1. A normal form Γ of a finite n-player game is a tuple (Π1, ⋅ ⋅ ⋅ ,Πn, H),
where Πi is a finite set of pure strategies of player i, Π =

∏n

i=1
Πi, and H : Π→→ℝ

n

is the payoff function that assigns to every � ∈ Π the vector of payoffs H(�) =
(H1(�), ⋅ ⋅ ⋅ , Hn(�)).

Definition 2.2. A mixed strategy ai for player i is a probability distribution over
Πi. The set of all such probability distributions is denoted by Ai ≡ Δci, where ci is
the cardinality of Πi. The set of mixed strategies for the game Γ is A =

∏n

i=1
Ai.
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We can now define an expected payoff function ℎ, which is an extension of the
payoff function H to all of A.

Definition 2.3. An expected payoff function is a function ℎ : A→→ℝ
n such that

ℎ(a) =
∏

�∈Π

p1(�)p2(�) ⋅ ⋅ ⋅ pn(�)H(�),

where pi(�) is the probability that a assigns to the itℎ component of �, i.e., the
probability with which player i chooses �i.

Mixed strategy ai for player i is comletely mixed if ai ∈ Δo
pi
. Mixed strategy a is

completely mixed if for all i, ai is completely mixed.

Definition 2.4. A best responce correspondence of player i is the correspon-
dence �i : A−i =

∏

j ∕=iAj→→Ai defined for each a−i ∈ A−i as

�i(a−i) = {ãi ∈ Ai : ℎi(ãi, a−i) ≥ ℎi(ai, a−i) ∀ai ∈ Ai} .

Definition 2.5. A best responce correspondence for N -person normal form
game game is the correspondence � : A→→A defined for each a ∈ A as a tuple
(�1(a−1), �2(a−2), . . . , �N(a−N)), where for each i, �i(a−i) is player i’s best responce
correspondence defined as above.

It follows by Berge’s Maximum Theorem that best responce correspondence is
upper semicontinuous, however at some points it may fail to be lower semicontinuous,
which may disrupt equilibrium stability with respect to trembles.

Definition 2.6. A perturbed game Γ̂ of a normal form game Γ is a tuple (Γ, �),
where � = (�1, . . . , �n) is a strictly positive vector of trembles satisfying for all i

ci
∑

k=1

�ik ≤ 1,

such that for each i ∈ {1, . . . , n} and j ∈ {1, . . . , ci} we have

pi(�
i
j) ≥ �ij,

and for each i the following holds:
ci
∑

j=1

pi(�
i
j) = 1.
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So vector � can be interpreted as a vector of minimum probabilities corresponding
to each �i

j ∈ Πi. A perturbed game has the property that pure strategies are ruled

out, that is the action set Âi for generic player i is a subset of (Ai)
0.

The latter restriction gives rise to the notion of maximum probability of the choice
�i
j. Observe that since no pure strategy can be played with zero probability, no pure

strategy can be played with probability one either.

Definition 2.7. A maximum probability of the choice �i
j of player i is defined

as

�(�i
j) = 1 + �ij −

ci
∑

k=1

�ik < 1.

From the above we get immediately the first lemma in our results section.

Definition 2.8. A mixed strategy a∗ ∈ A is called a perfect equilibrium point

of a normal form game Γ if a∗ is a Nash equilibrium for Γ and for some sequence
of perturbed games Γ̂k = (Γ, �k) with �k → 0, there exists a Nash equilibrium point

ak of Γ̂k for each k such that ak → a∗ as k → ∞.

Definition 2.9. A mixed strategy a ∈ A is called a strictly perfect equilibrium

point of a normal form game Γ if a∗ is a Nash equilibrium for Γ and for any sequence
of perturbed games Γ̂k = (Γ, �k) with �k → 0, there exists a Nash equilibrium point

ak of Γ̂k for each k such that ak → a∗ as k → ∞.

Notice that we can relax the assumption that a∗ is a Nash equilibrium in Defi-
nitions 2.7 and 2.8, for Selten showed that a limit of equilibrium points is itself an
equilibrium.

Definition 2.10. A Nash equilibrium point a∗ ∈ A is called strong if for each
player i

ℎi(a
∗) > ℎi(a

∗
−i, ai) for all ai ∈ Ai such that ai ∕= a∗i .
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3. Results

Here we present the results regarding the implications of continuity of the best
response correspondence to the problem of stability of equilibrium points. First, we
discuss some technical results regarding the structure of a perturbed game.

Every action in a perturbed game is restricted to be played with the probability
no less than the corresponding �j, that is, ∀ aj ∈ Aj: P (aj) ≥ �j, j ∈ {1, . . . , pi}.
Combined with the restriction that the probabilities in the strategy profile sum up
to one, we get immediately the following lemma.

Lemma 3.1. For all i, Âi is a unit (pi − 1)-simplex with vertices:

(�1, . . . , �pi−1, 1− �1 − . . .− �pi−1),

(�1, . . . , �pi−2, 1− �1 − . . .− �pi−2 − �pi , �pi),
...

(1− �2 − . . .− �pi , �2, . . . , �pi).

Fix j ∈ I and a−j ∈ Â−j, then Hj(âj) = Hj(âj, â−j) describes an equation of a

multidimensional plane on Â−j, hence the following conclusion holds.

Lemma 3.2. For all j, �j(Â−j) is an m-face of the unit (pj − 1)-simplex Âj for
some m ∈ {0, . . . , pj}.

It follows from Berge Maximum Theorem that for all j, a−j the best response
correspondence is upper hemicontinuous in a−j. However, it may fail to be lower
hemicontinuous at some points. For example, consider the 2-person game with
A1 = A2 = [0, 1], and let

�2(a1) =

{

[0, 1] if a1 = 0

1 otherwise.

As can be seen, the best response correspondence is not lower hemicontinuous at
a1 = 0. The fact that best response correspondence is not continuous at some points
can make the Nash equilibrium points unstable.
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Lemma 3.3. For the N-player normal form game the following statements are equiv-
alent:

(1) The best resposce correspondence � is continuous at (x1, . . . , xN ).
(2) For each i = 1, . . . , N �i is continuous at x−i.
(3) For each i = 1, . . . , N there exists Ui open neighborhood of x−i such that �i

is constant on Ui.
(4) There exists U open neighborhood of x such that � is constant on U .

Proof. (1) ⇒ (2) Assume � is continuous at x0. Let’s show upper-hemicontinuiuty
first. Since � is continuous. it is also upper-hemicontinuous, then for every U ⊆ A

neighborhood of �(x0) there exists V ⊆ A neighborhood of x0 such that z ∈ V

implies �(z) ∈ U .

By Berge’s maximum theorem �i is upper-hemicontinuous for each i.

For the lower-hemicontinuity of �i, fix Uj ⊆ A−j open such that Uj ∩ �j(x
0

−j) ∕=

∕⃝ for each j ∈ I. Let W ≡
∏N

j=1
Uj , which meets �(x0). Then by the lower-

hemicontinuity of � there exists V ⊆ A open neighborhood of x0 such that z ∈ V

implies �(z) ∩ U ∕= ∕⃝. Consequently z−i ∈ V−i implies �i(z−i) ∩ Ui ∕= ∕⃝. Hence �i

is lower-hemicontinuous.

(2) ⇒ (1) Assume each �i is continuous at x−i, then ' ≡
∏N

i=1
�i :

∏N

i=1
A−i→→A

is continuous at x being a finite product of continuous compact-valued correspon-
dences. From this we can show that � is continuous at x.

Since ' is upper-hemicontinuous at x, for every U open neighborhood of ' (x),

U ⊆ A there exists V open neighborhood of
∏N

i=1
x−i such that z ∈ V ⇒ '(z) ∈ U .

Hence there exists W open neighborhood of x such that z ∈ W ⇒ �(z) ∈ U , i.e. �
is upper-hemicontinuous atx.

Due to the lower-hemicontinuity of ' at x, for every U open in A s.t. U ∩
'(

∏N

i=1
x−i) ∕= ∕⃝ there exists V open neighborhood of

∏N

i=1
x−i such that z ∈

V ⇒ '(z) ∩ U ∕= ∕⃝. Hence there exists W open neighborhood of x such that
z ∈ W ⇒ �(z) ∩ U ∕= ∕⃝. Therefore � is lower-hemicontinuous at x.

(2) ⇒ (3) Fix i ∈ I. Assume �i(x
0

−i) is continuous at x0

−i. need to show there
exists an open neighborhood of x0

−i such that �i is constant on that neighborhood.

Suppose by contradiction for each Ui open neighborhood of x0

−i �i is not constant
on Ui. WLOG �i(x

0

−i) is an M-face M of the unit pi-simplex Ai. Hence there exists
W open neighborhood of M that does not contain any other face of the unit pi-
simplex, or an open set that meets M , but does not meet any other face of Ai.
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Apply upper-hemicontinuity of �i in the first case, and lower-hemicontinuity of �i

in the second case to derive contradiction:

1) there does not exist V open neighborhood of x0

−i such that z ∈ V implies
�i(z) ∈ W ;

2) there does not exist V open neighborhood of x0

−i such that z ∈ V implies
�i(z) ∩W ∕⃝.

Both cases imply that �I is not continuous at x0

−i, contradiction.

(3) ⇒ (2) is obvious, and equivalence of (3) and (4) is immediate, which finishes
the proof.

Lemma 3.4. For every i ∈ I the corresponding faces of Ai and Âi are collinear,
when we consider Ai and Âi to be subsets of the vector space ℝ

pi.

Lemma 3.5. For every i ∈ I if �i(A−i) is an m-face of the unit (pi − 1)-simplex

Ai, then �̂j(Â−j) is the corresponding m-face of the unit (pi − 1)-simplex Âj.

The above lemma is an immediate consequence of Lemma 0.5 and the fact that
for every player, keeping the strategies of all other players fixed, his payoff function
is a linear in probabilities constituting that player’s mixed strategy.

Theorem 3.6. Let x0 ∈ A be a Nash equilibrium for the normal form game Γ with
N players. If for every i = 1, . . . , N �i : A−i→→Ai is continuous at x0

−i, then x0 is
strictly perfect equilibrium point.

Proof. Claim: ∀ � > 0 ∃ �̄ = (�̄i)
N
i=1

such that for every �̂ ≥ �̄ the corresponding

perturbed game Γ̂ has a Nash equilibrium x̂ such that ∥ x̂− x0∥ ≤ �.

Since ∀ i�i : A−i→→Ai is continuous at x
0

−i, then by Lemma 0.4 ∀ i there exists U−i

open neighborhood of x0

−i such that �i is constant on U−i. Let U =
∩N

i=1
(Ai × U−i),

then for every i the best response correspondence �i is constant on W−i, also W is
an open neighborhood of x0 since all U−i’s are.

WLOG x0 ∈ V1 × . . . × VN ⊆ U , where Vi is an open (in Ai) box around x0

i .
Therefore �i is constant on V−i for every i.
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Fix � > 0. Let � > 0 be such that �-neighborhood of x0 in A in uniform topology
is in V (we are able to do it since V is open and x0 ∈ V ). Let V ′ denote the
�′-neighborhood of x0 (in the uniform topology), and define Wi = Vi ∩ V ′

i . Then
∀ i ∀x−i ∈ W−i : �i(x−i) = �i(x

0

−i).

Let �′ = min {�, �} > 0. Compose �̄ = (�̄i)
N
i=1

as follows: for each i, if x0

i is

interior, then �̄i is arbitrary, otherwise �̄i is such that the corresponding Âi meets
Wi. We claim that for every � ≥ �̄ the corresponding perturbed game Γ̂ has a Nash
equilibrium x̂ such that ∥ x̂− x0∥ ≤ �′ (and consequently ∥ x̂− x0∥ ≤ �).

Indeed, fix �̂ ≥ �̄, and let Mi denote the best responce of player i to x0

−i, which
is an mi-face of the unit pi-simplex. Then for the perturbed game corresponding to
�̂ the best responce of player i is also the mi-face, call it M̂i.

For each i, consider Yi = M̂i ∩Wi. We claim that any point in ∩N
i=1

Yi is a Nash

equilibrium of the perturbed game Γ̂. Indeed, for every yi ∈ Yi Mi is a best responce,
so any point in Y is a Nash equilibrium.

Lemma 3.7. If x0 ∈ A is a strong equilibrium point, then �i is continuous at x0

−i

for every i = 1, . . . , N .

Proof. Since x0 is a strong equilibrium point, �i is a singleton for every i. By
the properties of best response correspondence �i is upper hemicontinuous, so for
every i, �i is a singleton on some neighborhood of x0

−i. Hence by Lemma 0.4, �i is
continuous at x0

−i for every i = 1, . . . , N .

So, strong equilibrium implies continuity of the best responces at that point, how-
ever the converse is not true. Also, there are examples (e.g., Matching pennies game)
when the equilibrium point is unique and interior, but the best responces fail to be
continuous at that equilibrium point. The following example shows that the continu-
ity condition is essential in the sense that for certainn equilibrium points none of the
three sufficient conditions provided by Okada hold, however the best response corre-
spondence is continuous, which implies strict perfectness of the equilibrium point.

Example 3.8. (Essentiality of the continuity condition) Consider the two-
person normal form game depicted in the table below. In this example equilibrium
point (A, a) is neither interior nor unique, for (B, a) and (C, b) are Nash equilibria
as well. It is also not strong equilibrium, however the best responce correspondence
is continuous at (A, a).
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1/2 a b
A 1, 4 1, 0
B 1, 4 1, 0
C 0, 1 1, 1

Example 3.9. Consider the 2-person game with player 1 having choices 1, 2, . . . ,m,
and player 2 having n choices. If player 1 randomizes between his choices according
to the vector of probabilities p = (p1, . . . , pm), and player 2 uses the strategy q =
(q1, . . . , qn), then their utility functions are defined by

U1 =
m
∑

i=1

pi(ai1q1 + . . .+ ainqn),

U2 =
n

∑

j=1

qj(bj1p1 + . . .+ bjmpm),

where (aij)
j=1,...,n
i=1,...,m and (bij)

j=1,...,n
i=1,...,m are the payoff matrices for players 1 and 2,

respectively.

Denote ai1q1 + . . . + ainqn by t1i , and bj1p1 + . . . + bjmpm by t2j . Then the above
formulas simplify as

U1 =
m
∑

i=1

pit
1

i , U2 =
n

∑

j=1

qjt
2

j .

Player 1, given the strategy q of another player, optimezes w.r.t. p, given a
constant vector t1 = (t1

1
, . . . , t1m), which is completely determined by q. A version of

Lemma 3.2 ensures that the best responce p∗(t1) is a face of the unit simplex Δm.

Example 3.10. Now consider the 3-person game with players 1, 2 and 3 having
m, n and k choices, respectively, using the mixed strategies p = (p1, . . . , pm), q =
(q1, . . . , qn), and r = (r1, . . . , rk). Then player 1’s utility can be written (similarly
for other players) as:

U1 =
m
∑

l=1

pl (
n

∑

i=1

k
∑

j=1

qirjalij) =
m
∑

l=1

plt
1

l ,

where t1l =
∑n

i=1

∑k

j=1
qirjalij.
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The above examples make obvious the generalization to the N -player case. Every
player j is maximizing the utility function that is linear in his own proabilities,
taking the vector tj as given.

Definition 3.11. Given a vector t = (t1, . . . , tk), an order of t is a vector of
integers s = (s1, . . . , sk) such that for each i, si is a rank of ti among {t1, . . . , tk}
(assuming that maxj∈{1,...,k} tj has the rank 1).

Lemma 3.12. Consider player i’s utility function written in the form Ui =
∑n

j=1
pjt

i
j,

where p is the strategy of player i and ti is a function of other players’ strategies.
Then the best responce correspondence �i(a−i) is constant in the neighborhood V of
some a0−i if and only if the order of ti is constant on that neighborhood.

Notice that we allow a0−i to be on the boundary of A−i, in this case the neighbor-
hood of a0−i is open in the relative topology with respect to A−i. Combined with
Lemma 3.3 and Theorem 3.6, this gives a sufficient condition for strict perfectness
of a Nash equilibrium point, which is presented in the following theorem.

Theorem 3.13. Let a∗ ∈ A be a Nash equilibrium for the normal form game Γ with
N players. If there exists a neighborhhood V =

∏N

i=1
Vi of a

∗ such that for every
i = 1, . . . , N the order of ti is constant on V−i, then a∗ is strictly perfect equilibrium
point.

Finally, the following theorem demonstrates that continunity is a regular condition
in the sense that the best responce ocrrespondence is continuous almost everywhere
(with respect to the Lebesgue measure on A).

Theorem 3.14. The best responce correspondence for any finite normal form game
Γ is continuous almost everywhere.
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